+{\color{red}
+We formulate the coverage optimization problem with an integer program.
+The objective function consists in minimizing the undercoverage and the overcoverage of the area as suggested in \cite{pedraza2006}.
+The area coverage problem is transformed to the coverage of a fraction of points called primary points.
+Details on the choice and the number of primary points can be found in \cite{idrees2014coverage}. The set of primary points is denoted by $P$
+and the set of sensors by $J$. As we consider a boolean disk coverage model, we use the boolean indicator $\alpha_{jp}$ which is equal to 1 if the primary point $p$ is in the sensing range of the sensor $j$. The binary variable $X_j$ represents the activation or not of the sensor $j$. So we can express the number of active sensors that cover the primary point $p$ by $\sum_{j \in J} \alpha_{jp} * X_{j}$. We deduce the overcoverage denoted by $\Theta_p$ of the primary point $p$ :
+\begin{equation}
+ \Theta_{p} = \left \{
+\begin{array}{l l}
+ 0 & \mbox{if the primary point}\\
+ & \mbox{$p$ is not covered,}\\
+ \left( \sum_{j \in J} \alpha_{jp} * X_{j} \right)- 1 & \mbox{otherwise.}\\
+\end{array} \right.
+\label{eq13}
+\end{equation}
+More precisely, $\Theta_{p}$ represents the number of active sensor
+nodes minus one that cover the primary point~$p$.
+In the same way, we define the undercoverage variable
+$U_{p}$ of the primary point $p$ as:
+\begin{equation}
+U_{p} = \left \{
+\begin{array}{l l}
+ 1 &\mbox{if the primary point $p$ is not covered,} \\
+ 0 & \mbox{otherwise.}\\
+\end{array} \right.
+\label{eq14}
+\end{equation}
+There is, of course, a relationship between the three variables $X_j$, $\Theta_p$ and $U_p$ which can be formulated as follows :
+\begin{equation}
+\sum_{j \in J} \alpha_{jp} X_{j} - \Theta_{p}+ U_{p} =1, \forall p \in P
+\end{equation}
+If the point $p$ is not covered, $U_p=1$, $\sum_{j \in J} \alpha_{jp} X_{j}=0$ and $\Theta_{p}=0$ by defintion, so the equality is satisfied.
+On the contrary, if the point $p$ is covered, $U_p=0$, and $\Theta_{p}=\left( \sum_{j \in J} \alpha_{jp} X_{j} \right)- 1$.
+\noindent Our coverage optimization problem can then be formulated as follows:
+\begin{equation} \label{eq:ip2r}
+\left \{
+\begin{array}{ll}
+\min \sum_{p \in P} (w_{\theta} \Theta_{p} + w_{U} U_{p})&\\
+\textrm{subject to :}&\\
+\sum_{j \in J} \alpha_{jp} X_{j} - \Theta_{p}+ U_{p} =1, &\forall p \in P\\
+%\label{c1}
+%\sum_{t \in T} X_{j,t} \leq \frac{RE_j}{e_t} &\forall j \in J \\
+%\label{c2}
+\Theta_{p}\in \mathbb{N}, &\forall p \in P\\
+U_{p} \in \{0,1\}, &\forall p \in P \\
+X_{j} \in \{0,1\}, &\forall j \in J
+\end{array}
+\right.
+\end{equation}
+The objective function is a weighted sum of overcoverage and undercoverage. The goal is to limit the overcoverage in order to activate a minimal number of sensors while simultaneously preventing undercoverage. Both weights $w_\theta$ and $w_U$ must be carefully chosen in
+order to guarantee that the maximum number of points are covered during each
+period.
+}
+
+
+
+
+
+
+
+\iffalse
+