]> AND Private Git Repository - LiCO.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
The Modifications have been finished by Ali
authorali <ali@ali>
Thu, 18 Dec 2014 00:51:42 +0000 (01:51 +0100)
committerali <ali@ali>
Thu, 18 Dec 2014 00:51:42 +0000 (01:51 +0100)
18 files changed:
LiCO_Journal.bib
LiCO_Journal.tex
R/ASR.eps
R/ASR.pdf
R/CR.eps
R/CR.pdf
R/EC50.eps
R/EC50.pdf
R/EC95.eps
R/EC95.pdf
R/LT50.eps
R/LT50.pdf
R/LT95.eps
R/LT95.pdf
R/LTa.eps
ex2pcm.jpg [deleted file]
pcm.pdf [deleted file]
twosensors.jpg

index a2810af581005f71230aac316a34882e0354fdf8..3e67fc55a79b3ae08a0f227563a30927b6abcb13 100644 (file)
@@ -1025,3 +1025,83 @@ pages={1-4},
   year={1999}
 }
 
+@BOOK{AMPL,
+  AUTHOR =       "Robert Fourer and David M. Gay and Brian W. Kernighan",
+  TITLE =        "AMPL: A Modeling Language for Mathematical Programming",
+  PUBLISHER =    "Cengage Learning",
+  YEAR =         "November 12, 2002",
+  edition =      "2nd",
+}
+
+@article{Deng2012,
+  title={Transforming Area Coverage to Target Coverage to Maintain Coverage and Connectivity for Wireless Sensor Networks},
+  author={Xiu Deng and Jiguo Yu, Dongxiao Yu and Congcong Chen},
+  journal={International Journal of Distributed Sensor Networks},
+  volume={2012},
+  year={2012},
+  ee = {http://dx.doi.org/10.1155/2012/254318}
+}
+
+@inproceedings{jaggi2006,
+  title={Energy-efficient Connected Covereage in Wireless Sensor Networks},
+  author={N. Jaggi and A.A. Abouzeid},
+  booktitle={Proceeding of 4th Asian International Mobile Computing Conference AMOC2006},
+  year={2006}
+}
+
+@inproceedings{yangnovel,
+  title={A Novel Distributed Algorithm for Complete Targets Coverage in Energy Harvesting Wireless Sensor Networks },
+  author={Yang, Changlin and Chin, Kwan-Wu},
+  booktitle={IEEE ICC 2014- Ad-hoc and Sensor Networking Symposium},
+  pages={361--366},
+  year={2014},
+  organization={IEEE}
+}
+
+@INPROCEEDINGS{5714480,
+author={Xiaofei Xing and Jie Li and Guojun Wang},
+booktitle={Mobile Ad-hoc and Sensor Networks (MSN), 2010 Sixth International Conference on},
+title={Integer Programming Scheme for Target Coverage in Heterogeneous Wireless Sensor Networks},
+year={2010},
+month={Dec},
+pages={79-84},
+keywords={energy conservation;integer programming;wireless sensor networks;ETCA;clustered configurations;clusterheads;energy first algorithm;energy-efficient target coverage algorithm;heterogeneous wireless sensor networks;integer programming;network lifetime;polytype target coverage;sensor node;Algorithm design and analysis;Clustering algorithms;Energy consumption;Logic gates;Sensors;Simulation;Wireless sensor networks;Heterogeneous wireless sensor networks;network lifetime;optimization;target coverage},
+doi={10.1109/MSN.2010.18},}
+
+@article{Yang2014,
+  title={A Maximum Lifetime Coverage Algorithm Based on Linear Programming},
+  author={Mengmeng Yang and Jie Liu},
+  journal={Journal of Information Hiding an dMultimedia Signal Processing, Ubiquitous International},
+  volume={5},
+  number={2},
+  pages={296-301},
+  year={2014}
+}
+
+@article{rossi2012exact,
+  title={An exact approach for maximizing the lifetime of sensor networks with adjustable sensing ranges},
+  author={Rossi, Andr{\'e} and Singh, Alok and Sevaux, Marc},
+  journal={Computers \& Operations Research},
+  volume={39},
+  number={12},
+  pages={3166--3176},
+  year={2012},
+  publisher={Elsevier}
+}
+
+@ARTICLE{glpk,
+author = {Andrew Makhorin},
+title = {The GLPK (GNU Linear Programming Kit)},
+journal = {Available: https://www.gnu.org/software/glpk/},
+year = {2012},
+}
+
+@article{deschinkel2012column,
+  title={A Column Generation based Heuristic to Extend Lifetime in Wireless Sensor Network.},
+  author={Deschinkel, Karine},
+  journal={Sensors \& Transducers Journal},
+  volume={14-2},
+  pages={242--253},
+  year={2012}
+}
\ No newline at end of file
index 6842df2abeca178b5304c55ce3551d5f8d8b1efc..cdd97c2e7f34f16688189642754d406c0b141b19 100755 (executable)
@@ -61,7 +61,7 @@
 \begin{abstract}
 
 
- One fundamental issue in Wireless Sensor Networks (WSNs) is the lifetime coverage optimization, which reflects how well a WSN is covered  so that the network lifetime can be maximized. In this paper, a Lifetime Coverage Optimization Protocol (LiCO) in WSNs is proposed. The surveillance region is divided into subregions and LiCO protocol is distributed among sensor nodes in each subregion. LiC0 protocols works into periods, each period is divided into four stages: Information exchange, Leader Election, Optimization Decision, and Sensing. Schedules node activities (wakeup and sleep of sensors) is performed in each subregion by a leader whose selection is the result of cooperation between nodes within the same subregion. The novelty of the approach lies essentially in the formulation of a new mathematical optimization model based on perimeter coverage level to schedule sensors activities. Extensive simulation experiments have been performed using OMNeT++, the discrete event simulator, to demonstrate that LiCO is capable to extend the lifetime coverage of WSN as longer time as possible in comparison with some other protocols.
+ One fundamental issue in Wireless Sensor Networks (WSNs) is the lifetime coverage optimization, which reflects how well a WSN is covered  so that the network lifetime can be maximized. In this paper, a Lifetime Coverage Optimization Protocol (LiCO) in WSNs is proposed. The surveillance region is divided into subregions and LiCO protocol is distributed among sensor nodes in each subregion. LiCO protocols works with periods, each period is divided into four stages: Information exchange, Leader Election, Optimization Decision, and Sensing. Schedules node activities (wakeup and sleep of sensors) is performed in each subregion by a leader whose selection is the result of cooperation between nodes within the same subregion. The novelty of approach lies essentially in the formulation of a new mathematical optimization model based on perimeter coverage level to schedule sensors activities. Extensive simulation experiments have been performed using OMNeT++, the discrete event simulator, to demonstrate that LiCO is capable to extend the lifetime coverage of WSN as longer time as possible in comparison with some other protocols.
 
 \end{abstract}
 
@@ -80,7 +80,7 @@ Wireless Sensor Networks, Area Coverage, Network lifetime, Optimization, Schedul
 
 \section{\uppercase{Introduction}}
 \label{sec:introduction}
-\noindent The great development in  Micro Electro-Mechanical Systems (MEMS) and wireless communication hardware are being led to emerge networks of tiny distributed sensors called WSN~\cite{akyildiz2002wireless,puccinelli2005wireless}. WSN comprises of small, low-powered sensors working together for perform a typical mission by communicating with one another through multihop wireless connections. They can send the sensed measurements based on local decisions to the user by means of sink nodes. WSN has been used in many applications such as Military, Habitat, Environment, Health, industrial, and Business~\cite{yick2008wireless}.Typically, a sensor node contains three main parts~\cite{anastasi2009energy}: a sensing subsystem, for sense, measure, and gather the measurements from the real environment; processing subsystem, for measurements processing and storage; a communication subsystem, for data transmission and receiving. Moreover,  the energy needed by the sensor node is supplied by a power supply, to accomplish the scheduled task. This power supply is composed of a battery with a limited lifetime. And it maybe be unsuitable or impossible to replace or recharge the batteries in most applications. It is then necessary to deploy the WSN with high density so as to increase the reliability and to exploit redundancy by using energy-efficient activity scheduling approaches. So, the main question is: how to extend the lifetime coverage of WSN as long time as possible while ensuring a high level of coverage? Many energy-efficient mechanisms have been suggested to retain energy and extend the lifetime of the WSNs~\cite{rault2014energy}. \\
+\noindent The great development in  Micro Electro-Mechanical Systems (MEMS) and wireless communication hardware are being led to emerge networks of tiny distributed sensors called WSN~\cite{akyildiz2002wireless,puccinelli2005wireless}. WSN comprises of small, low-powered sensors working together for perform a typical mission by communicating with one another through multihop wireless connections. They can send the sensed measurements based on local decisions to the user by means of sink nodes. WSN has been used in many applications such as Military, Habitat, Environment, Health, industrial, and Business~\cite{yick2008wireless}. Typically, a sensor node contains three main parts~\cite{anastasi2009energy}: a sensing subsystem, for sense, measure, and gather the measurements from the real environment; processing subsystem, for measurements processing and storage; a communication subsystem, for data transmission and receiving. Moreover, the energy needed by the sensor node is supplied by a power supply, to accomplish the scheduled task. This power supply is composed of a battery with a limited lifetime. And it maybe be unsuitable or impossible to replace or recharge the batteries in most applications. It is then necessary to deploy the WSN with high density so as to increase the reliability and to exploit redundancy by using energy-efficient activity scheduling approaches. So, the main question is: how to extend the lifetime coverage of WSN as long time as possible while ensuring a high level of coverage? Many energy-efficient mechanisms have been suggested to retain energy and extend the lifetime of the WSNs~\cite{rault2014energy}. \\
 
 %The sensor system ought to have a lifetime long enough to satisfy the application necessities. The lifetime coverage maximization is one of the fundamental requirements of any area coverage protocol in WSN implementation~\cite{nayak2010wireless}. In order to increase the reliability and prevent the possession of coverage holes (some parts are not covered in the area of interest) in the WSN, it is necessary to deploy the WSN with high density so as to increase the reliability and to exploit redundancy by using energy-efficient activity scheduling approaches.
 
@@ -91,11 +91,11 @@ This paper makes the following contributions.\\
 \begin{enumerate}
 \item We devise a framework to schedules nodes to be activated alternatively, such that the network lifetime may be prolonged ans certain coverage requirement can still be met. 
 This framework is based on the division of the area of interest into several smaller subregions; on the division of timeline into periods of equal length. 
-One leader is elected for each subregion in an independent, distributed, and simultaneous way by the cooperation among the sensor nodes within each subregion, and this similar to cluster architecture
+One leader is elected for each subregion in an independent, distributed, and simultaneous way by the cooperation among the sensor nodes within each subregion, and this is similar to cluster architecture
 \item We propose a new mathematical optimization model. Instead of trying to cover a set of specified points/targets as in most of the methods proposed in the literature, 
 we formulate an integer program based on perimeter coverage of each sensor. The model involves integer variables to capture the deviations between the 
 actual level of coverage and the required level. And a weighted sum of these deviations is minimized. 
-\item We conducted extensive simulation experiments using the discrete event simulator OMNeT++, to demonstrate the efficiency of our protocol, compared to two approaches found in the literature, DESK \ref{} and  GAF \ref{}, and compared to our previous work using another optimization model for sensor scheduling
+\item We conducted extensive simulation experiments using the discrete event simulator OMNeT++, to demonstrate the efficiency of our protocol, compared to two approaches found in the literature, DESK \cite{ChinhVu} and  GAF \cite{xu2001geography}, and compared to our previous work using another optimization model for sensor scheduling \cite{Idrees2}
 \end{enumerate}
 
 
@@ -118,14 +118,14 @@ coverage problem and distinguish our  LiCO protocol from the works presented in
 the literature.
 
 The most discussed coverage problems  in literature can be classified into three
-types \cite{li2013survey}:  area coverage \cite{Misra} where  every point inside
+types \cite{li2013survey}: area coverage \cite{Misra} where every point inside
 an area is to be  monitored, target coverage \cite{yang2014novel} where the main
 objective is  to cover only a  finite number of discrete  points called targets,
-and barrier coverage \cite{Kumar:2005}\cite{kim2013maximum} to prevent intruders
+and barrier coverage \cite{HeShibo}\cite{kim2013maximum} to prevent intruders
 from entering into the region  of interest. In \cite{Deng2012} authors transform
 the area coverage problem to the target coverage problem taking into account the
 intersection points among disks of sensors nodes or between disk of sensor nodes
-and boundaries. In \cite{Huang:2003:CPW:941350.941367} authors prove that if the perimeters of sensors are sufficiently covered, the whole area is sufficiently covered and they provide an algorithm in $O(n d log d)$ time to compute the perimeter-coverage of each sensor ($d$ the maximum number of sensors that are neighboring to a sensor, $n$ the total number of sensors in the network). {\it In LiCO protocol, rather than determining the level of coverage of a set of discrete points, our optimization model is based on checking the perimeter-coverage of each sensor to activate a minimal number of sensors.}
+and boundaries. In \cite{Huang:2003:CPW:941350.941367} authors prove that if the perimeters of sensors are sufficiently covered, the whole area is sufficiently covered and they provide an algorithm in $O(nd~log~d)$ time to compute the perimeter-coverage of each sensor ($d$ the maximum number of sensors that are neighboring to a sensor, $n$ the total number of sensors in the network). {\it In LiCO protocol, instead of determining the level of coverage of a set of discrete points, our optimization model is based on checking the perimeter-coverage of each sensor to activate a minimal number of sensors.}
 
 The major  approach to extend network  lifetime while preserving  coverage is to
 divide/organize the  sensors into a suitable  number of set  covers (disjoint or
@@ -238,14 +238,14 @@ Figure~\ref{pcmfig} illuminates the perimeter coverage of the sensor node $0$. O
 
 \begin{figure}[ht!]
 \centering
-\includegraphics[width=75mm]{pcm.pdf}  
+\includegraphics[width=75mm]{pcm.jpg}  
 \caption{Perimeter coverage of sensor node 0}
 \label{pcmfig}
 \end{figure} 
 
 Figure~\ref{twosensors} demonstrates the way of locating the left and right points of a segment for a sensor node $u$ covered by a sensor node $v$. This figure assumes that the neighbor sensor node $v$ is located on the west of a sensor $u$. It is assumed  that the two sensor nodes $v$ and $u$ are located in the positions $(v_x,v_y)$ and $(u_x,u_y)$, respectively. The distance between $v$ and $u$ is computed by $Dist(u,v) = \sqrt{\vert u_x - v_x \vert^2 + \vert u_y - v_y \vert^2}$. The angle $\alpha$ is computed through the formula $\alpha = arccos \left(\dfrac{Dist(u,v)}{2R_s} \right)$. So, the arch of sensor $u$ falling in the angle $[\pi - \alpha,\pi + \alpha]$, is said to be perimeter-covered by sensor node $v$. 
 
-The left and right points of each segment are placed on the line segment $[0,2\pi]$. Figure~\ref{pcmfig} illustrates the segments for the 9 neighbors of sensor $0$. The points reported on the line segment $[0,2\pi]$ separates it in intervals. For each interval, we sum up the number of parts of segments, and we deduce a level of coverage for each interval. For instance, the interval delimited by the points $5L$ and $6L$ contains three parts of segments. That means that this part of the perimeter of the sensor $0$ may be covered by three sensors, sensor $0$ itself and sensors $2$ and $5$. The level of coverage of this interval may reach $3$ if all previously mentioned sensors are active. Let say that sensors $0$, $2$ and $5$ are involved in the coverage of this interval. The table in figure~\ref{expcm} summarizes the level of coverage for each interval and the sensors involved in.  
+The left and right points of each segment are placed on the line segment $[0,2\pi]$. Figure~\ref{pcmfig} illustrates the segments for the 9 neighbors of sensor $0$. The points reported on the line segment $[0,2\pi]$ separates it in intervals as shown in figure~\ref{expcm}. For example, for each neighboring sensor of sensor 0, place the points  $\alpha^ 1_L$, $\alpha^ 1_R$, $\alpha^ 2_L$, $\alpha^ 2_R$, $\alpha^ 3_L$, $\alpha^ 3_R$, $\alpha^ 4_L$, $\alpha^ 4_R$, $\alpha^ 5_L$, $\alpha^ 5_R$, $\alpha^ 6_L$, $\alpha^ 6_R$, $\alpha^ 7_L$, $\alpha^ 7_R$, $\alpha^ 8_L$, $\alpha^ 8_R$, $\alpha^ 9_L$, and $\alpha^ 9_R$; on the line segment $[0,2\pi]$, and then sort all these points in an ascending order into a list.  Traverse the line segment $[0,2\pi]$ by visiting each point in the sorted list from left to right and determine the coverage level of each interval of the sensor 0 (see figure \ref{expcm}). For each interval, we sum up the number of parts of segments, and we deduce a level of coverage for each interval. For instance, the interval delimited by the points $5L$ and $6L$ contains three parts of segments. That means that this part of the perimeter of the sensor $0$ may be covered by three sensors, sensor $0$ itself and sensors $2$ and $5$. The level of coverage of this interval may reach $3$ if all previously mentioned sensors are active. Let say that sensors $0$, $2$ and $5$ are involved in the coverage of this interval. Table~\ref{my-label} summarizes the level of coverage for each interval and the sensors involved in for sensor node 0 in figure~\ref{pcmfig}. 
 % to determine the level of the perimeter coverage for each left and right point of a segment.
 \begin{figure}[ht!]
 \centering
@@ -254,6 +254,7 @@ The left and right points of each segment are placed on the line segment $[0,2\p
 \label{twosensors}
 \end{figure} 
 
+
 \begin{figure}[ht!]
 \centering
 \includegraphics[width=75mm]{expcm.pdf}  
@@ -261,8 +262,18 @@ The left and right points of each segment are placed on the line segment $[0,2\p
 \label{expcm}
 \end{figure} 
 
+
+
+
+
+
+
+
+
 %For example, consider the sensor node $0$ in figure~\ref{pcmfig}, which has 9 neighbors. Figure~\ref{expcm} shows the perimeter coverage level for all left and right points of a segment that covered by a neighboring sensor nodes. Based on the figure~\ref{expcm}, the set of sensors for each left and right point of the segments illustrated in figure~\ref{ex2pcm} for the sensor node 0.
 
+\iffalse
+
 \begin{figure}[ht!]
 \centering
 \includegraphics[width=90mm]{ex2pcm.jpg}  
@@ -270,6 +281,37 @@ The left and right points of each segment are placed on the line segment $[0,2\p
 \label{ex2pcm}
 \end{figure} 
 
+\fi
+
+ \begin{table}[h]
+ \caption{Coverage intervals and contributing sensors for sensor node 0.}
+\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
+\hline
+\begin{tabular}[c]{@{}c@{}}The angle \\ $\alpha$ \end{tabular} & \begin{tabular}[c]{@{}c@{}}Segment \\ Left (L) or\\  Right (R)\end{tabular} & \begin{tabular}[c]{@{}c@{}}Sensor \\ Node Id\end{tabular} & \begin{tabular}[c]{@{}c@{}}Interval \\ Coverage\\  Level\end{tabular} & \multicolumn{5}{c|}{\begin{tabular}[c]{@{}c@{}}The Set of Sensors\\ Involved in Interval \\ Coverage\end{tabular}} \\ \hline
+0.0291    & L                                                                         & 1                                                         & 4                                                                     & 0                     & 1                     & 3                    & 4                    &                      \\ \hline
+0.104     & L                                                                         & 2                                                         & 5                                                                     & 0                     & 1                     & 3                    & 4                    & 2                    \\ \hline
+0.3168    & R                                                                         & 3                                                         & 4                                                                     & 0                     & 1                     & 4                    & 2                    &                      \\ \hline
+0.6752    & R                                                                         & 4                                                         & 3                                                                     & 0                     & 1                     & 2                    &                      &                      \\ \hline
+1.8127    & R                                                                         & 1                                                         & 2                                                                     & 0                     & 2                     &                      &                      &                      \\ \hline
+1.9228    & L                                                                         & 5                                                         & 3                                                                     & 0                     & 2                     & 5                    &                      &                      \\ \hline
+2.3959    & L                                                                         & 6                                                         & 4                                                                     & 0                     & 2                     & 5                    & 6                    &                      \\ \hline
+2.4258    & R                                                                         & 2                                                         & 3                                                                     & 0                     & 5                     & 6                    &                      &                      \\ \hline
+2.7868    & L                                                                         & 7                                                         & 4                                                                     & 0                     & 5                     & 6                    & 7                    &                      \\ \hline
+2.8358    & L                                                                         & 8                                                         & 5                                                                     & 0                     & 5                     & 6                    & 7                    & 8                    \\ \hline
+2.9184    & R                                                                         & 5                                                         & 4                                                                     & 0                     & 6                     & 7                    & 8                    &                      \\ \hline
+3.3301    & R                                                                         & 7                                                         & 3                                                                     & 0                     & 6                     & 8                    &                      &                      \\ \hline
+3.9464    & L                                                                         & 9                                                         & 4                                                                     & 0                     & 6                     & 8                    & 9                    &                      \\ \hline
+4.767     & R                                                                         & 6                                                         & 3                                                                     & 0                     & 8                     & 9                    &                      &                      \\ \hline
+4.8425    & L                                                                         & 3                                                         & 4                                                                     & 0                     & 3                     & 8                    & 9                    &                      \\ \hline
+4.9072    & R                                                                         & 8                                                         & 3                                                                     & 0                     & 3                     & 9                    &                      &                      \\ \hline
+5.3804    & L                                                                         & 4                                                         & 4                                                                     & 0                     & 3                     & 4                    & 9                    &                      \\ \hline
+5.9157    & R                                                                         & 9                                                         & 3                                                                     & 0                     & 3                     & 4                    &                      &                      \\ \hline
+\end{tabular}
+
+\label{my-label}
+\end{table}
+
+
 %The optimization algorithm that used by LiCO protocol based on the perimeter coverage levels of the left and right points of the segments and worked to minimize the number of sensor nodes for each left or right point of the segments within each sensor node. The algorithm minimize the perimeter coverage level of the left and right points of the segments, while, it assures that every perimeter coverage level of the left and right points of the segments greater than or equal to 1.
 
 In LiCO protocol, scheduling of sensor nodes'activities is formulated with an integer program based on coverage intervals and is detailed in section~\ref{cp}.
@@ -461,7 +503,7 @@ relative importance of satisfying the associated
 level of coverage. For example, weights associated with coverage intervals of a specified part of a region
 may be given a relatively
 larger magnitude than weights associated
-with another region. This kind of integer program is inspired from the model developed for brachytherapy treatment planning for optimizing dose distribution \ref{0031-9155-44-1-012}. The integer program must be solved by the leader in each subregion at the beginning of each sensing phase, whenever the environment has changed (new leader, death of some sensors). Note that the number of constraints in the model is constant (constraints of coverage expressed for all sensors), whereas the number of variables $X_k$ decreases over periods, since we consider only alive sensors (sensors with enough energy to be alive during one sensing phase) in the model. 
+with another region. This kind of integer program is inspired from the model developed for brachytherapy treatment planning for optimizing dose distribution \cite{0031-9155-44-1-012}. The integer program must be solved by the leader in each subregion at the beginning of each sensing phase, whenever the environment has changed (new leader, death of some sensors). Note that the number of constraints in the model is constant (constraints of coverage expressed for all sensors), whereas the number of variables $X_k$ decreases over periods, since we consider only alive sensors (sensors with enough energy to be alive during one sensing phase) in the model. 
 
 
 \section{\uppercase{PERFORMANCE EVALUATION AND ANALYSIS}}  
@@ -517,6 +559,8 @@ for one period (3600 seconds), and  adding the energy for the pre-sensing phases
 According to  the interval of initial energy,  a sensor may be  active during at
 most 20 rounds.
 
+The values of $\alpha^j_i$ and $\beta^j_i$ have been chosen in a way that ensuring a good network coverage and for a longer time during the lifetime of the WSN.  We have given a higher priority for the undercoverage ( by setting the $\alpha^j_i$ with a larger value than $\beta^j_i$) so as to prevent the non-coverage for the interval i of the sensor j. On the other hand, we have given a little bit lower value for $\beta^j_i$ so as to minimize the number of active sensor nodes that contribute in covering the interval i in sensor j.
+
 In the simulations,  we introduce the following performance  metrics to evaluate
 the efficiency of our approach:
 
@@ -583,11 +627,11 @@ by the whole network in the sensing phase (active and sleeping nodes).
 %\end{enumerate}
 
 \subsection{Simulation Results}
-In this section, we present the simulation results of LiCO protocol and the other protocols using a discrete event simulator OMNeT++ \cite{varga} to run different series of simulations. We implemented all protocols precisely on a laptop DELL with Intel Core~i3~2370~M (2.4 GHz)  processor (2 cores) and the MIPS (Million Instructions  Per Second) rate equal to 35330. To be consistent  with the use of a sensor node with Atmels AVR ATmega103L microcontroller (6 MHz) and  a MIPS rate  equal to 6,  the original execution time on the laptop is multiplied by  2944.2 $\left(\frac{35330}{2} \times  \frac{1}{6} \right)$  so as to use it by the energy consumption model especially, after the computation and listening. Employing the modeling language ????\ref{}, the associated integer program instance is generated in a standard format, which is then read and solved by the optimization solver GLPK (GNU linear Programming Kit available in the public domain) \cite{glpk} through a  Branch-and-Bound method. 
+In this section, we present the simulation results of LiCO protocol and the other protocols using a discrete event simulator OMNeT++ \cite{varga} to run different series of simulations. We implemented all protocols precisely on a laptop DELL with Intel Core~i3~2370~M (2.4 GHz)  processor (2 cores) and the MIPS (Million Instructions  Per Second) rate equal to 35330. To be consistent  with the use of a sensor node with Atmels AVR ATmega103L microcontroller (6 MHz) and  a MIPS rate  equal to 6,  the original execution time on the laptop is multiplied by  2944.2 $\left(\frac{35330}{2} \times  \frac{1}{6} \right)$  so as to use it by the energy consumption model especially, after the computation and listening. Employing the modeling language for Mathematical Programming (AMPL)~\cite{AMPL}, the associated integer program instance is generated in a standard format, which is then read and solved by the optimization solver GLPK (GNU linear Programming Kit available in the public domain) \cite{glpk} through a Branch-and-Bound method. 
  
 We compared LiCO protocol to three other approaches: the first, called DESK and proposed  by ~\cite{ChinhVu}  is a fully distributed  coverage  algorithm;  the second, called GAF  ~\cite{xu2001geography}, consists in dividing the region
 into fixed  squares.  During the decision  phase, in each square,  one sensor is
-chosen to remain active during the sensing phase; the third, DiLCO protocol~\cite{Idrees2} is an improved version on the work presented in ~\cite{idrees2014coverage}. Note that the LiCO protocol is based on the same framework as that of DiLCO. For these two protocols, the division of the region of interest in 16 subregions was chosen since it produces the best results. The difference between the two protocols relies on the use of the integer programming to provide the set of sensors that have to be actived in each sensing phase. Whereas DilCO protocol tries to satisfy the coverage of a set of primary points, LiCO protocol tries to reach a desired level of coverage $l$ for each sensor's perimeter. In the experimentations, we chose a level of coverage equal to 1 ($l=1$).
+chosen to remain active during the sensing phase; the third, DiLCO protocol~\cite{Idrees2} is an improved version on the work presented in ~\cite{idrees2014coverage}. Note that the LiCO protocol is based on the same framework as that of DiLCO. For these two protocols, the division of the region of interest in 16 subregions was chosen since it produces the best results. The difference between the two protocols relies on the use of the integer programming to provide the set of sensors that have to be activated in each sensing phase. Whereas DiLCO protocol tries to satisfy the coverage of a set of primary points, LiCO protocol tries to reach a desired level of coverage $l$ for each sensor's perimeter. In the experimentations, we chose a level of coverage equal to 1 ($l=1$).
 
 \subsubsection{\textbf{Coverage Ratio}}
 Figure~\ref{fig333} shows the average coverage ratio for 200 deployed nodes obtained with the four methods.
@@ -600,7 +644,7 @@ Figure~\ref{fig333} shows the average coverage ratio for 200 deployed nodes obta
 \label{fig333}
 \end{figure} 
 
-DESK,  GAF, and DiLCO provides a little better coverage ratio with 99.99\%, 99.91\%, and 99.02\% against 98.76\% produced by LiCO for the first periods. This is due to the fact that DiLCO protocol put in sleep mode redundant sensors using optimization (which lightly decreases the coverage ratio) while there are more active nodes in the case of others methods. But when the number of periods exceeds 70 periods, it clearly appears that LiCO provides a better coverage ratio and keeps a coverage ratio greater than 50\% for longer periods (15 more compared to DiLCO, 40 more compared to DESK).
+DESK,  GAF, and DiLCO provide a little better coverage ratio with 99.99\%, 99.91\%, and 99.02\% against 98.76\% produced by LiCO for the first periods. This is due to the fact that DiLCO protocol put in sleep mode redundant sensors using optimization (which lightly decreases the coverage ratio) while there are more active nodes in the case of others methods. But when the number of periods exceeds 70 periods, it clearly appears that LiCO provides a better coverage ratio and keeps a coverage ratio greater than 50\% for longer periods (15 more compared to DiLCO, 40 more compared to DESK).
 
 %When the number of periods increases, coverage ratio produced by DESK and GAF protocols decreases. This is due to dead nodes. However, DiLCO protocol maintains almost a good coverage from the round 31 to the round 63 and it is close to LiCO protocol. The coverage ratio of LiCO protocol is better than other approaches from the period 64.
 
index 70dc1d4c3eb24952d501adeb7640f1cdd9a07e7f..def00e865f184377901af5ccf5d338a7e0f9f03a 100644 (file)
--- a/R/ASR.eps
+++ b/R/ASR.eps
@@ -2,7 +2,7 @@
 %%BoundingBox: 53 53 536 402
 %%HiResBoundingBox: 54 53.5 535 401.5
 %%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Tue Oct 21 11:55:00 2014
+%%CreationDate: Wed Dec 17 01:20:58 2014
 %%EndComments
 % EPSF created by ps2eps 1.68
 %%BeginProlog
@@ -513,7 +513,7 @@ SDict begin [
   /Author (ali)
 %  /Producer (gnuplot)
 %  /Keywords ()
-  /CreationDate (Tue Oct 21 11:55:00 2014)
+  /CreationDate (Wed Dec 17 01:20:58 2014)
   /DOCINFO pdfmark
 end
 } ifelse
@@ -800,7 +800,7 @@ LTb
 LT0
 0.00 0.55 0.55 C LCb setrgbcolor
 4316 3350 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO-16)]
+[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
 ] -36.7 MRshow
 LT0
 0.00 0.55 0.55 C 4382 3350 M
index c0d70cfa0c624b5a716e4e5a8cd6ac0514911f35..566500bc9f62ece1fea3af3efe76a4d084384091 100644 (file)
Binary files a/R/ASR.pdf and b/R/ASR.pdf differ
index b81b919d5d6ee4f5ba864a54742cc1c9899c6a5f..44917e8afc394a5a216f47671c0dbf1e168cfb35 100644 (file)
--- a/R/CR.eps
+++ b/R/CR.eps
@@ -2,7 +2,7 @@
 %%BoundingBox: 53 53 536 402
 %%HiResBoundingBox: 54 53.5 535 401.5
 %%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Tue Oct 21 18:32:31 2014
+%%CreationDate: Wed Dec 17 01:20:01 2014
 %%EndComments
 % EPSF created by ps2eps 1.68
 %%BeginProlog
@@ -513,7 +513,7 @@ SDict begin [
   /Author (ali)
 %  /Producer (gnuplot)
 %  /Keywords ()
-  /CreationDate (Tue Oct 21 18:32:31 2014)
+  /CreationDate (Wed Dec 17 01:20:01 2014)
   /DOCINFO pdfmark
 end
 } ifelse
@@ -800,7 +800,7 @@ LTb
 LT0
 0.00 0.55 0.55 C LCb setrgbcolor
 4382 3351 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO-16)]
+[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
 ] -36.7 MRshow
 LT0
 0.00 0.55 0.55 C 4448 3351 M
index f10cbdd12bef2df761bd3f525c34db9fbd1d5cbd..b632dea63a25666d657379b97834fb835c2311d9 100644 (file)
Binary files a/R/CR.pdf and b/R/CR.pdf differ
index aa569a87761ffa8355797df47c2cb3254352b9b3..3a916fc09b0ae003a24d4272bf602b83fcececa0 100644 (file)
@@ -2,7 +2,7 @@
 %%BoundingBox: 53 53 545 402
 %%HiResBoundingBox: 54 53.5 544.5 401.5
 %%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Tue Oct 21 18:34:56 2014
+%%CreationDate: Wed Dec 17 01:23:08 2014
 %%EndComments
 % EPSF created by ps2eps 1.68
 %%BeginProlog
@@ -513,7 +513,7 @@ SDict begin [
   /Author (ali)
 %  /Producer (gnuplot)
 %  /Keywords ()
-  /CreationDate (Tue Oct 21 18:34:56 2014)
+  /CreationDate (Wed Dec 17 01:23:08 2014)
   /DOCINFO pdfmark
 end
 } ifelse
@@ -769,11 +769,11 @@ LTb
 2.000 UL
 LT0
 0.00 0.55 0.55 C LCb setrgbcolor
-1163 3392 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO-16)]
+1163 3275 M
+[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
 ] -36.7 MRshow
 LT0
-0.00 0.55 0.55 C 1229 3392 M
+0.00 0.55 0.55 C 1229 3275 M
 327 0 V
 1029 603 M
 847 263 V
@@ -785,18 +785,18 @@ LT0
 2723 1067 TriUF
 3570 1277 TriUF
 4417 1537 TriUF
-1392 3392 TriUF
+1392 3275 TriUF
 % End plot #1
 % Begin plot #2
 1.000 UP
 2.000 UL
 LT1
 0.00 0.39 0.00 C LCb setrgbcolor
-1163 3282 M
+1163 3165 M
 [ [(Helvetica) 110.0 0.0 true true 0 (DESK)]
 ] -36.7 MRshow
 LT1
-0.00 0.39 0.00 C 1229 3282 M
+0.00 0.39 0.00 C 1229 3165 M
 327 0 V
 1029 1513 M
 847 293 V
@@ -808,18 +808,18 @@ LT1
 2723 2133 DiaF
 3570 2711 DiaF
 4417 3233 DiaF
-1392 3282 DiaF
+1392 3165 DiaF
 % End plot #2
 % Begin plot #3
 1.000 UP
 2.000 UL
 LT2
 0.50 0.00 0.00 C LCb setrgbcolor
-1163 3172 M
+1163 3055 M
 [ [(Helvetica) 110.0 0.0 true true 0 (GAF)]
 ] -36.7 MRshow
 LT2
-0.50 0.00 0.00 C 1229 3172 M
+0.50 0.00 0.00 C 1229 3055 M
 327 0 V
 1029 1133 M
 847 122 V
@@ -831,18 +831,18 @@ LT2
 2723 1372 Star
 3570 1502 Star
 4417 1643 Star
-1392 3172 Star
+1392 3055 Star
 % End plot #3
 % Begin plot #4
 1.000 UP
 2.000 UL
 LT3
 0.00 0.00 0.55 C LCb setrgbcolor
-1163 3062 M
+1163 2945 M
 [ [(Helvetica) 110.0 0.0 true true 0 (LiCO)]
 ] -36.7 MRshow
 LT3
-0.00 0.00 0.55 C 1229 3062 M
+0.00 0.00 0.55 C 1229 2945 M
 327 0 V
 1029 491 M
 847 76 V
@@ -854,7 +854,7 @@ LT3
 2723 688 CircleF
 3570 811 CircleF
 4417 1026 CircleF
-1392 3062 CircleF
+1392 2945 CircleF
 % End plot #4
 1.000 UL
 LTb
index 8e8965735edd960059c6debbd1aa3f7148a671ac..123e68125604652420517a23e518c9c50e7d507a 100644 (file)
Binary files a/R/EC50.pdf and b/R/EC50.pdf differ
index 3eae4272e5b2f7e588e16e75cfa081c0c63b8b21..23a1571e5beb1e1881db227a714bbe6730a588e3 100644 (file)
@@ -2,7 +2,7 @@
 %%BoundingBox: 53 53 545 402
 %%HiResBoundingBox: 54 53.5 544.5 401.5
 %%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Tue Oct 21 18:37:28 2014
+%%CreationDate: Wed Dec 17 01:24:57 2014
 %%EndComments
 % EPSF created by ps2eps 1.68
 %%BeginProlog
@@ -513,7 +513,7 @@ SDict begin [
   /Author (ali)
 %  /Producer (gnuplot)
 %  /Keywords ()
-  /CreationDate (Tue Oct 21 18:37:28 2014)
+  /CreationDate (Wed Dec 17 01:24:57 2014)
   /DOCINFO pdfmark
 end
 } ifelse
@@ -769,11 +769,11 @@ LTb
 2.000 UL
 LT0
 0.00 0.55 0.55 C LCb setrgbcolor
-1163 3392 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO-16)]
+1163 3261 M
+[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
 ] -36.7 MRshow
 LT0
-0.00 0.55 0.55 C 1229 3392 M
+0.00 0.55 0.55 C 1229 3261 M
 327 0 V
 1029 563 M
 847 202 V
@@ -785,18 +785,18 @@ LT0
 2723 945 TriUF
 3570 1161 TriUF
 4417 1429 TriUF
-1392 3392 TriUF
+1392 3261 TriUF
 % End plot #1
 % Begin plot #2
 1.000 UP
 2.000 UL
 LT1
 0.00 0.39 0.00 C LCb setrgbcolor
-1163 3282 M
+1163 3151 M
 [ [(Helvetica) 110.0 0.0 true true 0 (DESK)]
 ] -36.7 MRshow
 LT1
-0.00 0.39 0.00 C 1229 3282 M
+0.00 0.39 0.00 C 1229 3151 M
 327 0 V
 1029 1285 M
 847 513 V
@@ -808,18 +808,18 @@ LT1
 2723 2170 DiaF
 3570 2635 DiaF
 4417 3229 DiaF
-1392 3282 DiaF
+1392 3151 DiaF
 % End plot #2
 % Begin plot #3
 1.000 UP
 2.000 UL
 LT2
 0.50 0.00 0.00 C LCb setrgbcolor
-1163 3172 M
+1163 3041 M
 [ [(Helvetica) 110.0 0.0 true true 0 (GAF)]
 ] -36.7 MRshow
 LT2
-0.50 0.00 0.00 C 1229 3172 M
+0.50 0.00 0.00 C 1229 3041 M
 327 0 V
 1029 1408 M
 847 77 V
@@ -831,18 +831,18 @@ LT2
 2723 1544 Star
 3570 1713 Star
 4417 1864 Star
-1392 3172 Star
+1392 3041 Star
 % End plot #3
 % Begin plot #4
 1.000 UP
 2.000 UL
 LT3
 0.00 0.00 0.55 C LCb setrgbcolor
-1163 3062 M
+1163 2931 M
 [ [(Helvetica) 110.0 0.0 true true 0 (LiCO)]
 ] -36.7 MRshow
 LT3
-0.00 0.00 0.55 C 1229 3062 M
+0.00 0.00 0.55 C 1229 2931 M
 327 0 V
 1029 449 M
 847 128 V
@@ -854,7 +854,7 @@ LT3
 2723 751 CircleF
 3570 984 CircleF
 4417 1295 CircleF
-1392 3062 CircleF
+1392 2931 CircleF
 % End plot #4
 1.000 UL
 LTb
index 66241a6691a66993f59a2ce2e567de8aaa79b013..72ea08d0c06e2dd74697b676570098ccc168372d 100644 (file)
Binary files a/R/EC95.pdf and b/R/EC95.pdf differ
index f1f6eaebf93c18bcebb40176a1f0acd6500856d6..1a8838886b9f35d88f6a4e5a92dab79bff64c372 100644 (file)
@@ -2,7 +2,7 @@
 %%BoundingBox: 53 53 545 402
 %%HiResBoundingBox: 54 53.5 544.5 401.5
 %%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Tue Oct 21 18:41:57 2014
+%%CreationDate: Wed Dec 17 01:27:20 2014
 %%EndComments
 % EPSF created by ps2eps 1.68
 %%BeginProlog
@@ -513,7 +513,7 @@ SDict begin [
   /Author (ali)
 %  /Producer (gnuplot)
 %  /Keywords ()
-  /CreationDate (Tue Oct 21 18:41:57 2014)
+  /CreationDate (Wed Dec 17 01:27:20 2014)
   /DOCINFO pdfmark
 end
 } ifelse
@@ -829,11 +829,11 @@ LTb
 2.000 UL
 LT0
 0.00 0.55 0.55 C LCb setrgbcolor
-1112 3371 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO-16)]
+1112 3288 M
+[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
 ] -36.7 MRshow
 LT0
-0.00 0.55 0.55 C 1178 3371 M
+0.00 0.55 0.55 C 1178 3288 M
 327 0 V
 969 1349 M
 861 312 V
@@ -845,18 +845,18 @@ LT0
 2690 1972 TriUF
 3550 2242 TriUF
 4411 2450 TriUF
-1341 3371 TriUF
+1341 3288 TriUF
 % End plot #1
 % Begin plot #2
 1.000 UP
 2.000 UL
 LT1
 0.00 0.39 0.00 C LCb setrgbcolor
-1112 3261 M
+1112 3178 M
 [ [(Helvetica) 110.0 0.0 true true 0 (DESK)]
 ] -36.7 MRshow
 LT1
-0.00 0.39 0.00 C 1178 3261 M
+0.00 0.39 0.00 C 1178 3178 M
 327 0 V
 969 1017 M
 861 249 V
@@ -868,18 +868,18 @@ LT1
 2690 1495 DiaF
 3550 1598 DiaF
 4411 1723 DiaF
-1341 3261 DiaF
+1341 3178 DiaF
 % End plot #2
 % Begin plot #3
 1.000 UP
 2.000 UL
 LT2
 0.50 0.00 0.00 C LCb setrgbcolor
-1112 3151 M
+1112 3068 M
 [ [(Helvetica) 110.0 0.0 true true 0 (GAF)]
 ] -36.7 MRshow
 LT2
-0.50 0.00 0.00 C 1178 3151 M
+0.50 0.00 0.00 C 1178 3068 M
 327 0 V
 969 1079 M
 861 332 V
@@ -891,18 +891,18 @@ LT2
 2690 1723 Star
 3550 1993 Star
 4411 2242 Star
-1341 3151 Star
+1341 3068 Star
 % End plot #3
 % Begin plot #4
 1.000 UP
 2.000 UL
 LT3
 0.00 0.00 0.55 C LCb setrgbcolor
-1112 3041 M
+1112 2958 M
 [ [(Helvetica) 110.0 0.0 true true 0 (LiCO)]
 ] -36.7 MRshow
 LT3
-0.00 0.00 0.55 C 1178 3041 M
+0.00 0.00 0.55 C 1178 2958 M
 327 0 V
 969 1391 M
 861 498 V
@@ -914,7 +914,7 @@ LT3
 2690 2305 CircleF
 3550 2699 CircleF
 4411 2949 CircleF
-1341 3041 CircleF
+1341 2958 CircleF
 % End plot #4
 1.000 UL
 LTb
index 1c18c84a957f200af418dc03ea0ffa981abaf678..c3e47e174356f6d49d9c6c1a80079e5ab615728c 100644 (file)
Binary files a/R/LT50.pdf and b/R/LT50.pdf differ
index b5a22afd976578cd82baa4a9dec7a87af875636f..c5edb13f2b0384813c7d662549ec42a0d5b345a1 100644 (file)
@@ -2,7 +2,7 @@
 %%BoundingBox: 53 53 545 402
 %%HiResBoundingBox: 54 53.5 544.5 401.5
 %%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Tue Oct 21 18:44:01 2014
+%%CreationDate: Wed Dec 17 01:28:08 2014
 %%EndComments
 % EPSF created by ps2eps 1.68
 %%BeginProlog
@@ -513,7 +513,7 @@ SDict begin [
   /Author (ali)
 %  /Producer (gnuplot)
 %  /Keywords ()
-  /CreationDate (Tue Oct 21 18:44:01 2014)
+  /CreationDate (Wed Dec 17 01:28:08 2014)
   /DOCINFO pdfmark
 end
 } ifelse
@@ -769,11 +769,11 @@ LTb
 2.000 UL
 LT0
 0.00 0.55 0.55 C LCb setrgbcolor
-1062 3344 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO-16)]
+1062 3275 M
+[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
 ] -36.7 MRshow
 LT0
-0.00 0.55 0.55 C 1128 3344 M
+0.00 0.55 0.55 C 1128 3275 M
 327 0 V
 910 1425 M
 873 520 V
@@ -785,18 +785,18 @@ LT0
 2657 2429 TriUF
 3531 2845 TriUF
 4404 3191 TriUF
-1291 3344 TriUF
+1291 3275 TriUF
 % End plot #1
 % Begin plot #2
 1.000 UP
 2.000 UL
 LT1
 0.00 0.39 0.00 C LCb setrgbcolor
-1062 3234 M
+1062 3165 M
 [ [(Helvetica) 110.0 0.0 true true 0 (DESK)]
 ] -36.7 MRshow
 LT1
-0.00 0.39 0.00 C 1128 3234 M
+0.00 0.39 0.00 C 1128 3165 M
 327 0 V
 910 1356 M
 873 139 V
@@ -808,18 +808,18 @@ LT1
 2657 1910 DiaF
 3531 2187 DiaF
 4404 2360 DiaF
-1291 3234 DiaF
+1291 3165 DiaF
 % End plot #2
 % Begin plot #3
 1.000 UP
 2.000 UL
 LT2
 0.50 0.00 0.00 C LCb setrgbcolor
-1062 3124 M
+1062 3055 M
 [ [(Helvetica) 110.0 0.0 true true 0 (GAF)]
 ] -36.7 MRshow
 LT2
-0.50 0.00 0.00 C 1128 3124 M
+0.50 0.00 0.00 C 1128 3055 M
 327 0 V
 910 1010 M
 873 485 V
@@ -831,18 +831,18 @@ LT2
 2657 1979 Star
 3531 2256 Star
 4404 2602 Star
-1291 3124 Star
+1291 3055 Star
 % End plot #3
 % Begin plot #4
 1.000 UP
 2.000 UL
 LT3
 0.00 0.00 0.55 C LCb setrgbcolor
-1062 3014 M
+1062 2945 M
 [ [(Helvetica) 110.0 0.0 true true 0 (LiCO)]
 ] -36.7 MRshow
 LT3
-0.00 0.00 0.55 C 1128 3014 M
+0.00 0.00 0.55 C 1128 2945 M
 327 0 V
 910 1391 M
 873 519 V
@@ -854,7 +854,7 @@ LT3
 2657 2325 CircleF
 3531 2602 CircleF
 4404 2914 CircleF
-1291 3014 CircleF
+1291 2945 CircleF
 % End plot #4
 1.000 UL
 LTb
index cbe4161cb075c22e58c56e7499628df6054db762..2c264b3560551bf57300e3a6b7fdb5607ffb1794 100644 (file)
Binary files a/R/LT95.pdf and b/R/LT95.pdf differ
index e1fce4bd9ee8a1e0103e2580652c3bc427754197..876a77dc7b62dd34215e76b375eb0231be11c066 100644 (file)
--- a/R/LTa.eps
+++ b/R/LTa.eps
@@ -2,7 +2,7 @@
 %%BoundingBox: 53 53 536 402
 %%HiResBoundingBox: 54 53.5 535 401.5
 %%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Tue Oct 21 22:37:54 2014
+%%CreationDate: Wed Dec 17 01:57:52 2014
 %%EndComments
 % EPSF created by ps2eps 1.68
 %%BeginProlog
@@ -513,7 +513,7 @@ SDict begin [
   /Author (ali)
 %  /Producer (gnuplot)
 %  /Keywords ()
-  /CreationDate (Tue Oct 21 22:37:54 2014)
+  /CreationDate (Wed Dec 17 01:57:52 2014)
   /DOCINFO pdfmark
 end
 } ifelse
@@ -827,12 +827,12 @@ LTb
 % Begin plot #1
 1.000 UL
 LT0
-0.00 0.55 0.55 C LCb setrgbcolor
-1299 3309 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO-16/50)]
+0.62 0.69 0.87 C LCb setrgbcolor
+1156 3330 M
+[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO/50)]
 ] -36.7 MRshow
 LT0
-0.00 0.55 0.55 C 1.000 1365 3282 327 55 BoxColFill
+0.62 0.69 0.87 C 1.000 1222 3303 327 55 BoxColFill
 1.000 938 352 50 998 BoxColFill
 1.000 1655 352 50 1310 BoxColFill
 1.000 2372 352 50 1621 BoxColFill
@@ -842,12 +842,12 @@ LT0
 % Begin plot #2
 1.000 UL
 LT1
-0.50 0.00 0.00 C LCb setrgbcolor
-1299 3199 M
+0.10 0.10 0.44 C LCb setrgbcolor
+1156 3220 M
 [ [(Helvetica) 110.0 0.0 true true 0 (LiCO/50)]
 ] -36.7 MRshow
 LT1
-0.50 0.00 0.00 C 1.000 1365 3172 327 55 BoxColFill
+0.10 0.10 0.44 C 1.000 1222 3193 327 55 BoxColFill
 1.000 1003 352 50 1040 BoxColFill
 1.000 1720 352 50 1538 BoxColFill
 1.000 2437 352 50 1954 BoxColFill
@@ -857,12 +857,12 @@ LT1
 % Begin plot #3
 1.000 UL
 LT2
-0.00 0.00 0.55 C LCb setrgbcolor
-1299 3089 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO-16/80)]
+1.00 0.75 0.80 C LCb setrgbcolor
+1156 3110 M
+[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO/80)]
 ] -36.7 MRshow
 LT2
-0.00 0.00 0.55 C 1.000 1365 3062 327 55 BoxColFill
+1.00 0.75 0.80 C 1.000 1222 3083 327 55 BoxColFill
 1.000 1069 352 49 728 BoxColFill
 1.000 1786 352 49 1081 BoxColFill
 1.000 2503 352 49 1414 BoxColFill
@@ -872,12 +872,12 @@ LT2
 % Begin plot #4
 1.000 UL
 LT3
-0.00 0.39 0.00 C LCb setrgbcolor
-1299 2979 M
+1.00 0.00 0.00 C LCb setrgbcolor
+1156 3000 M
 [ [(Helvetica) 110.0 0.0 true true 0 (LiCO/80)]
 ] -36.7 MRshow
 LT3
-0.00 0.39 0.00 C 1.000 1365 2952 327 55 BoxColFill
+1.00 0.00 0.00 C 1.000 1222 2973 327 55 BoxColFill
 1.000 1134 352 50 749 BoxColFill
 1.000 1851 352 50 1268 BoxColFill
 1.000 2568 352 50 1580 BoxColFill
@@ -887,12 +887,12 @@ LT3
 % Begin plot #5
 1.000 UL
 LT4
-0.50 0.00 0.50 C LCb setrgbcolor
-1299 2869 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO-16/85)]
+0.54 0.17 0.89 C LCb setrgbcolor
+1156 2890 M
+[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO/85)]
 ] -36.7 MRshow
 LT4
-0.50 0.00 0.50 C 1.000 1365 2842 327 55 BoxColFill
+0.54 0.17 0.89 C 1.000 1222 2863 327 55 BoxColFill
 1.000 1199 352 50 707 BoxColFill
 1.000 1916 352 50 1040 BoxColFill
 1.000 2633 352 50 1351 BoxColFill
@@ -902,12 +902,12 @@ LT4
 % Begin plot #6
 1.000 UL
 LT5
-1.00 0.27 0.00 C LCb setrgbcolor
-1299 2759 M
+0.18 0.55 0.34 C LCb setrgbcolor
+1156 2780 M
 [ [(Helvetica) 110.0 0.0 true true 0 (LiCO/85)]
 ] -36.7 MRshow
 LT5
-1.00 0.27 0.00 C 1.000 1365 2732 327 55 BoxColFill
+0.18 0.55 0.34 C 1.000 1222 2753 327 55 BoxColFill
 1.000 1264 352 50 707 BoxColFill
 1.000 1981 352 50 1081 BoxColFill
 1.000 2698 352 50 1455 BoxColFill
@@ -917,12 +917,12 @@ LT5
 % Begin plot #7
 1.000 UL
 LT6
-0.20 0.80 0.20 C LCb setrgbcolor
-1299 2649 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO-16/90)]
+1.00 0.00 1.00 C LCb setrgbcolor
+1156 2670 M
+[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO/90)]
 ] -36.7 MRshow
 LT6
-0.20 0.80 0.20 C 1.000 1365 2622 327 55 BoxColFill
+1.00 0.00 1.00 C 1.000 1222 2643 327 55 BoxColFill
 1.000 1329 352 50 687 BoxColFill
 1.000 2046 352 50 998 BoxColFill
 1.000 2763 352 50 1310 BoxColFill
@@ -932,12 +932,12 @@ LT6
 % Begin plot #8
 1.000 UL
 LT7
-1.00 0.00 1.00 C LCb setrgbcolor
-1299 2539 M
+0.00 0.55 0.55 C LCb setrgbcolor
+1156 2560 M
 [ [(Helvetica) 110.0 0.0 true true 0 (LiCO/90)]
 ] -36.7 MRshow
 LT7
-1.00 0.00 1.00 C 1.000 1365 2512 327 55 BoxColFill
+0.00 0.55 0.55 C 1.000 1222 2533 327 55 BoxColFill
 1.000 1395 352 49 687 BoxColFill
 1.000 2112 352 49 1019 BoxColFill
 1.000 2829 352 49 1330 BoxColFill
@@ -947,12 +947,12 @@ LT7
 % Begin plot #9
 1.000 UL
 LT8
-0.00 1.00 0.50 C LCb setrgbcolor
-1299 2429 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO-16/95)]
+0.50 1.00 0.83 C LCb setrgbcolor
+1156 2450 M
+[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO/95)]
 ] -36.7 MRshow
 LT8
-0.00 1.00 0.50 C 1.000 1365 2402 327 55 BoxColFill
+0.50 1.00 0.83 C 1.000 1222 2423 327 55 BoxColFill
 1.000 1460 352 50 645 BoxColFill
 1.000 2177 352 50 957 BoxColFill
 1.000 2894 352 50 1247 BoxColFill
@@ -962,12 +962,12 @@ LT8
 % Begin plot #10
 1.000 UL
 LT0
-0.18 0.31 0.31 C LCb setrgbcolor
-1299 2319 M
+0.50 0.00 0.00 C LCb setrgbcolor
+1156 2340 M
 [ [(Helvetica) 110.0 0.0 true true 0 (LiCO/95)]
 ] -36.7 MRshow
 LT0
-0.18 0.31 0.31 C 1.000 1365 2292 327 55 BoxColFill
+0.50 0.00 0.00 C 1.000 1222 2313 327 55 BoxColFill
 1.000 1525 352 50 624 BoxColFill
 1.000 2242 352 50 936 BoxColFill
 1.000 2959 352 50 1185 BoxColFill
diff --git a/ex2pcm.jpg b/ex2pcm.jpg
deleted file mode 100644 (file)
index bce5d02..0000000
Binary files a/ex2pcm.jpg and /dev/null differ
diff --git a/pcm.pdf b/pcm.pdf
deleted file mode 100644 (file)
index f4b3022..0000000
Binary files a/pcm.pdf and /dev/null differ
index 636b1802467ca105ea0cb0aacca7de1c9b9ecd6c..aa0ed5d2433a4ae3dddb23bc4a777012dd7aa90d 100644 (file)
Binary files a/twosensors.jpg and b/twosensors.jpg differ