]> AND Private Git Repository - Sensornets15.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Almost final modifications
authorMichel Salomon <michel.salomon@univ-fcomte.fr>
Tue, 20 Oct 2015 16:22:00 +0000 (18:22 +0200)
committerMichel Salomon <michel.salomon@univ-fcomte.fr>
Tue, 20 Oct 2015 16:22:00 +0000 (18:22 +0200)
Example.aux
Example.bib
Example.tex
reponse.tex

index c3c1539aea38940230634e58b8e475ace12efce8..ba5ece51dd0afdefacd82c1d868f8027da7d7ad6 100644 (file)
@@ -28,6 +28,8 @@
 \citation{cardei2005improving}
 \citation{zorbas2010solving}
 \citation{pujari2011high}
+\citation{DBLP:conf/hicss/HeinzelmanCB00}
+\citation{ijcses11}
 \citation{berman04}
 \citation{zorbas2010solving}
 \citation{cardei2005energy}
 \citation{rossi2012exact}
 \citation{deschinkel2012column}
 \citation{pedraza2006}
-\citation{Zhang05}
-\citation{idrees2014coverage}
 \@writefile{toc}{\contentsline {section}{\numberline {3}\uppercase {Description of the DiLCO protocol}}{3}}
 \newlabel{sec:The DiLCO Protocol Description}{{3}{3}}
 \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Assumptions and models}{3}}
+\citation{Zhang05}
+\citation{idrees2014coverage}
 \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Main idea}{4}}
 \newlabel{main_idea}{{3.2}{4}}
 \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces DiLCO protocol\relax }}{4}}
 \newlabel{alg:DiLCO}{{1}{5}}
 \@writefile{toc}{\contentsline {section}{\numberline {4}\uppercase {Coverage problem formulation}}{5}}
 \newlabel{cp}{{4}{5}}
-\newlabel{eq13}{{1}{5}}
-\newlabel{eq14}{{2}{5}}
 \citation{varga}
 \citation{ChinhVu}
 \citation{raghunathan2002energy}
 \citation{raghunathan2002energy}
 \citation{raghunathan2002energy}
+\newlabel{eq13}{{1}{6}}
+\newlabel{eq14}{{2}{6}}
 \newlabel{eq:ip2r}{{4}{6}}
 \@writefile{toc}{\contentsline {section}{\numberline {5}\uppercase {Protocol evaluation}}{6}}
 \newlabel{sec:Simulation Results and Analysis}{{5}{6}}
 \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Simulation framework}{6}}
-\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Relevant parameters for network initializing.\relax }}{6}}
-\newlabel{table3}{{1}{6}}
+\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Relevant parameters for network initializing.\relax }}{7}}
+\newlabel{table3}{{1}{7}}
 \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Energy consumption model\relax }}{7}}
 \newlabel{table4}{{2}{7}}
 \citation{ChinhVu}
 \citation{xu2001geography}
-\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Coverage ratio\relax }}{8}}
-\newlabel{fig3}{{2}{8}}
 \@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Performance analysis}{8}}
 \newlabel{sub1}{{5.2}{8}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.1}Coverage ratio}{8}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.2}Energy consumption}{8}}
+\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Coverage ratio\relax }}{9}}
+\newlabel{fig3}{{2}{9}}
 \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Energy consumption per period\relax }}{9}}
 \newlabel{fig95}{{3}{9}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.3}Execution time}{9}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Execution time in seconds\relax }}{9}}
-\newlabel{fig8}{{4}{9}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Execution time in seconds\relax }}{10}}
+\newlabel{fig8}{{4}{10}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.4}Network lifetime}{10}}
 \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Network lifetime\relax }}{10}}
 \newlabel{figLT95}{{5}{10}}
-\@writefile{toc}{\contentsline {section}{\numberline {6}\uppercase {Conclusion and future work}}{10}}
-\newlabel{sec:Conclusion and Future Works}{{6}{10}}
 \bibstyle{plain}
 \bibdata{Example}
 \bibcite{ref17}{1}
 \bibcite{conti2014mobile}{7}
 \bibcite{Deng2012}{8}
 \bibcite{deschinkel2012column}{9}
-\bibcite{idrees2014coverage}{10}
-\bibcite{jaggi2006}{11}
-\bibcite{kim2013maximum}{12}
-\bibcite{Kumar:2005}{13}
-\bibcite{li2013survey}{14}
-\bibcite{ling2009energy}{15}
-\bibcite{pujari2011high}{16}
-\bibcite{Misra}{17}
-\bibcite{Nayak04}{18}
-\bibcite{pc10}{19}
-\bibcite{pedraza2006}{20}
-\bibcite{qu2013distributed}{21}
-\bibcite{raghunathan2002energy}{22}
-\bibcite{ref22}{23}
-\bibcite{rossi2012exact}{24}
-\bibcite{varga}{25}
-\bibcite{chin2007}{26}
-\bibcite{ChinhVu}{27}
-\bibcite{5714480}{28}
-\bibcite{xu2001geography}{29}
-\bibcite{yang2014novel}{30}
-\bibcite{yangnovel}{31}
-\bibcite{Yang2014}{32}
-\bibcite{Zhang05}{33}
-\bibcite{zorbas2010solving}{34}
+\bibcite{DBLP:conf/hicss/HeinzelmanCB00}{10}
+\@writefile{toc}{\contentsline {section}{\numberline {6}\uppercase {Conclusion and future work}}{11}}
+\newlabel{sec:Conclusion and Future Works}{{6}{11}}
+\bibcite{idrees2014coverage}{11}
+\bibcite{jaggi2006}{12}
+\bibcite{kim2013maximum}{13}
+\bibcite{Kumar:2005}{14}
+\bibcite{li2013survey}{15}
+\bibcite{ling2009energy}{16}
+\bibcite{pujari2011high}{17}
+\bibcite{Misra}{18}
+\bibcite{Nayak04}{19}
+\bibcite{pc10}{20}
+\bibcite{pedraza2006}{21}
+\bibcite{qu2013distributed}{22}
+\bibcite{raghunathan2002energy}{23}
+\bibcite{ijcses11}{24}
+\bibcite{ref22}{25}
+\bibcite{rossi2012exact}{26}
+\bibcite{varga}{27}
+\bibcite{chin2007}{28}
+\bibcite{ChinhVu}{29}
+\bibcite{5714480}{30}
+\bibcite{xu2001geography}{31}
+\bibcite{yang2014novel}{32}
+\bibcite{yangnovel}{33}
+\bibcite{Yang2014}{34}
+\bibcite{Zhang05}{35}
+\bibcite{zorbas2010solving}{36}
index d691cb4d41fcb0ca4dad3a43472bdd1ea8c30e4a..2063ff93aef96e7e3a12b0523e88f6867c923d28 100644 (file)
@@ -1,4 +1,43 @@
 
+@inproceedings{DBLP:conf/hicss/HeinzelmanCB00,
+  author    = {Wendi Rabiner Heinzelman and
+               Anantha Chandrakasan and
+               Hari Balakrishnan},
+  title     = {Energy-Efficient Communication Protocol for Wireless Microsensor Networks},
+  booktitle = {33rd Annual Hawaii International Conference on System Sciences (HICSS-33),
+               4-7 January, 2000, Maui, Hawaii, {USA}},
+  year      = {2000},
+  crossref  = {DBLP:conf/hicss/2000},
+  url       = {http://dx.doi.org/10.1109/HICSS.2000.926982},
+  doi       = {10.1109/HICSS.2000.926982},
+  timestamp = {Wed, 23 Jul 2014 20:34:20 +0200},
+  biburl    = {http://dblp.uni-trier.de/rec/bib/conf/hicss/HeinzelmanCB00},
+  bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@proceedings{DBLP:conf/hicss/2000,
+  title     = {33rd Annual Hawaii International Conference on System Sciences (HICSS-33),
+               4-7 January, 2000, Maui, Hawaii, {USA}},
+  publisher = {{IEEE} Computer Society},
+  year      = {2000},
+  url       = {http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6709},
+  timestamp = {Wed, 23 Jul 2014 20:34:20 +0200},
+  biburl    = {http://dblp.uni-trier.de/rec/bib/conf/hicss/2000},
+  bibsource = {dblp computer science bibliography, http://dblp.org}
+}
+
+@article{ijcses11,
+  author    = {K. Ramesh and
+               K. Somasundaram},
+  title     = {A comparative study of clusterhead selection algorithms in wireless
+               sensor networks},
+  journal   = {International Journal of Computer Science and Engineering Survey},
+  volume    = {2},
+  number    = {4},
+  month     = {November},
+  year      = {2011}
+}
+
 @INPROCEEDINGS{Moore99,
   AUTHOR =       "R. Moore and J. Lopes",
   TITLE =        "Paper templates",
index 06be2737b984dd37e7e399b71be63edb87edfb7f..b2b473fa653c7fe59132b1f9da281b64f687570b 100644 (file)
@@ -104,22 +104,22 @@ lifetime.  \textcolor{blue}{A WSN  can  use  various types  of  sensors such  as
   health-care, environment, agriculture, public safety, military, transportation
   systems, and industry applications.}
 
-In this  paper we design  a protocol that  focuses on the area  coverage problem
+In this  paper we design  a protocol that focuses  on the area  coverage problem
 with  the objective  of maximizing  the network  lifetime. Our  proposition, the
-Distributed  Lifetime  Coverage  Optimization  (DiLCO) protocol,  maintains  the
+Distributed  Lifetime  Coverage  Optimization (DiLCO)  protocol,  maintains  the
 coverage  and improves  the lifetime  in  WSNs. The  area of  interest is  first
-divided  into subregions using  a divide-and-conquer  algorithm and  an activity
+divided into  subregions using  a divide-and-conquer  algorithm and  an activity
 scheduling  for sensor  nodes is  then  planned by  the elected  leader in  each
 subregion. In fact, the nodes in a subregion can be seen as a cluster where each
-node sends sensing data to the  cluster head or the sink node.  Furthermore, the
+node sends sensing data to the cluster  head or the sink node.  Furthermore, the
 activities in a subregion/cluster can continue even if another cluster stops due
 to too many node failures.  Our DiLCO protocol considers periods, where a period
-starts with  a discovery  phase to exchange  information between sensors  of the
-same  subregion, in order  to choose  in a  suitable manner  a sensor  node (the
+starts with  a discovery phase  to exchange  information between sensors  of the
+same subregion,  in order  to choose  in a  suitable manner  a sensor  node (the
 leader) to carry out the coverage  strategy. In each subregion the activation of
-the sensors for  the sensing phase of the current period  is obtained by solving
-an integer program.  The resulting activation vector is  broadcast by a leader
-to every node of its subregion. 
+the sensors for the  sensing phase of the current period  is obtained by solving
+an integer program.  The resulting activation vector is broadcast by a leader to
+every node of its subregion.
 
 % MODIF - BEGIN
 Our previous  paper ~\cite{idrees2014coverage} relies almost  exclusively on the
@@ -129,15 +129,19 @@ characteristics of  a Medusa II sensor  ~\cite{raghunathan2002energy} to measure
 the energy consumption and the computation  time.  We have implemented two other
 existing \textcolor{blue}{and distributed approaches} (DESK ~\cite{ChinhVu}, and
 GAF ~\cite{xu2001geography})  in order  to compare  their performances  with our
-approach.   We  also focus  on  performance  analysis  based  on the  number  of
-subregions.
+approach. \textcolor{blue}{We focus  on DESK and GAF protocols  for two reasons.
+  First our protocol is inspired by both  of them: DiLCO uses a regular division
+  of the  area of interest  as in GAF  and a temporal  division in rounds  as in
+  DESK.  Second, DESK  and GAF are well-known protocols, easy  to implement, and
+  often  used  as references  for  comparison}.  We  also focus  on  performance
+analysis based on the number of subregions.
 % MODIF - END
 
 The remainder  of the  paper continues with  Section~\ref{sec:Literature Review}
 where a  review of some related  works is presented. The  next section describes
-the  DiLCO  protocol,  followed   in  Section~\ref{cp}  by  the  coverage  model
+the  DiLCO  protocol,  followed  in   Section~\ref{cp}  by  the  coverage  model
 formulation    which    is    used     to    schedule    the    activation    of
-sensors. Section~\ref{sec:Simulation Results  and Analysis} shows the simulation
+sensors. Section~\ref{sec:Simulation Results and  Analysis} shows the simulation
 results. The paper ends with a  conclusion and some suggestions for further work
 in Section~\ref{sec:Conclusion and Future Works}.
 
@@ -196,6 +200,25 @@ of  information can  be huge.   {\it  In order  to be  suitable for  large-scale
   smaller subregions, and in each one, a node called the leader is in charge for
   selecting the active sensors for the current period.}
 
+% MODIF - BEGIN
+\textcolor{blue}{ Our approach to select the leader node in a subregion is quite
+  different   from    cluster   head    selection   methods   used    in   LEACH
+  \cite{DBLP:conf/hicss/HeinzelmanCB00}         or          its         variants
+  \cite{ijcses11}. Contrary  to LEACH, the division  of the area of  interest is
+  supposed to be performed before the  leader election. Moreover, we assume that
+  the sensors are deployed almost uniformly  and with high density over the area
+  of interest, such  that the division is  fixed and regular.  As  in LEACH, our
+  protocol works in round fashion.  In each round, during the pre-sensing phase,
+  nodes make autonomous  decisions. In LEACH, each sensor elects  itself to be a
+  cluster head,  and each non-cluster  head will  determine its cluster  for the
+  round. In  our protocol, nodes in  the same subregion select  their leader. In
+  both protocols,  the amount  of remaining  energy in each  node is  taken into
+  account  to promote  the nodes  that have  the most  energy to  become leader.
+  Contrary to  the LEACH protocol  where all sensors  will be active  during the
+  sensing-phase, our protocol  allows to deactivate a subset  of sensors through
+  an optimization process which reduces significantly the energy consumption.}
+% MODIF - END
+
 A large  variety of coverage scheduling  algorithms has been  developed. Many of
 the existing  algorithms, dealing with the  maximization of the  number of cover
 sets, are heuristics.  These heuristics  involve the construction of a cover set
@@ -250,13 +273,13 @@ corresponding to  a sensor node is covered  by its neighboring nodes  if all its
 primary points are covered. Obviously,  the approximation of coverage is more or
 less accurate according to the number of primary points.
 
-
 \subsection{Main idea}
 \label{main_idea}
 \noindent We start  by applying a divide-and-conquer algorithm  to partition the
 area of interest  into smaller areas called subregions and  then our protocol is
-executed   simultaneously  in   each   subregion. \textcolor{blue}{Sensor nodes  are assumed to
-be deployed  almost uniformly over the  region and the subdivision of the area of interest is regular.}
+executed  simultaneously in  each subregion.  \textcolor{blue}{Sensor nodes  are
+  assumed to be deployed almost uniformly over the region and the subdivision of
+  the area of interest is regular.}
 
 \begin{figure}[ht!]
 \centering
@@ -434,12 +457,6 @@ The objective function is a weighted sum of overcoverage and undercoverage. The
 %period.
 % MODIF - END
 
-
-
-
-
-
-
 \iffalse 
 
 \indent Our model is based on the model proposed by \cite{pedraza2006} where the
@@ -745,7 +762,7 @@ nodes, and thus enables the extension of the network lifetime.
 \parskip 0pt    
 \begin{figure}[t!]
 \centering
- \includegraphics[scale=0.45] {CR.pdf} 
+ \includegraphics[scale=0.475] {CR.pdf} 
 \caption{Coverage ratio}
 \label{fig3}
 \end{figure} 
@@ -766,7 +783,7 @@ used for the different performance metrics.
 
 \begin{figure}[h!]
 \centering
-\includegraphics[scale=0.45]{EC.pdf} 
+\includegraphics[scale=0.475]{EC.pdf} 
 \caption{Energy consumption per period}
 \label{fig95}
 \end{figure} 
@@ -802,20 +819,20 @@ Figure~\ref{fig8}.
 
 \begin{figure}[h!]
 \centering
-\includegraphics[scale=0.45]{T.pdf}  
+\includegraphics[scale=0.475]{T.pdf}  
 \caption{Execution time in seconds}
 \label{fig8}
 \end{figure} 
 
 Figure~\ref{fig8} shows that DiLCO-32 has very low execution times in comparison
-with  other DiLCO  versions, because  the activity  scheduling is  tackled  by a
+with  other DiLCO  versions, because  the activity  scheduling is  tackled by  a
 larger  number of  leaders and  each  leader solves  an integer  problem with  a
 limited number  of variables and  constraints.  Conversely, DiLCO-2  requires to
 solve an optimization problem with half of the network nodes and thus presents a
 high execution time.  Nevertheless if  we refer to Figure~\ref{fig3}, we observe
 that DiLCO-32  is slightly less efficient  than DilCO-16 to maintain  as long as
-possible high  coverage. In fact an excessive  subdivision of the  area of interest
-prevents it  to  ensure a  good  coverage   especially  on   the  borders   of  the
+possible high coverage. In fact an excessive subdivision of the area of interest
+prevents  it  to  ensure a  good  coverage  especially  on  the borders  of  the
 subregions. Thus,  the optimal number of  subregions can be seen  as a trade-off
 between execution time and coverage performance.
 
@@ -829,7 +846,7 @@ network lifetime.
 
 \begin{figure}[h!]
 \centering
-\includegraphics[scale=0.45]{LT.pdf}  
+\includegraphics[scale=0.475]{LT.pdf}  
 \caption{Network lifetime}
 \label{figLT95}
 \end{figure} 
@@ -837,37 +854,38 @@ network lifetime.
 As  highlighted by  Figure~\ref{figLT95},  when the  coverage  level is  relaxed
 ($50\%$) the network lifetime also  improves. This observation reflects the fact
 that  the higher  the coverage  performance, the  more nodes  must be  active to
-ensure the  wider monitoring.  For a  similar level of  coverage, DiLCO outperforms
+ensure the wider monitoring.  For a similar level of coverage, DiLCO outperforms
 DESK and GAF for the lifetime of  the network. More specifically, if we focus on
-the larger level  of coverage ($95\%$) in the case of  our protocol, the subdivision
-in $16$~subregions seems to be the most appropriate.
+the  larger  level  of coverage  ($95\%$)  in  the  case  of our  protocol,  the
+subdivision in $16$~subregions seems to be the most appropriate.
 
 
 \section{\uppercase{Conclusion and future work}}
 \label{sec:Conclusion and Future Works} 
 
-A crucial problem in WSN is  to schedule the sensing activities of the different
-nodes  in order to  ensure both  coverage of  the area  of interest  and longer
+A crucial problem in WSN is to  schedule the sensing activities of the different
+nodes  in order  to ensure  both coverage  of the  area of  interest and  longer
 network lifetime. The inherent limitations of sensor nodes, in energy provision,
-communication and computing capacities,  require protocols that optimize the use
-of  the  available resources  to  fulfill the  sensing  task.   To address  this
-problem, this paper proposes a  two-step approach. Firstly, the field of sensing
+communication and computing capacities, require  protocols that optimize the use
+of  the available  resources  to  fulfill the  sensing  task.   To address  this
+problem, this paper proposes a two-step  approach. Firstly, the field of sensing
 is  divided into  smaller  subregions using  the  concept of  divide-and-conquer
 method. Secondly,  a distributed  protocol called Distributed  Lifetime Coverage
-Optimization is applied in each  subregion to optimize the coverage and lifetime
-performances.   In a subregion,  our protocol  consists in  electing a  leader node
+Optimization is applied in each subregion  to optimize the coverage and lifetime
+performances.  In a  subregion, our protocol consists in electing  a leader node
 which will then perform a sensor activity scheduling. The challenges include how
-to  select   the  most  efficient  leader   in  each  subregion   and  the  best
+to  select   the  most  efficient  leader   in  each  subregion  and   the  best
 representative set of active nodes to ensure a high level of coverage. To assess
 the performance of our approach, we  compared it with two other approaches using
-many performance metrics  like coverage ratio or network  lifetime. We have also
-studied the  impact of the  number of subregions  chosen to subdivide the  area of
+many performance metrics  like coverage ratio or network lifetime.  We have also
+studied the impact of  the number of subregions chosen to  subdivide the area of
 interest,  considering  different  network  sizes.  The  experiments  show  that
-increasing the  number of subregions improves  the lifetime. The  more subregions there are,  the  more robust  the  network  is   against  random  disconnection
-resulting from dead nodes.  However, for  a given sensing field and network size
-there is an optimal number of  subregions.  Therefore, in case of our simulation
-context  a subdivision in  $16$~subregions seems  to be  the most  relevant. The
-optimal number of subregions will be investigated in the future.
+increasing the number  of subregions improves the lifetime.  The more subregions
+there are, the more robust the network is against random disconnection resulting
+from dead nodes.  However,  for a given sensing field and  network size there is
+an optimal number of subregions.  Therefore, in case of our simulation context a
+subdivision in $16$~subregions seems to be the most relevant. The optimal number
+of subregions will be investigated in the future.
 
 \section*{\uppercase{Acknowledgements}}
 
index 8a70d92772b408bd89761fe000d641f9b811544d..9b38abbff3cf186db856fe180549bae912ff7177 100644 (file)
@@ -73,8 +73,8 @@ the comments and the revision for the original manuscript.
 
 The paper present a new system to optimize sensord detections. The work present the algorithm in a cleare and well descrived way. The main problem is connected with the luck of examples and also on the practical applications. I suggest in future to make a more formal description of the process.\\
 \textcolor{blue}{\textbf{\textsc{Answer:} Right. We have included  a paragraph on examples and  practical applications of  WSNs in section~1.}}
-\textcolor{red}{Je pense que la question porte sur un exemple d'application de notre protocole?}
-\textcolor{magenta}{Je pense que oui.}
+%\textcolor{red}{Je pense que la question porte sur un exemple d'application de notre protocole?}
+%\textcolor{magenta}{Je pense que oui.}
 
 \section*{Response to Reviewer $\#$3 Comments}
 
@@ -83,9 +83,9 @@ This work proposed a distributed lifetime coverage optimization (DiLCO) protocol
 \textcolor{blue}{\textbf{\textsc{Answer:}
 %The difference between our leader selection technique and the methods of cluster head election in LEACH or other distributed protocols in that our approach  assumes  that the sensors are deployed almost uniformly and with high density over the region. So we only need  to fix a regular division of the  region into subregions to make the problem tractable.  The subdivision is made using divide-and-conquer concept such that the number of hops between any pairs  of sensors inside a subregion is  less than or equal to~3. The sensors inside each subregion cooperate to elect one leader. Leader applies sensor activity scheduling based optimization to provide the schedule to the sensor nodes in the subregion. The advantage of our approach is to minimize the energy consumption required for communication. The sensors only require to communicate with the other sensors inside the subregion to elect the leader instead of communicating with other nodes in the WSN. \\Whereas in LEACH and other cluster head election methods, the cluster heads are elected in distributed way where sensors  elect  themselves  to  be local cluster-heads  at any  given time  with  a  certain  probability. These cluster-head  nodes  broadcast  their  status  to  the  other  sensors  in the network.  Each sensor node determines to which cluster it wants to belong by choosing the cluster-head that requires the minimum communication energy. Once all the nodes are organized into clusters, each cluster-head creates a schedule for the nodes in its cluster.   \\\\
     In our  approach, the leader selection technique is quite different from the LEACH protocol or from its variants. Contrary to the LEACH protocol, the division of the area of interest into subregions is assumed to be performed before the head election. Moreover, we assume that sensors are deployed almost uniformly and with high density over the area of interest, such that the division is fixed and regular. As in LEACH, our protocol works in round fashion. In each round, during the pre-sensing phase, nodes make autonomous decisions. In LEACH, each sensor elects itself to be a cluster head, and each non-cluster head will determine its cluster for the round. In our protocol, nodes in the same subregion select their leader. In both protocols, the amount of remaining energy in each  node is taken into account to promote the nodes that have the most energy to become leader. Contrary to the LEACH protocol where all sensors will be active during the sensing-phase, our protocol allows to deactivate a subset of sensors through an optimization process which reduces significantly the energy consumption.\\\\
-As explained by the reviewer, there is a large variety of energy-efficient protocols for WSN. We focus on GAF and DESK protocols for two main reasons. First, our protocol is inspired by both of them. DiLCO uses a regular division of the area as in GAF protocol and a temporal division in rounds as in DESK. Second,  GAF and DESK are well-known protocols, easy to implement, and often used as references for comparison. \textcolor{red}{je ne sais pas si on ne devrait pas inclure une ref \`a LEACH dans la biblio, mais je ne sais pas trop comment l'introduire dans le papier...}
-\textcolor{magenta}{Le premier paragraphe de ta r\'eponse me semble pas mal, juste pour situer notre protocole par rapport à LEACH. On pourrait le mettre dans la section~2 ?}\\\\ }}
-%In fact, GAF algorithm is chosen for comparison as a competitor because it is famous and easy to implement, as well as many authors referred to it in many publications. DESK algorithm is also selected as competitor in the comparison because it works into rounds fashion (network lifetime divided into rounds) similar to our approaches, as well as DESK is a full distributed coverage approach. }}
+As explained by the reviewer, there is a large variety of energy-efficient protocols for WSN. We focus on GAF and DESK protocols for two main reasons. First, our protocol is inspired by both of them. DiLCO uses a regular division of the area as in GAF protocol and a temporal division in rounds as in DESK. Second,  GAF and DESK are well-known protocols, easy to implement, and often used as references for comparison.}} %\textcolor{red}{je ne sais pas si on ne devrait pas inclure une ref \`a LEACH dans la biblio, mais je ne sais pas trop comment l'introduire dans le papier...}
+%\textcolor{magenta}{Le premier paragraphe de ta r\'eponse me semble pas mal, juste pour situer notre protocole par rapport à LEACH. On pourrait le mettre dans la section~2 ?}\\\\ }}
+%In fact, GAF algorithm is chosen for comparison as a competitor because it is famous and easy to implement, as well as many authors referred to it in many publications. DESK algorithm is also selected as competitor in the comparison because it works into rounds fashion (network lifetime divided into rounds) similar to our approaches, as well as DESK is a full distributed coverage approach.}}
 
 \noindent The following improvements may be suggested to make it even better:\\
 \noindent {\bf 1. What is the ``new idea" or contribution of this work?}\\