]> AND Private Git Repository - Krylov_multi.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modif
authorraphael couturier <couturie@extinction>
Wed, 30 Apr 2014 09:28:40 +0000 (11:28 +0200)
committerraphael couturier <couturie@extinction>
Wed, 30 Apr 2014 09:28:40 +0000 (11:28 +0200)
krylov_multi.tex

index 5715dc24479cbde273a2150e1acbb36ec339573f..ff5e8480a0d6617212e4fac787a2380e312c6e02 100644 (file)
@@ -306,13 +306,13 @@ is reached. The precision and the maximum number of iterations of CGNR method ar
  \cline{3-8}
            &                   &  Time (s) & nb Iter. & $\Delta$  &   Time (s)& nb Iter. & $\Delta$ & \\
 \hline
  \cline{3-8}
            &                   &  Time (s) & nb Iter. & $\Delta$  &   Time (s)& nb Iter. & $\Delta$ & \\
 \hline
-$468^3$ & 2048 (2x1024)        &  299.7    & 41,028    & 5.02e-8  &  48.4    & 691(6,146) & 8.24e-08  & 6.19   \\
+$468^3$ & 2,048 (2x1,024)        &  299.7    & 41,028    & 5.02e-8  &  48.4    & 691(6,146) & 8.24e-08  & 6.19   \\
 \hline
 \hline
-$590^3$ & 4096 (2x2048)        &  433.1    & 55,494    & 4.92e-7  &  74.1    & 1,101(8,211) & 6.62e-08  & 5.84   \\
+$590^3$ & 4,096 (2x2,048)        &  433.1    & 55,494    & 4.92e-7  &  74.1    & 1,101(8,211) & 6.62e-08  & 5.84   \\
 \hline
 \hline
-$743^3$ & 8192 (2x4096)        & 704.4     & 87,822    & 4.80e-07 &  151.2   & 3,061(14,914) & 5.87e-08 & 4.65    \\
+$743^3$ & 8,192 (2x4,096)        & 704.4     & 87,822    & 4.80e-07 &  151.2   & 3,061(14,914) & 5.87e-08 & 4.65    \\
 \hline
 \hline
-$743^3$ & 8192 (4x2048)        & 704.4     & 87,822    & 4.80e-07 &  110.3   & 1,531(12,721) & 1.47e-07& 6.39  \\
+$743^3$ & 8,192 (4x2,048)        & 704.4     & 87,822    & 4.80e-07 &  110.3   & 1,531(12,721) & 1.47e-07& 6.39  \\
 \hline
 
 \end{tabular}
 \hline
 
 \end{tabular}
@@ -325,15 +325,44 @@ $743^3$ & 8192 (4x2048)        & 704.4     & 87,822    & 4.80e-07 &  110.3   & 1
 From these  experiments, it can be  observed that the  multisplitting version is
 always  faster   than  the  GMRES   version.   The  acceleration  gain   of  the
 multisplitting version is between 4 and 6.  It can be noticed that the number of
 From these  experiments, it can be  observed that the  multisplitting version is
 always  faster   than  the  GMRES   version.   The  acceleration  gain   of  the
 multisplitting version is between 4 and 6.  It can be noticed that the number of
-iterations is drastically reduced with  the multisplitting version even it is not
-neglectable.
+iterations is drastically reduced with the multisplitting version even it is not
+neglectable. Moreover, with 8,192 cores, we  can see that using 4 clusters gives
+better performance than simply using 2 clusters. In fact, we can remark that the
+precision with 2 clusters is slightly  better but in both cases the precision is
+under the specified threshold.
 
 \section{Conclusion and perspectives}
 
 \section{Conclusion and perspectives}
-We have implemented a Krylov multisplitting method to solve sparse linear systems on large-scale computing platforms. We have developed a synchronous two-stage method based on the block Jacobi multisplitting and uses GMRES iterative method as an inner iteration. Our contribution in this paper is twofold. First we have constituted a virtual multi-cluster environment based on processors of the computing platform on which each linear sub-system issued from the splitting is solved in parallel by a cluster of processors. Second, we have implemented the outer iteration of the multisplitting method as a Krylov subspace method which minimizes some error function. This increases the convergence and improves the scalability of the multisplitting method.
-
-We have tested our multisplitting method to solve the sparse linear system issued from the discretization of a 3D Poisson problem. We have compared its performances to the classical GMRES method on a supercomputer composed of 2048 to 8192 cores. The experimental results showed that the multisplitting method is about 4 to 6 times faster than the GMRES method for different sizes of the problem split into 2 or 4 blocks when using multisplitting method. Indeed, the GMRES method has difficulties to scale with many cores while the Krylov multisplitting method allows to hide latency and reduce the inter-cluster communications.
-
-In future works, we plan to conduct experiments on larger number of cores and test the scalability of our Krylov multisplitting method. It would be interesting to validate its performances to solve other linear/nonlinear and symmetric/nonsymmetric problems. Moreover, we intend to develop multisplitting methods based on asynchronous iteration in which communications are overlapped by computations. These methods would be interesting for platforms composed of distant clusters interconnected by a high-latency network. In addition, we intend to investigate the convergence improvements of our method by using preconditioning techniques for Krylov iterative methods and multisplitting methods with overlapping blocks.    
+We  have implemented  a  Krylov  multisplitting method  to  solve sparse  linear
+systems  on large-scale computing  platforms.  We  have developed  a synchronous
+two-stage  method based  on the  block Jacobi  multisaplitting which  uses GMRES
+iterative  method as  an inner  iteration.  Our  contribution in  this  paper is
+twofold. First we provide a multi cluster decomposition that allows us to choose
+the  appropriate size  of  the clusters  according  to the  architecures of  the
+supercomputer.  Second,   we  have  implemented  the  outer   iteration  of  the
+multisplitting method  as a  Krylov subspace method  which minimizes  some error
+function.  This  increases the convergence  and improves the scalability  of the
+multisplitting method.
+
+We  have tested  our multisplitting  method to  solve the  sparse  linear system
+issued from  the discretization of  a 3D Poisson  problem. We have  compared its
+performances to the  classical GMRES method on a  supercomputer composed of 2,048
+to 8,192 cores. The experimental results showed that the multisplitting method is
+about 4  to 6  times faster  than the GMRES  method for  different sizes  of the
+problem split into  2 or 4 blocks when using  multisplitting method. Indeed, the
+GMRES  method  has  difficulties to  scale  with  many  cores while  the  Krylov
+multisplitting  method  allows to  hide  latency  and  reduce the  inter-cluster
+communications.
+
+In future  works, we plan to conduct  experiments on larger number  of cores and
+test  the  scalability  of  our   Krylov  multisplitting  method.  It  would  be
+interesting  to validate its  performances to  solve other  linear/nonlinear and
+symmetric/nonsymmetric problems.  Moreover, we intend  to develop multisplitting
+methods based  on asynchronous iteration in which  communications are overlapped
+by computations.  These methods would  be interesting for platforms  composed of
+distant  clusters interconnected  by  a high-latency  network.  In addition,  we
+intend  to investigate  the  convergence  improvements of  our  method by  using
+preconditioning  techniques  for  Krylov  iterative methods  and  multisplitting
+methods with overlapping blocks.
 
 
 %Other applications (=> other matrices)\\
 
 
 %Other applications (=> other matrices)\\