-sensor node indexed by $j$). At the beginning a node checks whether it has
-enough energy \textcolor{blue}{(its energy should be greater than a fixed treshold $E_{th}$)} to stay active during the next sensing phase. If yes, it exchanges
-information with all the other nodes belonging to the same subregion: it
-collects from each node its position coordinates, remaining energy ($RE_j$), ID,
-and the number of one-hop neighbors still alive. \textcolor{blue}{INFO packet contains two parts: header and data payload. The sensor ID is included in the header, where the header size is 8 bits. The data part includes position coordinates (64 bits), remaining energy (32 bits), and the number of one-hop live neighbors (8 bits). Therefore the size of the INFO packet is 112 bits.} Once the first phase is
-completed, the nodes of a subregion choose a leader to take the decision based
-on the following criteria with decreasing importance: larger number of
-neighbors, larger remaining energy, and then in case of equality, larger index.
-After that, if the sensor node is leader, it will execute the integer program
-algorithm (see Section~\ref{cp}) which provides a set of sensors planned to be
-active in the next sensing phase. As leader, it will send an Active-Sleep packet
-to each sensor in the same subregion to indicate it if it has to be active or
-not. Alternately, if the sensor is not the leader, it will wait for the
-Active-Sleep packet to know its state for the coming sensing phase.
-
+sensor node indexed by $j$). At the beginning a node checks whether it has
+enough energy \textcolor{blue}{(its energy should be greater than a fixed
+ treshold $E_{th}$)} to stay active during the next sensing phase. If yes, it
+exchanges information with all the other nodes belonging to the same subregion:
+it collects from each node its position coordinates, remaining energy ($RE_j$),
+ID, and the number of one-hop neighbors still alive. \textcolor{blue}{INFO
+ packet contains two parts: header and data payload. The sensor ID is included
+ in the header, where the header size is 8 bits. The data part includes
+ position coordinates (64 bits), remaining energy (32 bits), and the number of
+ one-hop live neighbors (8 bits). Therefore the size of the INFO packet is 112
+ bits.} Once the first phase is completed, the nodes of a subregion choose a
+leader to take the decision based on the following criteria with decreasing
+importance: larger number of neighbors, larger remaining energy, and then in
+case of equality, larger index. After that, if the sensor node is leader, it
+will solve an integer program (see Section~\ref{cp}). \textcolor{blue}{This
+ integer program contains boolean variables $X_j$ where ($X_j=1$) means that
+ sensor $j$ will be active in the next sensing phase. Only sensors with enough
+ remaining energy are involved in the integer program ($J$ is the set of all
+ sensors involved). As the leader consumes energy (computation energy is
+ denoted by $E^{comp}$) to solve the optimization problem, it will be included
+ in the integer program only if it has enough energy to achieve the computation
+ and to stay alive during the next sensing phase, that is to say if $RE_j >
+ E^{comp}+E_{th}$. Once the optimization problem is solved, each leader will
+ send an ActiveSleep packet to each sensor in the same subregion to indicate it
+ if it has to be active or not. Otherwise, if the sensor is not the leader, it
+ will wait for the ActiveSleep packet to know its state for the coming sensing
+ phase.}
+%which provides a set of sensors planned to be
+%active in the next sensing phase.