-In this paper, we have studied the problem of lifetime coverage optimization in
-WSNs. To cope with this problem, the area of interest is divided into a smaller subregions using divide-and-conquer method, and then a LiCO protocol for optimizing the lifetime coverage in each subregion. LiCO protocol combines two efficient techniques: the first, network
-leader election, which executes the perimeter coverage model (only one time), the optimization algorithm, and sending the schedule produced by the optimization algorithm to other nodes in the subregion ; the second, sensor activity scheduling based optimization in which a new lifetime coverage optimization model is proposed. The main challenges include how to select the most efficient leader in each subregion and the best schedule of sensor nodes that will optimize the network lifetime coverage
-in the subregion. The network lifetime coverage in each subregion is divided into
-periods, each period consists of four stages: (i) Information Exchange,
-(ii) Leader Election, (iii) a Decision based new optimization model in order to
-select the nodes remaining active for the last stage, and (iv) Sensing.
-The simulation results show that LiCO is is more energy-efficient than other approaches, with respect to lifetime, coverage ratio, active sensors ratio, and energy consumption. Indeed, when dealing with large and dense WSNs, a distributed optimization approach on the subregions of WSN like the one we are proposed allows to reduce the difficulty of a single global optimization problem by partitioning it in many smaller problems, one per subregion, that can be solved more easily.
-
-Our future work is four-fold: the first, we plan to extend a lifetime coverage optimization problem in order to computes all active sensor schedules in only one step for many periods;
+In this paper we have studied the problem of lifetime coverage optimization in
+WSNs. We designed a protocol LiCO that schedules node activities (wakeup and sleep) with the objective of maintaining a good coverage ratio while maximizing the network lifetime. This protocol is applied on each subregion of the area of interest. It works in periods and is based on the resolution of an integer program to select the subset of sensors operating in active mode for each period. Our work is original in so far as it proposes for the first time an integer program scheduling the activation of sensors based on their perimeter coverage level instead of using a set of targets/points to be covered.
+
+ We carried out severals simulations to evaluate the proposed protocol.
+
+
+%To cope with this problem, the area of interest is divided into a smaller subregions using divide-and-conquer method, and then a LiCO protocol for optimizing the lifetime coverage in each subregion. LiCO protocol combines two efficient techniques: network
+%leader election, which executes the perimeter coverage model (only one time), the optimization algorithm, and sending the schedule produced by the optimization algorithm to other nodes in the subregion ; the second, sensor activity scheduling based optimization in which a new lifetime coverage optimization model is proposed. The main challenges include how to select the most efficient leader in each subregion and the best schedule of sensor nodes that will optimize the network lifetime coverage
+%in the subregion.
+%The network lifetime coverage in each subregion is divided into
+%periods, each period consists of four stages: (i) Information Exchange,
+%(ii) Leader Election, (iii) a Decision based new optimization model in order to
+%select the nodes remaining active for the last stage, and (iv) Sensing.
+The simulation results show that LiCO is is more energy-efficient than other approaches, with respect to lifetime, coverage ratio, active sensors ratio, and energy consumption.
+%Indeed, when dealing with large and dense WSNs, a distributed optimization approach on the subregions of WSN like the one we are proposed allows to reduce the difficulty of a single global optimization problem by partitioning it in many smaller problems, one per subregion, that can be solved more easily.
+
+We plan to extend a lifetime coverage optimization problem in order to computes all active sensor schedules in only one step for many periods;