]> AND Private Git Repository - ThesisAhmed.git/blob - CHAPITRE_03.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
adding ch4
[ThesisAhmed.git] / CHAPITRE_03.tex
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%                          %%
3 %%       CHAPTER 03         %%
4 %%                          %%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6  \chapter{Energy Optimization of Heterogeneous Platforms}
7 \label{ch3}
8
9 \newcommand{\CL}{\Xsub{C}{L}}
10 \newcommand{\Dist}{\mathit{Dist}}
11 \newcommand{\EdNew}{\Xsub{E}{dNew}}
12 \newcommand{\Eind}{\Xsub{E}{ind}}
13 \newcommand{\Enorm}{\Xsub{E}{Norm}}
14 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
15 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
16 \newcommand{\Es}{\Xsub{E}{S}}
17 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
18 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
19 \newcommand{\Fnew}{\Xsub{F}{new}}
20 \newcommand{\Ileak}{\Xsub{I}{leak}}
21 \newcommand{\Kdesign}{\Xsub{K}{design}}
22 \newcommand{\MaxDist}{\mathit{Max}\Dist}
23 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
24 \newcommand{\Ntrans}{\Xsub{N}{trans}}
25 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
26 \newcommand{\PdNew}{\Xsub{P}{dNew}}
27 \newcommand{\PdOld}{\Xsub{P}{dOld}}
28 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
29 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
30 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
31 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
32 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
33 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
34 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
35 \newcommand{\Tnew}{\Xsub{T}{New}}
36 \newcommand{\Told}{\Xsub{T}{Old}}
37 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
38 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
39
40
41 \renewcommand{\algorithmicdo}{\textbf{do}}
42 \renewcommand{\algorithmicwhile}{\textbf{while}}
43 \renewcommand{\algorithmicrequire}{\textbf{Require:}}
44 \renewcommand{\algorithmicensure}{\textbf{Ensure:}}
45 \renewcommand{\algorithmicend}{\textbf{end}}
46 \renewcommand{\algorithmicif}{\textbf{if}}
47 \renewcommand{\algorithmicthen}{\textbf{then}}
48
49 \section{Introduction}
50 \label{ch3:intro}
51
52
53   Computing platforms are consuming more and more energy due to the increasing
54   number of nodes composing them.  In a heterogeneous computing platform composed 
55   of multiple computing   nodes,  nodes may differ in the computing power from 
56   each others.  Accordingly, the fast nodes have to wait for the slow ones to finish 
57   their works. The resulting waiting times are called  idle times which are increased 
58   proportionally to the increase in the heterogeneity between the computing nodes. 
59   This leads to a big waste in the computing power and thus the energy consumed by  fast nodes.   
60   To minimize the operating costs of these  platforms many techniques have been used. 
61   Dynamic voltage and   frequency  scaling (DVFS) is one of them. It reduces the frequency 
62   of a CPU to lower its energy consumption.  However, lowering the frequency of a CPU may 
63   increase the execution time of an application running on that processor.  Therefore,
64   the frequency that gives the best trade-off between the energy consumption and
65   the performance of an application must be selected.
66
67   In this chapter, two new online frequency selecting algorithms for heterogeneous local
68   clusters (heterogeneous CPUs)  and grid platforms are presented.  
69   They select the frequencies that try to give the best
70   trade-off between energy saving and performance degradation, for each node
71   computing the synchronous message passing iterative application. These algorithms have a small
72   overhead and work without training or profiling. They use new energy models
73   for  message passing iterative synchronous applications running on both the heterogeneous
74   local cluster and the grid platform. The first proposed algorithm for a heterogeneous local 
75   cluster was evaluated on the SimGrid simulator while running the class C of the NAS parallel
76   benchmarks. The experiments conducted  over 8 heterogeneous nodes show that it reduces on 
77   average the energy consumption by  29.8\%  while limiting the performance degradation to 3.8\%.  
78   The second proposed algorithm for a grid platform was evaluated on the Grid5000 testbed 
79   platform  while running the class D of the NAS parallel benchmarks.
80   The experiments were run on 16 nodes, distributed on three clusters, and show that it reduces  
81   on average the energy consumption by 30\% while  the performance  is on average only degraded
82    by 3.2\%.  
83   Finally, both algorithms were compared to the EDP method. The comparison 
84   results show that they outperform the latter in the energy reduction and performance trade-off. 
85
86
87 This chapter is organized as follows: Section~\ref{ch3:relwork} presents some
88 related works from other authors.  Section~\ref{ch3:1} presents the performance and energy 
89 models of synchronous message passing programs running over a heterogeneous local cluster.
90 It also describes the proposed frequency selecting algorithm then the precision of the proposed algorithm is verified. 
91 Section~\ref{ch3:2} presents the simulation results of applying the algorithm on the NAS parallel 
92 benchmarks class C and executing them on a heterogeneous local cluster. It shows the results of running
93 three different power scenarios and comparing them. Moreover, it also shows the
94 comparison results between the proposed method and an existing method.
95 Section~\ref{ch3:3} shows the energy and performance models in addition to the frequencies 
96 selecting algorithm of synchronous message passing programs running over a grid platform.
97 Section~\ref{ch3:4} presents the results of applying the algorithm on the 
98 NAS parallel benchmarks (class D) and executing them on the Grid'5000 testbed. 
99 The algorithm is also evaluated over multi-core architectures and over three different power scenarios. Moreover, section~\ref{ch3:4}, shows the comparison results between the proposed method and the EDP method.
100 Finally, in Section~\ref{ch3:concl}  the chapter ends with a summary.
101
102 \section{Related works}
103 \label{ch3:relwork}
104
105 As same as in CPUs, DVFS is also allowed in GPUs to reduce their energy consumption. 
106 The process of selecting the appropriate frequency for a
107 processor to satisfy some objectives, while taking into account all the
108 constraints, is not a trivial operation.  Many researchers used different
109 strategies to tackle this problem. Some of them developed online methods that
110 compute the new frequency while executing the application, such
111 as~\cite{ref64,ref67}.
112 Others used offline methods that may need to run the application and profile
113 it before selecting the new frequency, such
114 as~\cite{ref58,ref91}.
115 The methods could be heuristics, exact or brute force methods that satisfy
116 varied objectives such as energy reduction or performance. They also could be
117 adapted to the execution's environment and the type of the application such as
118 sequential, parallel or distributed architecture, homogeneous or heterogeneous
119 platform, synchronous or asynchronous application, \dots{}
120
121 In this chapter, we are interested in reducing the energy consumption when running a message passing
122 iterative synchronous applications  over a heterogeneous platform.  Some
123 works have already been done for such platforms which can be classified into
124 two types of heterogeneous platforms:
125 \begin{itemize}
126 \item the platform is composed of homogeneous GPUs and homogeneous CPUs.
127 \item the platform is only composed of heterogeneous CPUs.
128 \end{itemize}
129
130 For the first type of platform, the computing intensive parallel tasks are
131 executed on the GPUs and the rest are executed on the CPUs.  Luley et
132 al.~\cite{ref68}, proposed a
133 heterogeneous cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main
134 goal was to maximize the energy efficiency of the platform during computation by
135 maximizing the number of FLOPS per watt generated.
136 In~\cite{ref69}, Kai Ma et al. developed a scheduling algorithm that distributes  
137 workloads proportional to
138 the computing power of the nodes which could be a GPU or a CPU. All the tasks
139 must be completed at the same time.  In~\cite{ref70},
140 Rong et al. showed that a heterogeneous (GPUs and CPUs) cluster that enables
141 DVFS operations gave better energy and performance efficiency than other clusters only
142 composed of CPUs.
143
144 The work presented in this chapter concerns the second type of platform, with
145 heterogeneous CPUs.  Many methods were conceived to reduce the energy
146 consumption of this type of platform.  Naveen et
147 al.~\cite{ref71} developed a method that
148 minimizes the value of $\mathit{energy}\times \mathit{delay}^2$ (the delay is
149 the sum of slack times that happen during synchronous communications) by
150 dynamically assigning new frequencies to the CPUs of the heterogeneous cluster.
151 Lizhe et al.~\cite{ref72} proposed an
152 algorithm that divides the executed tasks into two types: the critical and non
153 critical tasks. The algorithm scales down the frequency of non critical tasks
154 proportionally to their slack and communication times while limiting the
155 performance degradation percentage to less than 10\%.
156 In~\cite{ref73}, they developed a
157 heterogeneous cluster composed of two types of Intel and AMD processors. They
158 use a gradient method to predict the impact of DVFS operations on performance.
159 In~\cite{ref74} and
160 \cite{ref75}, the best
161 frequencies for a specified heterogeneous cluster are selected offline using
162 on heuristic.  Chen et
163 al.~\cite{ref76} used a greedy dynamic
164 programming approach to minimize the power consumption of heterogeneous servers
165 while respecting the given time constraint.  This approach had considerable
166 overhead.  In contrast to the above described works, the work of this chapter presents the
167 following contributions:
168 \begin{enumerate}
169 \item two new energy and two performance models for message passing iterative
170   synchronous applications running over a heterogeneous local cluster and a grid platform. 
171   All the models take into account the communications and the slack times. The models can predict the
172   energy  consumption and the execution time of the application.
173
174 \item two new online frequencies selecting algorithms for a heterogeneous
175   local cluster and a grid platform. The algorithms have a very small overhead and do not need any
176   training or profiling. They use a new optimization function which
177   simultaneously maximizes the performance and minimizes the energy consumption
178   of a message passing iterative synchronous application.
179 \end{enumerate}
180
181 \section[The energy optimization of a heterogeneous cluster]{The energy optimization of parallel iterative applications running over local heterogeneous 
182 clusters}
183 \label{ch3:1}
184
185 \subsection{The execution time of message passing distributed iterative
186   applications on a heterogeneous local cluster}
187 \label{ch3:1:1}
188 In this section, we are interested in reducing the energy consumption of message
189 passing distributed iterative synchronous applications running over heterogeneous local clusters. 
190 In this work, a heterogeneous local cluster is defined as a collection of
191 heterogeneous computing nodes interconnected via a high speed homogeneous
192 network. Therefore, the nodes may have different characteristics such as computing
193 power (FLOPS), energy consumption, CPU's frequency range, \dots{} but they all
194 have the same network bandwidth and latency.
195
196 \begin{figure}[h!]
197   \centering
198   \includegraphics[scale=0.8]{fig/ch3/commtasks}
199   \caption{Parallel tasks on a heterogeneous platform}
200   \label{fig:task-heter}
201 \end{figure}
202
203 The overall execution time of a distributed iterative synchronous application
204 over a heterogeneous local cluster consists of the sum of the computation time and
205 the communication time for every iteration on a node. However, due to the
206 heterogeneous computation power of the computing nodes, slack times may occur
207 when fast nodes have to wait, during synchronous communications, for the slower
208 nodes to finish their computations (see Figure~\ref{fig:task-heter}).  Therefore, the
209 overall execution time of the program is the execution time of the slowest task
210 which has the highest computation time and no slack time.
211
212 Reducing the frequency of a processor by applying DVFS operation can be expressed by the scaling
213 factor S which is the ratio between  the maximum frequency and the new frequency of a CPU
214 as in (\ref{eq:s}).
215 The execution time of a compute bound sequential program is linearly
216 proportional to the frequency scaling factor $S$.  On the other hand, message
217 passing distributed applications consist of two parts: computation and
218 communication.  The execution time of the computation part is linearly
219 proportional to the frequency scaling factor $S$ but the communication time is
220 not affected by the scaling factor because the processors involved remain idle
221 during the communications~\cite{ref53}.  The
222 communication time for a task is the summation of periods of time that begin
223 with an MPI call for sending or receiving a message until the message is
224 synchronously sent or received.
225
226 Since in a heterogeneous cluster the nodes may have different characteristics,
227 especially different frequency gears, when applying DVFS operations on these
228 nodes, they may get different scaling factors represented by a scaling vector:
229 $(S_1, S_2,\dots, S_N)$ where $S_i$ is the scaling factor of processor $i$. To
230 be able to predict the execution time of message passing synchronous iterative
231 applications running over a heterogeneous local cluster, for different vectors of
232 scaling factors, the communication time and the computation time for all the
233 tasks must be measured during the first iteration before applying any DVFS
234 operation. Then the execution time for one iteration of the application with any
235 vector of scaling factors can be predicted using (\ref{eq:perf_heter}).
236 \begin{equation}
237   \label{eq:perf_heter}
238   \Tnew = \max_{i=1,2,\dots,N} ({\TcpOld[i]} \cdot S_{i}) +  \min_{i=1,2,\dots,N} (\Tcm[i])
239 \end{equation}
240
241 where $\TcpOld[i]$ is the computation time of processor $i$ during the first
242 iteration.  The model computes the maximum computation time with
243 scaling factor from each node added to the communication time of the slowest
244 node. It means only the communication time without any slack time is taken into
245 account.  Therefore, the execution time of the iterative application is equal to
246 the execution time of one iteration as in (\ref{eq:perf_heter}) multiplied by the
247 number of iterations of that application.
248
249 This prediction model is improved from the model that predicts the execution time
250 of message passing distributed applications for homogeneous
251 architectures presented in chapter \ref{ch2} section \ref{ch2:3}.  The execution time prediction model is
252 used in the method that optimizes both the energy consumption and the performance
253 of iterative methods, which is presented in the following sections.
254
255 \subsection{Energy model for heterogeneous local cluster}
256 \label{ch3:1:2}
257 In  chapter \ref{ch2}, the dynamic and the static  energy consumption of a 
258 processor is computed according to Equations \ref{eq:Edyn_new} and \ref{eq:Estatic_new} respectively. Then, the total energy consumption of a processor is the sum of these two metrics.  
259 Therefore, the overall energy consumption for the parallel tasks over  a parallel cluster 
260 is the  summation of the energies consumed by all the processors. 
261
262 In the considered heterogeneous platform, each processor $i$ may have
263 different dynamic and static powers, noted as $\Pd[i]$ and $\Ps[i]$
264 respectively.  Therefore, even if the distributed message passing iterative
265 application is load balanced, the computation time of each CPU $i$ noted
266 $\Tcp[i]$ may be different and different frequency scaling factors may be
267 computed in order to decrease the overall energy consumption of the application
268 and reduce the slack times.  The communication time of a processor $i$ is noted as
269 $\Tcm[i]$ and could contain slack times when communicating with slower nodes,
270 see Figure~\ref{fig:task-heter}.  Therefore, all the nodes do not have equal
271 communication times. While the dynamic energy is computed according to the
272 frequency scaling factor and the dynamic power of each node as in
273 (\ref{eq:Edyn_new}), the static energy is computed as the sum of the execution time
274 of one iteration as in \ref{eq:perf_heter}  multiplied by the static power of each processor.  
275 The overall energy consumption of a message passing distributed application executed over a
276 heterogeneous cluster during one iteration is the summation of all the dynamic and
277 static energies for all the processors.  It is computed as follows:
278 \begin{equation}
279   \label{eq:energy-heter}
280  E = \sum_{i=1}^{N} {(S_i^{-2} \cdot \Pd[i] \cdot  \Tcp[i])} + 
281  \sum_{i=1}^{N} (\Ps[i] \cdot (\max_{i=1,2,\dots,N} (\Tcp[i] \cdot S_{i}) +
282   { \min_{i=1,2,\dots,N} (\Tcm[i]) ))}
283 \end{equation}
284
285 Reducing the frequencies of the processors according to the vector of scaling
286 factors $(S_1, S_2,\dots, S_N)$ may degrade the performance of the application
287 and thus, increase the consumed static energy because the execution time is
288 increased~\cite{ref78}. The overall energy consumption
289 for an iterative application can be measured by measuring the energy
290 consumption for one iteration as in (\ref{eq:energy-heter}) multiplied by the number
291 of iterations of that application.
292
293 \subsection{Optimization of both energy consumption and performance}
294 \label{ch3:1:3}
295 Using the lowest frequency for each processor does not necessarily give the most
296 energy efficient execution of an application. Indeed, even though the dynamic
297 power is reduced while scaling down the frequency of a processor, its
298 computation power is proportionally decreased. Hence, the execution time might
299 be drastically increased and during that time, dynamic and static powers are
300 being consumed.  Therefore, it might cancel any gains achieved by scaling down
301 the frequency of all nodes to the minimum and the overall energy consumption of
302 the application might not be the optimal one.  It is not trivial to select the
303 appropriate frequency scaling factor for each processor while considering the
304 characteristics of each processor (computation power, range of frequencies,
305 dynamic and static powers) and the task it is executing (computation/communication
306 ratio).  In  chapter~\ref{ch2}, we proposed a method that selects the optimal
307 frequency scaling factor for a homogeneous cluster executing a message passing
308 iterative synchronous application while giving the best trade-off between the
309 energy consumption and the performance for such applications.  
310 In this section, this optimization method is improved while considering a heterogeneous clusters.
311
312 As described before, the  relation between the energy consumption and the execution time for an
313 application is complex and nonlinear. Thus, to find the trade-off relation between the energy consumption computed in Equation \ref{eq:energy-heter} and the performance with Equation \ref{eq:perf_heter}  for the iterative message passing applications, first we need to normalize both term as follows:
314
315
316 \begin{equation}
317   \label{eq:enorm-heter}
318   \Enorm = \frac{\Ereduced}{\Eoriginal} 
319     = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd[i] \cdot  \Tcp[i])} +
320  \sum_{i=1}^{N} {(\Ps[i] \cdot \Tnew)}}{\sum_{i=1}^{N}{( \Pd[i] \cdot  \Tcp[i])} +
321  \sum_{i=1}^{N} {(\Ps[i] \cdot \Told)}}
322 \end{equation}
323
324
325
326 \begin{equation}
327   \label{eq:pnorm-heter}
328   \Pnorm = \frac{\Told}{\Tnew}
329           = \frac{\max_{i=1,2,\dots,N}{(\Tcp[i]+\Tcm[i])}}
330             { \max_{i=1,2,\dots,N} (\Tcp[i] \cdot S_{i}) + \min_{i=1,2,\dots,N} (\Tcm[i])}
331 \end{equation}
332
333
334 \begin{figure}[!t]
335   \centering
336     \includegraphics[width=.7\textwidth]{fig/ch3/heter}
337   \caption{The energy and performance relation in Heterogeneous cluster}
338   \label{fig:rel-heter}
339 \end{figure}
340
341 Then, the objective function can be modeled in order to find the maximum
342 distance between the energy curve (\ref{eq:enorm-heter}) and the performance curve
343 (\ref{eq:pnorm-heter}) over all available sets of scaling factors for the processors of the heterogeneous 
344 cluster.  This represents the minimum energy consumption with minimum execution time (maximum
345 performance) at the same time, see Figure~\ref{fig:rel-heter}. Then the objective function has the following form:
346 \begin{equation}
347   \label{eq:max-heter}
348   \MaxDist =                                                                                                                                                                                                               
349   \mathop{\max_{i=1,\dots N}}_{j=1,\dots,F_i}
350       (\overbrace{\Pnorm(S_{ij})}^{\text{Maximize}} -
351        \overbrace{\Enorm(S_{ij})}^{\text{Minimize}} )
352 \end{equation}
353 where $N$ is the number of nodes and $F_i$ is the number of available frequencies
354 for the node $i$.  Then, the set of scaling factors that maximizes the objective function 
355 (\ref{eq:max-heter}) should be selected. 
356
357 \subsection[The scaling algorithm for heterogeneous cluster]{The scaling factors selection algorithm for heterogeneous cluster }
358 \label{ch3:1:4}
359
360
361 \begin{algorithm}[h!]
362   \begin{algorithmic}[1]
363     % \footnotesize
364     \Require ~
365     %\begin{description}
366     \item[{$\Tcp[i]$}] array of all computation times for all nodes during one iteration and with highest frequency.
367     \item[{$\Tcm[i]$}] array of all communication times for all nodes during one iteration and with highest frequency.
368     \item[{$\Fmax[i]$}] array of the maximum frequencies for all nodes.
369     \item[{$\Pd[i]$}] array of the dynamic powers for all nodes.
370     \item[{$\Ps[i]$}] array of the static powers for all nodes.
371     \item[{$\Fdiff[i]$}] array of the differences between two successive frequencies for all nodes.
372     %\end{description}
373     \Ensure $\Sopt[1],\Sopt[2] \dots, \Sopt[N]$ is a vector of optimal scaling factors
374
375     \State $\Scp[i] \gets \frac{\max_{i=1,2,\dots,N}(\Tcp[i])}{\Tcp[i]} $
376     \State $F_{i} \gets  \frac{\Fmax[i]}{\Scp[i]},~{i=1,2,\cdots,N}$
377     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
378     \If{(not the first frequency)}
379           \State $F_i \gets F_i+\Fdiff[i],~i=1,\dots,N.$
380     \EndIf
381     \State $\Told \gets \max_{i=1,\dots,N} (\Tcp[i]+\Tcm[i])$
382     % \State $\Eoriginal \gets \sum_{i=1}^{N}{( \Pd[i] \cdot  \Tcp[i])} +\sum_{i=1}^{N} {(\Ps[i] \cdot \Told)}$
383     \State $\Eoriginal \gets \sum_{i=1}^{N}{( \Pd[i] \cdot  \Tcp[i] + \Ps[i] \cdot \Told)}$
384     \State $\Sopt[i] \gets 1,~i=1,\dots,N. $
385     \State $\Dist \gets 0 $
386     \While {(all nodes not reach their  minimum  frequency)}
387         \If{(not the last freq. \textbf{and} not the slowest node)}
388         \State $F_i \gets F_i - \Fdiff[i],~i=1,\dots,N.$
389         \State $S_i \gets \frac{\Fmax[i]}{F_i},~i=1,\dots,N.$
390         \EndIf
391        \State $\Tnew \gets  \max_{i=1,2,\dots,N} ({\TcpOld[i]} \cdot S_{i}) +  \min_{i=1,2,\dots,N} (\Tcm[i])$
392 %       \State $\Ereduced \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd[i] \cdot  \Tcp[i])} + \sum_{i=1}^{N} {(\Ps[i] \cdot \rlap{\Tnew)}} $
393        \State $\Ereduced \gets \sum_{i=1}^{N} {(S_i^{-2} \cdot \Pd[i] \cdot  \Tcp[i])} + 
394  \sum_{i=1}^{N} (\Ps[i] \cdot (\max_{i=1,2,\dots,N} (\Tcp[i] \cdot S_{i}) +
395   { \min_{i=1,2,\dots,N} (\Tcm[i]) ))} $
396        \State $\Pnorm \gets \frac{\Told}{\Tnew}$
397        \State $\Enorm\gets \frac{\Ereduced}{\Eoriginal}$
398       \If{$(\Pnorm - \Enorm > \Dist)$}
399         \State $\Sopt[i] \gets S_{i},~i=1,\dots,N. $
400         \State $\Dist \gets \Pnorm - \Enorm$
401       \EndIf
402     \EndWhile
403     \State  Return $\Sopt[1],\Sopt[2],\dots,\Sopt[N]$
404   \end{algorithmic}
405   \caption{Scaling factors selection algorithm for heterogeneous cluster}
406   \label{HSA}
407 \end{algorithm}
408
409
410
411 \begin{algorithm}[h!]
412   \begin{algorithmic}[1]
413     % \footnotesize
414     \For {$k=1$ to \textit{some iterations}}
415       \State Computations section.
416       \State Communications section.
417       \If {$(k=1)$}
418         \State Gather all times of computation and communication from each node.
419         \State Call Algorithm \ref{HSA}.
420         \State Compute the new frequencies from the returned optimal scaling factors.
421         \State Set the new frequencies to nodes.
422       \EndIf
423     \EndFor
424   \end{algorithmic}
425   \caption{DVFS algorithm of heterogeneous platform}
426   \label{dvfs-heter}
427 \end{algorithm}
428
429
430
431 In this section, Algorithm~\ref{HSA} is presented. It selects the frequency
432 scaling factors vector that gives the best trade-off between minimizing the
433 energy consumption and maximizing the performance of a message passing
434 synchronous iterative application executed on a heterogeneous local cluster. It works
435 online during the execution time of the iterative message passing program.  It
436 uses information gathered during the first iteration such as the computation
437 time and the communication time in one iteration for each node. The algorithm is
438 executed after the first iteration and returns a vector of optimal frequency
439 scaling factors that satisfies the objective function (\ref{eq:max-heter}). The
440 program applies DVFS operations to change the frequencies of the CPUs according
441 to the computed scaling factors.  This algorithm is called just once during the
442 execution of the program. Algorithm~\ref{dvfs-heter} shows where and when the proposed
443 scaling algorithm is called in the iterative MPI program.
444
445 \begin{figure}[!t]
446   \centering
447   \includegraphics[scale=0.75]{fig/ch3/start_freq}
448   \caption{Selecting the initial frequencies in heterogeneous cluster}
449   \label{fig:st_freq-cluster}
450 \end{figure}
451
452 The nodes in a heterogeneous cluster may have different computing powers. 
453  The algorithm takes into account this
454 problem and tries to reduce these slack times when selecting the frequency
455 scaling factors vector. At first, it selects initial frequency scaling factors
456 that increase the execution times of fast nodes and minimize the differences
457 between the computation times of the fast nodes and the slow ones. The value of the initial
458 frequency scaling factor for each node is inversely proportional to its
459 computation time that was gathered from the first iteration. These initial
460 frequency scaling factors are computed as a ratio between the computation time
461 of the slowest node and the computation time of the node $i$ as follows:
462 \begin{equation}
463   \label{eq:Scp}
464   \Scp[i] = \frac{\max_{i=1,2,\dots,N}(\Tcp[i])}{\Tcp[i]}
465 \end{equation}
466 Using the initial frequency scaling factors computed in (\ref{eq:Scp}), the
467 algorithm computes the initial frequencies for all nodes as a ratio between the
468 maximum frequency of node $i$ and the computed scaling factor $\Scp[i]$ as
469 follows:
470 \begin{equation}
471   \label{eq:Fint}
472   F_{i} = \frac{\Fmax[i]}{\Scp[i]},~{i=1,2,\dots,N}
473 \end{equation}
474 If the computed initial frequency for a node is not available in the gears of
475 that node, it is replaced by the nearest available frequency.  In
476 Figure~\ref{fig:st_freq-cluster}, the nodes are sorted by their computing power in
477 ascending order and the frequencies of the faster nodes are scaled down
478 according to the computed initial frequency scaling factors.  The resulting new
479 frequencies are highlighted in Figure~\ref{fig:st_freq-cluster}.  This set of
480 frequencies can be considered as a higher bound for the search space of the
481 optimal vector of frequencies because selecting scaling factors higher
482 than the higher bound will not improve the performance of the application and it
483 will increase its overall energy consumption.  Therefore the algorithm that
484 selects the frequency scaling factors starts the search method from these
485 initial frequencies and takes a downward search direction toward lower
486 frequencies. The algorithm iterates on all remaining frequencies, from the higher
487 bound until all nodes reach their minimum frequencies, to compute their overall
488 energy consumption and performance, and select the optimal frequency scaling
489 factors vector. At each iteration the algorithm determines the slowest node
490 according to  Equation (\ref{eq:perf_heter}) and keeps its frequency unchanged,
491 while it lowers the frequency of all other nodes by one gear.  The new overall
492 energy consumption and execution time are computed according to the new scaling
493 factors.  The optimal set of frequency scaling factors is the set that gives the
494 highest distance according to the objective function (\ref{eq:max-heter}).
495
496 Figure~\ref{fig:rel-heter} illustrates the normalized performance and
497 consumed energy for an application running on a
498 heterogeneous cluster  while increasing the scaling factors. It can
499 be noticed that in a homogeneous cluster, as in the figure \ref{fig:rel} (a), 
500 the search for the optimal scaling
501 factor should start from the maximum frequency because the performance and the
502 consumed energy decrease from the beginning of the plot. On the other hand, in
503 the heterogeneous cluster the performance is maintained at the beginning of the
504 plot even if the frequencies of the faster nodes decrease until the computing
505 power of scaled down nodes are lower than the slowest node. In other words,
506 until they reach the higher bound. It can also be noticed that the higher the
507 difference between the faster nodes and the slower nodes is, the bigger the
508 maximum distance between the energy curve and the performance curve is which results in bigger energy savings. 
509
510 \subsection{The evaluation of the proposed algorithm}
511 \label{ch3:1:5}
512 The accuracy of the proposed algorithm mainly depends on the execution time
513 prediction model defined in (\ref{eq:perf_heter}) and the energy model computed by Equation 
514 (\ref{eq:energy-heter}).  The energy model is also significantly dependent on the
515 execution time model because the static energy is linearly related to the
516 execution time and the dynamic energy is related to the computation time. So,
517 all the works presented in this chapter are based on the execution time model. To
518 verify this model, the predicted execution time was compared to the real
519 execution time over SimGrid/SMPI simulator,
520 v3.10~\cite{ref66}, for all the NAS
521 parallel benchmarks NPB v3.3 \cite{ref65}, running class B on
522 8 or 9 nodes. The comparison showed that the proposed execution time model is
523 very accurate, the maximum normalized difference between the predicted execution
524 time and the real execution time is equal to 0.03 for all the NAS benchmarks.
525
526 Since the proposed algorithm is not an exact method, it does not test all the
527 possible solutions (vectors of scaling factors) in the search space. To prove
528 its efficiency, it was compared on small instances to a brute force search
529 algorithm that tests all the possible solutions. The brute force algorithm was
530 applied to different NAS benchmarks classes with different number of nodes. The
531 solutions returned by the brute force algorithm and the proposed algorithm were
532 identical and the proposed algorithm was on average 10 times faster than the
533 brute force algorithm. It has a small execution time: for a heterogeneous
534 cluster composed of four different types of nodes having the characteristics
535 presented in Table~\ref{table:platform-cluster}, it takes on average  0.04 \textit{ms} for 4
536 nodes and 0.15 \textit{ms} on average for 144 nodes to compute the best scaling
537 factors vector.  The algorithm complexity is $O(F_i \cdot N)$, where $F_i$ is the
538 maximum number of available frequencies in the node $i$, and $N$ is the number of computing
539 nodes. The algorithm needs from 12 to 20 iterations to select the best vector of
540 frequency scaling factors that gives the results of the next sections.
541
542 \begin{table}[h!]
543   \caption{Heterogeneous nodes characteristics}
544   % title of Table
545   \centering
546   \begin{tabular}{|*{7}{r|}}
547     \hline
548     Node   & Simulated & Max   & Min   & Diff. & Dynamic    & Static    \\
549     type   & GFLOPS    & Freq. & Freq. & Freq. & power      & power     \\
550            &           & GHz   & GHz   & GHz   &            &           \\
551     \hline
552     1      & 40        & 2.50  & 1.20  & 0.100 & 20 W & 4 W \\
553     \hline
554     2      & 50        & 2.66  & 1.60  & 0.133 & 25 W & 5 W \\
555     \hline
556     3      & 60        & 2.90  & 1.20  & 0.100 & 30 W & 6 W \\
557     \hline
558     4      & 70        & 3.40  & 1.60  & 0.133 & 35 W & 7 W \\
559     \hline
560   \end{tabular}
561   \label{table:platform-cluster}
562 \end{table}
563
564 \section{Experimental results over a heterogeneous  local cluster}
565 \label{ch3:2}
566 To evaluate the efficiency and the overall energy consumption reduction of
567 Algorithm~\ref{HSA}, it was applied to the NAS parallel benchmarks NPB v3.3 which 
568 is composed of synchronous message passing applications. The 
569 experiments were executed on the simulator SimGrid/SMPI which offers easy tools
570 to create a heterogeneous local cluster and run message passing applications over it.
571 The heterogeneous cluster that was used in the experiments, had one core per
572 node because just one process was executed per node.  The heterogeneous cluster
573 was composed of four types of nodes. Each type of nodes had different
574 characteristics such as the maximum CPU frequency, the number of available
575 frequencies and the computational power, see Table~\ref{table:platform-cluster}. The
576 characteristics of these different types of nodes are inspired from the
577 specifications of real Intel processors.  The heterogeneous cluster had up to
578 144 nodes and had nodes from the four types in equal proportions, for example if
579 a benchmark was executed on 8 nodes, 2 nodes from each type were used. Since the
580 constructors of CPUs do not specify the dynamic and the static power of their
581 CPUs, for each type of node they were chosen proportionally to its computing
582 powers (FLOPS).  The dynamic power corresponds to 80\% of the overall power consumption while executing at 
583 the higher frequency and the
584 remaining 20\% is the static power. The same assumption was made in chapter \ref{ch2} and
585 \cite{ref3}.  Finally, These nodes were connected via an Ethernet network with 1 \textit{Gbit/s} bandwidth.
586
587
588 \subsection{The experimental results of the scaling algorithm }
589 \label{ch3:2:1}
590
591 The proposed algorithm was applied to the seven parallel NAS benchmarks (EP, CG,
592 MG, FT, BT, LU and SP). The benchmarks were executed with class C while being 
593 run on different number of nodes, ranging from 8 to 128 or 144 nodes depending 
594 on the benchmark being executed. 
595 Indeed, the benchmarks CG, MG, LU, EP and FT had to be executed on 1,
596 2, 4, 8, 16, 32, 64, or 128 nodes.  The other benchmarks such as BT and SP had
597 to be executed on 1, 4, 9, 16, 36, 64, or 144 nodes.
598
599
600   
601  \begin{table}[h!]
602   \caption{Running NAS benchmarks on 8 and 9 nodes }
603   % title of Table
604   \centering
605   \begin{tabular}{|*{7}{r|}}
606     \hline
607     \hspace{-2.2084pt}%
608     Program & Execution & Energy        & Energy   & Performance   & Distance \\
609     name    & time/s    & consumption/J & saving\% & degradation\% &          \\
610     \hline
611     CG      &  36.11    &  3263.49      & 31.25    & 7.12          & 24.13    \\
612     \hline
613     MG      &   8.99    &   953.39      & 33.78    & 6.41          & 27.37    \\
614     \hline
615     EP      &  40.39    &  5652.81      & 27.04    & 0.49          & 26.55    \\
616     \hline
617     LU      & 218.79    & 36149.77      & 28.23    & 0.01          & 28.22    \\
618     \hline
619     BT      & 166.89    & 23207.42      & 32.32    & 7.89          & 24.43    \\
620     \hline
621     SP      & 104.73    & 18414.62      & 24.73    & 2.78          & 21.95    \\
622     \hline
623     FT      &  51.10    &  4913.26      & 31.02    & 2.54          & 28.48    \\
624     \hline
625   \end{tabular}
626   \label{table:res_8n}
627  \end{table}
628
629   \medskip
630  \begin{table}[h!]
631   \caption{Running NAS benchmarks on 16 nodes }
632   % title of Table
633   \centering
634   \begin{tabular}{|*{7}{r|}}
635     \hline
636     \hspace{-2.2084pt}%
637     Program & Execution & Energy        & Energy   & Performance   & Distance \\
638     name    & time/s    & consumption/J & saving\% & degradation\% &          \\
639     \hline
640     CG      &  31.74    &  4373.90      & 26.29    & 9.57          & 16.72    \\
641     \hline
642     MG      &   5.71    &  1076.19      & 32.49    & 6.05          & 26.44    \\
643     \hline
644     EP      &  20.11    &  5638.49      & 26.85    & 0.56          & 26.29    \\
645     \hline
646     LU      & 144.13    & 42529.06      & 28.80    & 6.56          & 22.24    \\
647     \hline
648     BT      &  97.29    & 22813.86      & 34.95    & 5.80          & 29.15    \\
649     \hline
650     SP      &  66.49    & 20821.67      & 22.49    & 3.82          & 18.67    \\
651     \hline
652     FT      &  37.01    &  5505.60      & 31.59    & 6.48          & 25.11    \\
653     \hline
654   \end{tabular}
655   \label{table:res_16n}
656  \end{table}
657
658   \medskip
659  \begin{table}[h!]
660   \caption{Running NAS benchmarks on 32 and 36 nodes }
661   % title of Table
662   \centering
663   \begin{tabular}{|*{7}{r|}}
664     \hline
665     \hspace{-2.2084pt}%
666     Program & Execution & Energy        & Energy   & Performance   & Distance \\
667     name    & time/s    & consumption/J & saving\% & degradation\% &          \\
668     \hline
669     CG      & 32.35     &  6704.21      & 16.15    & 5.30          & 10.85    \\
670     \hline
671     MG      &  4.30     &  1355.58      & 28.93    & 8.85          & 20.08    \\
672     \hline
673     EP      &  9.96     &  5519.68      & 26.98    & 0.02          & 26.96    \\
674     \hline
675     LU      & 99.93     & 67463.43      & 23.60    & 2.45          & 21.15    \\
676     \hline
677     BT      & 48.61     & 23796.97      & 34.62    & 5.83          & 28.79    \\
678     \hline
679     SP      & 46.01     & 27007.43      & 22.72    & 3.45          & 19.27    \\
680     \hline
681     FT      & 28.06     &  7142.69      & 23.09    & 2.90          & 20.19    \\
682     \hline
683   \end{tabular}
684   \label{table:res_32n}
685  \end{table}
686
687   \medskip
688  \begin{table}[h!]
689   \caption{Running NAS benchmarks on 64 nodes }
690   % title of Table
691   \centering
692   \begin{tabular}{|*{7}{r|}}
693     \hline
694     \hspace{-2.2084pt}%
695     Program & Execution & Energy        & Energy   & Performance   & Distance \\
696     name    & time/s    & consumption/J & saving\% & degradation\% &          \\
697     \hline
698     CG      & 46.65     &  17521.83     &  8.13    &  1.68         &  6.45    \\
699     \hline
700     MG      &  3.27     &   1534.70     & 29.27    & 14.35         & 14.92    \\
701     \hline
702     EP      &  5.05     &   5471.11     & 27.12    &  3.11         & 24.01    \\
703     \hline
704     LU      & 73.92     & 101339.16     & 21.96    &  3.67         & 18.29    \\
705     \hline
706     BT      & 39.99     &  27166.71     & 32.02    & 12.28         & 19.74    \\
707     \hline
708     SP      & 52.00     &  49099.28     & 24.84    &  0.03         & 24.81    \\
709     \hline
710     FT      & 25.97     &  10416.82     & 20.15    &  4.87         & 15.28    \\
711     \hline
712   \end{tabular}
713   \label{table:res_64n}
714  \end{table}
715
716   \medskip \begin{table}[h!]
717   \caption{Running NAS benchmarks on 128 and 144 nodes }
718   % title of Table
719   \centering
720   \begin{tabular}{|*{7}{r|}}
721     \hline
722     \hspace{-2.2084pt}%
723     Program & Execution & Energy        & Energy   & Performance   & Distance \\
724     name    & time/s    & consumption/J & saving\% & degradation\% &          \\
725     \hline
726     CG      & 56.92     &  41163.36     &  4.00    &  1.10         &  2.90    \\
727     \hline
728     MG      &  3.55     &   2843.33     & 18.77    & 10.38         &  8.39    \\
729     \hline
730     EP      &  2.67     &   5669.66     & 27.09    &  0.03         & 27.06    \\
731     \hline
732     LU      & 51.23     & 144471.90     & 16.67    &  2.36         & 14.31    \\
733     \hline
734     BT      & 37.96     &  44243.82     & 23.18    &  1.28         & 21.90    \\
735     \hline
736     SP      & 64.53     & 115409.71     & 26.72    &  0.05         & 26.67    \\
737     \hline
738     FT      & 25.51     &  18808.72     & 12.85    &  2.84         & 10.01    \\
739     \hline
740   \end{tabular}
741   \label{table:res_128n}
742 \end{table}
743
744 \begin{figure}[h!]
745   \centering
746   \centering
747     \includegraphics[width=.7\textwidth]{fig/ch3/energy}\\~ ~ ~ ~ ~(a) \\ 
748     
749     \includegraphics[width=.7\textwidth]{fig/ch3/per_deg}\\~ ~ ~ ~ ~(b) 
750   \caption{NAS benchmarks running with a different number of nodes  (a) the  energy saving and 
751       (b) the performance degradation }
752       \label{fig:res}
753 \end{figure}
754
755 The overall energy consumption was computed for each instance according to the
756 energy consumption model (\ref{eq:energy-heter}), with and without applying the
757 algorithm. The execution time was also measured for all these experiments. Then,
758 the energy saving and performance degradation percentages were computed for each
759 instance.  The results are presented in Tables 
760 \ref{table:res_8n}, \ref{table:res_16n}, \ref{table:res_32n},
761 \ref{table:res_64n} and \ref{table:res_128n}. All these results are the average
762 values obtained from many experiments for energy savings and performance degradation.
763 The tables show the experimental results for running the NAS parallel benchmarks
764 on different numbers of nodes.  The experiments show that the algorithm
765 significantly reduces the energy consumption (up to 34\%) and tries to
766 limit the performance degradation.  They also show that the energy saving
767 percentage decreases when the number of computing nodes increases.  This
768 reduction is due to the increase of the communication times compared to the
769 execution times when the benchmarks are run over a higher number of nodes.
770 Indeed, the benchmarks with the same class, C, are executed on different numbers
771 of nodes, so the computation required for each iteration is divided by the
772 number of computing nodes.  On the other hand, more communications are required
773 when increasing the number of nodes so the static energy increases linearly
774 according to the communication time and the dynamic power is less relevant in
775 the overall energy consumption.  Therefore, reducing the frequency with
776 Algorithm~\ref{HSA} is less effective in reducing the overall energy savings. It
777 can also be noticed that for the benchmarks EP and SP that contain little or no
778 communications, the energy savings are not significantly affected by the high
779 number of nodes.  No experiments were conducted using bigger classes than D,
780 because they require a lot of memory (more than 64 \textit{GB}) when being executed
781 by the simulator on one machine.  The maximum distance between the normalized
782 energy curve and the normalized performance for each instance is also shown in
783 the result tables. It decreases in the same way as the energy saving percentage.
784 The tables also show that the performance degradation percentage is not
785 significantly increased when the number of computing nodes is increased because
786 the computation times are small when compared to the communication times.
787
788 Figure~\ref{fig:res} (a) and (b) present the energy saving and
789 performance degradation respectively for all the benchmarks according to the
790 number of used nodes. As shown in the first plot, the energy saving percentages
791 of the benchmarks MG, LU, BT and FT decrease linearly when the number of nodes
792 increase. While for the EP and SP benchmarks, the energy saving percentage is
793 not affected by the increase of the number of computing nodes, because in these
794 benchmarks there are little or no communications. Finally, the energy saving of
795 the CG benchmark significantly decreases when the number of nodes increase
796 because this benchmark has more communications than the others. The second plot
797 shows that the performance degradation percentages of most of the benchmarks
798 decrease when they run on a big number of nodes because they spend more time
799 communicating than computing, thus, scaling down the frequencies of some nodes
800 has less effect on the performance.
801
802 \subsection{The results for different power consumption scenarios}
803 \label{ch3:2:2}
804
805 The results of the previous section were obtained while using processors that
806 consume during computation an overall power which is 80\% composed of
807 dynamic power and  20\% of static power. In this section, these ratios
808 are changed and two new power scenarios are considered in order to evaluate how
809 the proposed algorithm adapts itself according to the static and dynamic power
810 values.  The two new power scenarios are the following:
811
812 \begin{itemize}
813 \item 70\% of dynamic power and 30\% of static power
814 \item 90\% of dynamic power and 10\% of static power
815 \end{itemize}
816
817 The NAS parallel benchmarks were executed again over processors that follow the
818 new power scenarios.  The class C of each benchmark was run over 8 or 9 nodes
819 and the results are presented in Tables~\ref{table:res_s1} and
820 \ref{table:res_s2}. These tables show that the energy saving percentage of the
821 70\%-30\% scenario is smaller for all benchmarks compared to the
822 energy saving of the 90\%-10\% scenario.  Indeed, in the latter
823 more dynamic power is consumed when nodes are running on their maximum
824 frequencies, thus, scaling down the frequency of the nodes results in higher
825 energy savings than in the 70\%-30\% scenario. On the other hand,
826 the performance degradation percentage is smaller in the 70\%-30\%
827 scenario compared to the 90\%-\%10 scenario. This is due to the
828 higher static power percentage in the first scenario which makes it more
829 relevant in the overall consumed energy.  Indeed, the static energy is related
830 to the execution time and if the performance is degraded the amount of consumed
831 static energy directly increases.  Therefore, the proposed algorithm does not
832 significantly scale down  the frequencies of the nodes in order to
833 limit the increase of the execution time and thus limiting the effect of the
834 consumed static energy.
835
836 Both new power scenarios are compared to the old one in
837 Figure~\ref{fig:powers-heter} (a). It shows the average of the performance degradation,
838 the energy saving and the distances for all the NAS benchmarks running  class C on 
839 8 or 9 nodes.  The comparison shows that the energy saving ratio is proportional
840 to the dynamic power ratio: it is increased when applying the
841 90\%-10\% scenario because at maximum frequency the dynamic energy
842 is the most relevant in the overall consumed energy and can be reduced by
843 lowering the frequency of some processors. On the other hand, the energy saving
844 decreases when the 70\%-30\% scenario is used because the dynamic
845 energy is less relevant in the overall consumed energy and lowering the
846 frequency does not return big energy savings.  Moreover, the average of the
847 performance degradation is decreased when using a higher ratio for static power
848 (e.g.  70\%-30\% scenario and 80\%-20\% scenario). Since the proposed 
849 algorithm optimizes the energy consumption when
850 using a higher ratio for the dynamic power, the algorithm selects bigger frequency
851 scaling factors that results in more energy saving but degrade the performance, for
852 example see Figure~\ref{fig:powers-heter} (b). The opposite happens when using a
853 higher ratio for the static power, the algorithm proportionally selects smaller
854 scaling values which result in less energy saving but also less performance
855 degradation.
856
857 \begin{table}[!t]
858   \caption{The results of the 70\%-30\% power scenario}
859   % title of Table
860   \centering
861   \begin{tabular}{|*{6}{r|}}
862     \hline
863     Program & Energy        & Energy   & Performance   & Distance \\
864     name    & consumption/J & saving\% & degradation\% &          \\
865     \hline
866     CG      &  4144.21      & 22.42    & 7.72          & 14.70    \\
867     \hline
868     MG      &  1133.23      & 24.50    & 5.34          & 19.16    \\
869    \hline
870     EP      &  6170.30      & 16.19    & 0.02          & 16.17    \\
871    \hline
872     LU      & 39477.28      & 20.43    & 0.07          & 20.36    \\
873     \hline
874     BT      & 26169.55      & 25.34    & 6.62          & 18.71    \\
875    \hline
876     SP      & 19620.09      & 19.32    & 3.66          & 15.66    \\
877    \hline
878     FT      &  6094.07      & 23.17    & 0.36          & 22.81    \\
879     \hline
880   \end{tabular}
881   \label{table:res_s1}
882 \end{table}
883
884 \begin{table}[!t]
885   \caption{The results of the 90\%-10\% power scenario}
886   % title of Table
887   \centering
888   \begin{tabular}{|*{6}{r|}}
889     \hline
890     Program & Energy          & Energy      & Performance   & Distance \\
891     name    & consumption/J   & saving\%    & degradation\% &          \\
892     \hline
893     CG      &  2812.38        & 36.36       &  6.80         & 29.56    \\
894     \hline
895     MG      &   825.43        & 38.35       &  6.41         & 31.94    \\
896     \hline
897     EP      &  5281.62        & 35.02       &  2.68         & 32.34    \\
898     \hline
899     LU      & 31611.28        & 39.15       &  3.51         & 35.64    \\
900     \hline
901     BT      & 21296.46        & 36.70       &  6.60         & 30.10    \\
902     \hline
903     SP      & 15183.42        & 35.19       & 11.76         & 23.43    \\
904     \hline
905     FT      &  3856.54        & 40.80       &  5.67         & 35.13    \\
906     \hline
907   \end{tabular}
908   \label{table:res_s2}
909 \end{table}
910
911 \begin{table}[!t]
912   \caption{Comparing the MaxDist algorithm to the EDP method}
913   \centering
914   \begin{tabular}{|*{7}{r|}}
915     \hline
916     Program & \multicolumn{2}{c|}{Energy saving \%}
917             & \multicolumn{2}{c|}{Perf.  degradation \%}
918             & \multicolumn{2}{c|}{Distance} \\
919     \cline{2-7}
920     name    & EDP   & MaxDist & EDP  & MaxDist & EDP   & MaxDist \\
921     \hline
922     CG      & 27.58 & 31.25   & 5.82 & 7.12    & 21.76 & 24.13   \\
923     \hline
924     MG      & 29.49 & 33.78   & 3.74 & 6.41    & 25.75 & 27.37   \\
925     \hline
926     LU      & 19.55 & 28.33   & 0.00 & 0.01    & 19.55 & 28.22   \\
927     \hline
928     EP      & 28.40 & 27.04   & 4.29 & 0.49    & 24.11 & 26.55   \\
929     \hline
930     BT      & 27.68 & 32.32   & 6.45 & 7.87    & 21.23 & 24.43   \\
931     \hline
932     SP      & 20.52 & 24.73   & 5.21 & 2.78    & 15.31 & 21.95   \\
933     \hline
934     FT      & 27.03 & 31.02   & 2.75 & 2.54    & 24.28 & 28.48   \\
935     \hline
936   \end{tabular}
937   \label{table:compare_EDP}
938 \end{table}
939
940 \begin{figure}[h!]
941   \centering
942  
943     \includegraphics[width=.75\textwidth]{fig/ch3/sen_comp}\\~ ~ ~ ~ ~ (a)\\
944
945     \includegraphics[width=.75\textwidth]{fig/ch3/three_scenarios}\\~ ~ ~ ~ ~ (b)
946  
947   \caption{(a) Comparison the results of the three power scenarios and
948     (b) Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes}
949      \label{fig:powers-heter}
950 \end{figure}
951
952 \begin{figure}[h!]
953   \centering
954    \includegraphics[scale=0.85]{fig/ch3/compare_EDP.pdf}
955   \caption{Trade-off comparison for NAS benchmarks class C}
956   \label{fig:compare_EDP}
957 \end{figure}
958
959
960 \subsection{Comparison between  the proposed scaling algorithm and the EDP method}
961 \label{ch3:2:3}
962 In this section, the scaling factors selection algorithm, called MaxDist, is
963 compared to  \cite{ref67},  EDP method.  They developed a
964 green governor that regularly applies an online frequency selecting algorithm to
965 reduce the energy consumed by a multi-core architecture without degrading much
966 its performance. The algorithm selects the frequencies that minimize the energy
967 and delay product, $\mathit{EDP}=\mathit{energy}\times \mathit{delay}$,  using
968 the predicted overall energy consumption and execution time delay for each
969 frequency.  To fairly compare both algorithms, the same energy and execution
970 time models, Equations (\ref{eq:energy-heter}) and (\ref{eq:perf_heter}), were used for both
971 algorithms to predict the energy consumption and the execution times. 
972 Spiliopoulos et al. algorithm was adapted to start the search from the initial
973 frequencies computed using  Equation (\ref{eq:Fint}). The resulting algorithm
974 is an exhaustive search algorithm that minimizes the EDP and has the initial
975 frequencies values as an upper bound.
976
977 Both algorithms were applied to the parallel NAS benchmarks to compare their
978 efficiency. Table~\ref{table:compare_EDP} presents  the
979 execution times and the energy consumption for both versions of the NAS
980 benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous
981 nodes. The results show that our algorithm provides better energy savings than
982 Spiliopoulos et al. algorithm, on average it results in 29.76\% energy
983 saving while their algorithm saves just 25.75\%. The average of
984 performance degradation percentage is approximately the same for both
985 algorithms, about 4\%.
986
987 For all benchmarks,  our algorithm outperforms Spiliopoulos et  al. algorithm in
988 the   energy reduction  to  performance trade-off, see  Figure~\ref{fig:compare_EDP},
989 because it maximizes the distance  between the energy saving and the performance
990 degradation values while giving the same weight for both metrics.
991
992 \section[The energy optimization of grid]{The energy optimization of parallel iterative applications running over grids}
993 \label{ch3:3}
994
995 \subsection{The energy and performance models of grid platform}
996 \label{ch3:3:1}
997 In this section, we are interested in reducing the energy consumption of message
998 passing  iterative synchronous applications running over
999 heterogeneous grid platforms. A heterogeneous grid platform could be defined as a collection of
1000 heterogeneous computing clusters interconnected via a long distance network which has a lower bandwidth 
1001 and a higher latency than the local networks of the clusters. Each computing cluster in the grid is composed of homogeneous nodes that are connected together via a high speed network. However, nodes from distinct  clusters may have different characteristics such as computing power (FLOPS), energy consumption, CPU's frequency range, network bandwidth and latency.
1002
1003 Since in a heterogeneous grid each cluster has different characteristics,
1004  when applying DVFS operations on the nodes 
1005 of these clusters, they may get different scaling factors represented by a scaling vector:
1006 $(S_{11}, S_{12},\dots, S_{NM})$ where $S_{ij}$ is the scaling factor of processor $j$ in cluster $i$ . To
1007 be able to predict the execution time of message passing synchronous iterative
1008 applications running over a heterogeneous grid, for different vectors of
1009 scaling factors, the communication time and the computation time for all the
1010 tasks must be measured during the first iteration before applying any DVFS
1011 operation. Then the execution time for one iteration of the application with any
1012 vector of scaling factors can be predicted using Equation (\ref{eq:perf-grid}).
1013 %
1014 \begin{equation}
1015   \label{eq:perf-grid}
1016   \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
1017   +\mathop{\min_{j=1,\dots,M_i}}  (\Tcm[hj])
1018 \end{equation}
1019 %
1020 where $N$ is the number of  clusters in the grid, $M_i$ is the number of  nodes in
1021  cluster $i$, $\TcpOld[ij]$ is the computation time of processor $j$ in the cluster $i$ 
1022 and $\Tcm[hj]$ is the communication time of processor $j$ in the cluster $h$ during the 
1023 first  iteration.  The execution time for one iteration is equal to the sum of the maximum computation time for all nodes with the new scaling factors
1024 and the slowest communication time without slack time during one iteration.
1025 The latter is equal to the  communication time of the slowest node in the slowest cluster $h$.
1026 It means that only the communication time without any slack time is taken into account.
1027 Therefore, the execution time of the iterative application is equal to
1028 the execution time of one iteration as in Equation (\ref{eq:perf-grid}) multiplied by the
1029 number of iterations of that application.
1030
1031
1032 In the considered heterogeneous grid platform, each node $j$ in cluster $i$ may have
1033 different dynamic and static powers from the nodes of the other clusters, 
1034 noted as $\Pd[ij]$ and $\Ps[ij]$ respectively.  Therefore, even if the distributed 
1035 message passing iterative application is load balanced, the computation time of each CPU $j$ 
1036 in cluster $i$ noted $\Tcp[ij]$ may be different and different frequency scaling factors may be
1037 computed in order to decrease the overall energy consumption of the application
1038 and reduce slack times.  The communication time of a processor $j$ in cluster $i$ is noted as
1039 $\Tcm[ij]$ and could contain slack times when communicating with slower nodes,
1040 see Figure~\ref{fig:task-heter}.  Therefore, all nodes do not have equal
1041 communication times. While the dynamic energy is computed according to the
1042 frequency scaling factor and the dynamic power of each node as in Equation 
1043 (\ref{eq:Edyn}), the static energy is computed as the sum of the execution time
1044 of one iteration multiplied by the static power of each processor.  The overall
1045 energy consumption of a message passing distributed application executed over a
1046 heterogeneous grid platform during one iteration is the summation of all dynamic and
1047 static energies for $M_i$ processors in $N$ clusters.  It is computed as follows:
1048 \begin{equation}
1049   \label{eq:energy-grid}
1050  E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
1051  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot 
1052   (\mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\Tcp[ij]} \cdot S_{ij}) 
1053   +\mathop{\min_{j=1,\dots M_i}} (\Tcm[hj]) ))
1054 \end{equation}
1055
1056
1057 To optimize both of the energy consumption model computed by \ref{eq:energy-grid} and the performance model computed by \ref{eq:perf-grid},
1058 they must be normalized  as in \ref{eq:enorm-heter} and \ref{eq:pnorm-heter} Equations respectively.
1059 While the original energy consumption is the consumed energy with the 
1060 maximum frequency for all the  nodes computed as follows:
1061
1062 \begin{equation}
1063   \label{eq:eorginal-grid}
1064     \Eoriginal = \sum_{i=1}^{N} \sum_{j=1}^{M_i} ( \Pd[ij] \cdot  \Tcp[ij])  + 
1065      \mathop{\sum_{i=1}^{N}} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Told)       
1066 \end{equation}
1067
1068 By the same way, the old execution time with the maximum frequency for all the nodes is computed as follows:
1069
1070 \begin{equation}
1071   \label{eq:told-grid}
1072    \Told =  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\Tcp[ij]}) 
1073   +\mathop{\min_{j=1,\dots,M_i}}  (\Tcm[hj])          
1074 \end{equation}
1075 Therefore, the objective function can be modelled in order to find the maximum
1076 distance between the normalized energy curve  and the normalized performance curve
1077 over all possible sets of scaling factors as follows:
1078
1079  \begin{equation}
1080   \label{eq:max-grid}
1081   \MaxDist =
1082 \mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j}
1083       (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
1084        \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
1085 \end{equation}
1086
1087 where $N$ is the number of clusters, $M_i$ is the number of nodes in each cluster and
1088 $F_j$ is the number of available frequencies for the  node $j$.  Then, the optimal set 
1089 of scaling factors that satisfies (\ref{eq:max-grid}) can be selected. 
1090
1091 \subsection{The scaling factors selection algorithm for a grid architecture}
1092 \label{ch3:3:2}
1093
1094 \begin{algorithm}
1095 \setstretch{1}
1096   \begin{algorithmic}[1]
1097     % \footnotesize
1098     
1099     \Require ~
1100
1101     \item [{$N$}] number of clusters in the grid. 
1102     \item [{$M_i$}] number of nodes in each cluster.
1103     \item[{$\Tcp[ij]$}] array of all computation times for all nodes during one iteration and with the highest frequency.
1104     \item[{$\Tcm[ij]$}] array of all communication times for all nodes during one iteration and with the highest frequency.
1105     \item[{$\Fmax[ij]$}] array of the maximum frequencies for all nodes.
1106     \item[{$\Pd[ij]$}] array of the dynamic powers for all nodes.
1107     \item[{$\Ps[ij]$}] array of the static powers for all nodes.
1108     \item[{$\Fdiff[ij]$}] array of the differences between two successive frequencies for all nodes.
1109
1110     \Ensure $\Sopt[11],\Sopt[12] \dots, \Sopt[NM_i]$,  a vector of scaling factors that gives the optimal trade-off between energy consumption and execution time
1111
1112     \State $\Scp[ij] \gets \frac{ \mathop{\max\limits_{i=1,\dots N}}\limits_{j=1,\dots,M_i}(\Tcp[ij])} {\Tcp[ij]} $
1113     \State $F_{ij} \gets  \frac{\Fmax[ij]}{\Scp[i]},~{i=1,2,\cdots,N},~{j=1,2,\dots,M_i}.$
1114     \State Round the computed initial frequencies $F_i$ to the closest  available frequency for each node.
1115     \If{(not the first frequency)}
1116           \State $F_{ij} \gets F_{ij}+\Fdiff[ij],~i=1,\dots,N,~{j=1,\dots,M_i}.$
1117     \EndIf
1118     \State $\Told \gets  \mathop{\max\limits_{i=1,\dots N}}\limits_{j=1,\dots,M_i}({\Tcp[ij]}) 
1119   +\mathop{\min\limits_{j=1,\dots,M_i}}  (\Tcm[hj])   $ 
1120     \State $\Eoriginal \gets \sum_{i=1}^{N} \sum_{j=1}^{M_i} ( \Pd[ij] \cdot  \Tcp[ij])  + 
1121      \mathop{\sum_{i=1}^{N}} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Told)  $ 
1122     \State $\Sopt[ij] \gets 1,~i=1,\dots,N,~{j=1,\dots,M_i}. $
1123     \State $\Dist \gets 0 $
1124     \While {(all nodes have not reached their  minimum   frequency \textbf{or}  $\Pnorm - \Enorm < 0 $)}
1125         \If{(not the last freq. \textbf{and} not the slowest node)}
1126         \State $F_{ij} \gets F_{ij} - \Fdiff[ij],~{i=1,\dots,N},~{j=1,\dots,M_i}$.
1127         \State $S_{ij} \gets \frac{\Fmax[ij]}{F_{ij}},~{i=1,\dots,N},~{j=1,\dots,M_i}.$
1128         \EndIf
1129        \State $\Tnew \gets \mathop{\max\limits_{i=1,\dots N}}\limits_{j=1,\dots,M_i}({\TcpOld[ij]}
1130         \cdot S_{ij})  +\mathop{\min\limits_{j=1,\dots,M_i}}  (\Tcm[hj]) $
1131        \State $\Ereduced \gets  \sum\limits_{i=1}^{N} \sum\limits_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] 
1132         \cdot \Tcp[ij])} +  \sum\limits_{i=1}^{N} \sum\limits_{j=1}^{M_i} (\Ps[ij] \cdot  
1133         (\mathop{\max\limits_{i=1,\dots N}}\limits_{j=1,\dots,M_i}({\Tcp[ij]} \cdot S_{ij}) 
1134          +\mathop{\min\limits_{j=1,\dots,M_i}} (\Tcm[hj]) ))$ 
1135        \State $\Pnorm \gets \frac{\Told}{\Tnew}$
1136   
1137        \State $\Enorm \gets \frac{\Ereduced}{\Eoriginal}$
1138       \If{$(\Pnorm - \Enorm > \Dist)$}
1139         \State $\Sopt[ij] \gets S_{ij},~i=1,\dots,N,~j=1,\dots,M_i$
1140         \State $\Dist \gets \Pnorm - \Enorm$
1141       \EndIf
1142     \EndWhile
1143     \State  Return $\Sopt[11],\Sopt[12],\dots,\Sopt[NM_i]$
1144   \end{algorithmic}
1145   \caption{Scaling factors selection algorithm for grid}
1146   \label{HSA-grid}
1147 \end{algorithm}
1148
1149 \begin{figure}[!t]
1150   \centering
1151   \includegraphics[scale=0.7]{fig/ch3/init_freq}
1152   \caption{Selecting the initial frequencies in grid}
1153   \label{fig:st_freq-grid}
1154 \end{figure}
1155
1156 \begin{figure}[!t]
1157   \centering
1158     \includegraphics[width=.7\textwidth]{fig/ch3/heter2}
1159   \caption{The energy and performance relation in grid}
1160   \label{fig:rel-grid}
1161 \end{figure}
1162
1163
1164 In this section, the scaling factors selection algorithm for a grid, Algorithm~\ref{HSA-grid}, 
1165 is presented. It selects the vector of  frequency
1166 scaling factors  that gives the best trade-off between minimizing the
1167 energy consumption and maximizing the performance of a message passing
1168 synchronous iterative application executed on a grid.
1169 It is similar to the frequency selection algorithm for heterogeneous 
1170 local clusters presented in section \ref{ch3:1:4}. 
1171
1172 The value of the initial frequency scaling factor for each node is inversely proportional to its
1173 computation time that was gathered in the first iteration. The initial
1174 frequency scaling factor for a node $i$ is computed as a ratio between the computation time
1175 of the slowest node and the computation time of the node $i$ as follows:
1176 \begin{equation}
1177   \label{eq:Scp-grid}
1178   \Scp[ij] =  \frac{ \mathop{\max\limits_{i=1,\dots N}}\limits_{j=1,\dots,M_i}(\Tcp[ij])} {\Tcp[ij]}
1179 \end{equation}
1180 Using the initial frequency scaling factors computed in (\ref{eq:Scp-grid}), the
1181 algorithm computes the initial frequencies for all nodes as a ratio between the
1182 maximum frequency of the node  and its computed scaling factor, as follows:
1183 \begin{equation}
1184   \label{eq:Fint-grid}
1185   F_{ij} = \frac{\Fmax[ij]}{\Scp[ij]},~{i=1,2,\dots,N},~{j=1,\dots,M_i}
1186 \end{equation}
1187 Figure \ref{fig:st_freq-grid} shows the selected initial frequencies for a grid composed of three clusters.
1188 In contrast to algorithm \ref{HSA}, algorithm \ref{HSA-grid} replaces the computed initial frequency for a node by the nearest available frequency if not available in the gears of
1189 that node.
1190 The frequency scaling algorithm of the grid stops its iteration if it reaches the lower bound, which is the frequency that gives a negative distance between the energy and performance.
1191 A negative distance means that the performance degradation ratio is higher than the energy saving ratio as in figure \ref{fig:rel-grid}.
1192 In this situation, the algorithm must stop the downward search because it has reached the lower bound and it is useless to test the lower frequencies. Indeed, they will all give worse distances. 
1193 Therefore, the algorithm iterates on all the remaining frequencies, from the higher
1194 bound until all nodes reach their minimum frequencies or their lower bounds, to compute the overall
1195 energy consumption and execution time. Then, it selects the  vector of  frequency scaling
1196 factors that give the maximum distance (MaxDist).  Algorithm~\ref{dvfs-heter} is also used to call the Algorithm \ref{HSA-grid} in the MPI program executed over the grid platform. 
1197
1198 \section{Experimental results over the Grid5000 platform}
1199 \label{ch3:4}
1200
1201 In this section,  real experiments were conducted over the Grid'5000 platform. 
1202 Grid'5000~\cite{ref21} is a large-scale testbed that consists of ten sites distributed all over  metropolitan France and Luxembourg.  These sites are: Grenoble, Lille, Luxembourg, Lyon, Nancy, Reims, Rennes , Sophia, Toulouse and Bordeaux. Figure \ref{fig:grid5000-dis} shows the geographical distribution of grid'5000 sites over France and Luxembourg. All the sites are connected together via a  special long distance network called RENATER, which is the abbreviation of the French
1203 National Telecommunication Network for Technology. Each site in the grid is
1204 composed of a few heterogeneous computing clusters and each cluster contains
1205 many homogeneous nodes. In total, Grid'5000 has about one thousand heterogeneous nodes and eight thousand cores. In each site, the clusters and their nodes
1206 are connected via high speed local area networks. Two types of local networks
1207 are used, Ethernet or Infiniband networks, which have different characteristics
1208 in terms of bandwidth and latency.
1209 Grid'5000 is dedicated for research experiments and  users can book nodes from different sites to conduct their experiments. 
1210 It also gives the opportunity to the users to deploy their customized operating system over the reserved nodes.
1211 Indeed, many software tools are available for  users in order to control and manage the reservation and deployment processes remotely. For example, OAR \cite{ref22} is a  batch scheduler that is used to manage the heterogeneous resources of the grid'5000.
1212
1213 \begin{figure}[h!]
1214 \centering
1215 \includegraphics[scale=1]{fig/ch3/grid5000.pdf}
1216 \caption{Grid5000's sites distribution in France and Luxembourg}
1217 \label{fig:grid5000-dis}
1218 \end{figure}
1219
1220
1221 Moreover, the Grid'5000 testbed provides at some sites a power measurement tool to capture 
1222 the power consumption for each node in those sites. The measured power is the overall consumed power  by all the components of a node at a given instant.  For more details refer to \cite{ref79}. 
1223 In order to correctly measure the CPU power of one core in a node $j$, 
1224  firstly,  the power consumed by the node while being idle at instant $y$, noted as $\Pidle[jy]$, was measured. Then, the power was measured while running a single thread benchmark with no communication (no idle time) over the same node with its CPU scaled to the maximum available frequency. The latter power measured at time $x$ with maximum frequency for one core of node $j$ is noted $\Pmax[jx]$. The difference between the two measured power consumptions represents the 
1225 dynamic power consumption of that core with the maximum frequency, see  Figure~\ref{fig:power_cons}. 
1226
1227
1228 The dynamic power $\Pd[j]$ is computed as in Equation~\ref{eq:pdyn}
1229 \begin{equation}
1230   \label{eq:pdyn}
1231     \Pd[j] = \max_{x=\beta_1,\dots \beta_2} (\Pmax[jx])  -  \min_{y=\Theta_1,\dots \Theta_2} (\Pidle[jy])
1232 \end{equation}
1233
1234 where $\Pd[j]$ is the dynamic power consumption for one core of node $j$, 
1235 $\lbrace \beta_1,\beta_2 \rbrace$ is the time interval for the measured maximum power values, 
1236 $\lbrace\Theta_1,\Theta_2\rbrace$ is the time interval for the measured  idle power values.
1237 Therefore, the dynamic power of one core is computed as the difference between the maximum 
1238 measured value in maximum powers vector and the minimum measured value in the idle powers vector.
1239
1240 On the other hand, the static power consumption by one core is a part of the measured idle power consumption of the node. Since in Grid'5000 there is no way to measure precisely the consumed static power and it was assumed, as in sections  \ref{ch3:2} and \ref{ch2:6}, that  the static power  represents a ratio of the dynamic power, the value of the static power is assumed to be equal to 20\% of the dynamic power consumption of the core.
1241
1242 In the experiments presented in the following sections, two sites of Grid'5000 were used, Lyon and Nancy sites. These two sites have in total seven different clusters as shown in Figure~\ref{fig:grid5000}.
1243
1244 Four clusters from the two sites were selected in the experiments: one cluster from 
1245 Lyon's site, Taurus, and three clusters from Nancy's site, Graphene, 
1246 Griffon and Graphite. Each one of these clusters composed of homogeneous nodes, while nodes from different clusters are heterogeneous in many aspects such as: computing power, power consumption, available 
1247 frequency ranges and local network features: the bandwidth and the latency.  Table~\ref{table:grid5000-1} shows 
1248 the detailed characteristics of these four clusters. Moreover, the dynamic powers were computed  using Equation~\ref{eq:pdyn} for all the nodes in the 
1249 selected clusters and are presented in Table~\ref{table:grid5000-1}.
1250
1251
1252 \begin{figure}[!t]
1253   \centering
1254   \includegraphics[scale=1.4]{fig/ch3/grid5000-2}
1255   \caption{The selected two sites of Grid'5000}
1256   \label{fig:grid5000}
1257 \end{figure}
1258 \begin{figure}[!t]
1259   \centering
1260   \includegraphics[scale=0.8]{fig/ch3/power_consumption.pdf}
1261   \caption{The power consumed by one core from the Taurus cluster}
1262   \label{fig:power_cons}
1263 \end{figure}
1264
1265
1266 The energy model and the scaling factors selection algorithm were applied to the NAS parallel benchmarks v3.3 \cite{ref65} and evaluated over Grid'5000.
1267 The benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and FT. These applications have different computations and communications ratios and strategies which make them good testbed applications to evaluate the proposed algorithm and energy model.
1268 The benchmarks have seven different classes, S, W, A, B, C, D and E, that represent the size of the problem that the method solves. In the next sections,  the class D was used for all the benchmarks in all the experiments. 
1269
1270   
1271 \begin{table}[!t]
1272   \caption{The characteristics of the CPUs in the selected clusters}
1273   % title of Table
1274   \centering
1275   \begin{tabular}{|*{7}{c|}}
1276     \hline
1277                 &             & Max   & Min   & Diff. &                 &               \\
1278     Cluster     & CPU         & Freq. & Freq. & Freq. & Cores           & Dynamic power \\
1279     Name        & model       & GHz   & GHz   & GHz   & per CPU         & of one core   \\
1280     \hline
1281                 & Intel       &       &       &         &           &              \\
1282     Taurus      & Xeon        & 2.3   & 1.2   & 0.1     & 6         & \np[W]{35}    \\
1283                 & E5-2630     &       &       &         &           &            \\         
1284     \hline
1285                 & Intel       &       &       &         &           &             \\
1286     Graphene    & Xeon        & 2.53  & 1.2   & 0.133   & 4         & \np[W]{23}  \\
1287                 & X3440       &       &       &         &           &             \\    
1288     \hline
1289                 & Intel       &       &       &         &           &            \\
1290     Griffon     & Xeon        & 2.5   & 2     & 0.5     & 4         & \np[W]{46}  \\
1291                 & L5420       &       &       &         &           &            \\  
1292     \hline
1293                 & Intel       &       &       &         &           &            \\
1294      Graphite   & Xeon        & 2     & 1.2   & 0.1     & 8         & \np[W]{35} \\
1295                 & E5-2650     &       &       &         &           &            \\  
1296     \hline
1297   \end{tabular}
1298   \label{table:grid5000-1}
1299 \end{table} 
1300 CPUs 
1301
1302
1303 \subsection{The experimental results of the scaling algorithm on a Grid}
1304 \label{ch3:4:1}
1305 In this section, the results of applying  the scaling factors selection algorithm  
1306 to the NAS parallel benchmarks are presented. 
1307 As mentioned previously, the experiments 
1308 were conducted over two sites of Grid'5000,  Lyon and Nancy sites. 
1309 Two scenarios were considered while selecting the clusters from these two sites :
1310 \begin{itemize}
1311 \item In the first scenario, nodes from two sites and three heterogeneous clusters were selected. The two sites are connected 
1312  via a long distance network.
1313 \item In the second scenario nodes from three clusters located in one site, Nancy's site, were selected.  
1314 \end{itemize}
1315
1316 The main reason 
1317 for using these two scenarios is to evaluate the influence of long distance communications (higher latency) on the performance of the 
1318 scaling factors selection algorithm. Indeed, in the first scenario the computations to communications ratio 
1319 is very low due to the higher communication times which reduces the effect of the DVFS operations.
1320
1321 The NAS parallel benchmarks are executed over 
1322 16 and 32 nodes for each scenario. The number of participating computing nodes from each cluster 
1323 is different because all the selected clusters do not have the same available number of nodes and all benchmarks do not require the same number of computing nodes.
1324 Table~\ref{tab:sc} shows the number of nodes used from each cluster for each scenario. 
1325
1326 \begin{table}[h]
1327
1328 \caption{The different grid scenarios}
1329 \centering
1330 \begin{tabular}{|*{4}{c|}}
1331 \hline
1332 \multirow{2}{*}{Scenario name}        & \multicolumn{3}{c|} {The participating clusters} \\ \cline{2-4} 
1333                                       & Cluster & Site           & Nodes per cluster     \\ 
1334 \hline
1335 \multirow{3}{*}{Two sites / 16 nodes} & Taurus & Lyon                & 5                      \\ \cline{2-4} 
1336                                       & Graphene  & Nancy             & 5                      \\ \cline{2-4} 
1337                                       & Griffon       & Nancy        & 6                      \\ 
1338 \hline
1339 \multirow{3}{*}{Two sites / 32 nodes} & Taurus  & Lyon               & 10                     \\ \cline{2-4} 
1340                                       & Graphene  & Nancy             & 10                     \\ \cline{2-4} 
1341                                       & Griffon     &Nancy           & 12                     \\ 
1342 \hline
1343 \multirow{3}{*}{One site / 16 nodes}  & Graphite    & Nancy            & 4                      \\ \cline{2-4} 
1344                                       & Graphene     & Nancy           & 6                      \\ \cline{2-4} 
1345                                       & Griffon         & Nancy        & 6                      \\ 
1346 \hline
1347 \multirow{3}{*}{One site / 32 nodes}  & Graphite   & Nancy             & 4                      \\ \cline{2-4} 
1348                                       & Graphene      & Nancy          & 14                     \\ \cline{2-4} 
1349                                       & Griffon          & Nancy       & 14                       \\ 
1350 \hline
1351 \end{tabular}
1352  \label{tab:sc}
1353 \end{table}
1354
1355
1356 The NAS parallel benchmarks are executed over these two platforms
1357 with different number of nodes, as in Table~\ref{tab:sc}. 
1358 The overall energy consumption of all the benchmarks solving the class D instance and
1359 using the proposed frequency selection algorithm is measured 
1360 using Equation~\ref{eq:energy-grid}.
1361
1362 The energy consumptions  and the execution times for all the benchmarks are 
1363 presented in Figures~\ref{fig:exp-time-energy} (a) and (b) respectively.
1364 For the majority of the benchmarks, the energy consumed while executing  the NAS benchmarks over one site on 16 and 32 nodes is lower than the energy consumed while using two sites. 
1365 The long distance communications between the two distributed sites increase the idle times, which lead to more static energy consumption. 
1366
1367 The execution times of these benchmarks 
1368 over one site with 16 and 32 nodes are also lower than those of the  two sites 
1369 scenario. Moreover, most of the benchmarks running over the one site scenario have their execution times  approximately halved when the number of computing nodes is doubled from 16 to 32 nodes (linear speed up according to the number of the nodes).
1370
1371 However, the execution times and the energy consumptions of the EP and MG
1372 benchmarks, which have no or small communications, are not significantly
1373 affected in both scenarios, even when the number of nodes is doubled.  On the
1374 other hand, the communication times of the rest of the benchmarks increase when
1375 using long distance communications between two sites or when increasing the number of
1376 computing nodes.
1377
1378
1379 The energy saving percentage is computed as the ratio between the reduced 
1380 energy consumption, Equation~\ref{eq:energy-grid}, and the original energy consumption,
1381 Equation~\ref{eq:eorginal-grid}, for all the benchmarks as in Figure~\ref{fig:eng_s}. 
1382 This figure shows that the energy saving percentages of the one site scenario for
1383 16 and 32 nodes are bigger than those of the two sites scenario which is due
1384 to the higher  computations to communications ratio in the first scenario   
1385 than in the second one. Moreover, the frequency selecting algorithm selects smaller frequencies when the computation times are bigger than the communication times which
1386 results in  a lower energy consumption. Indeed, the dynamic  consumed power
1387 is exponentially related to the CPU's frequency value. On the other hand, the increase in the number of computing nodes can 
1388 increase the communication times and thus produces less energy saving depending on the 
1389 benchmarks being executed. The results of the benchmarks CG, MG, BT and FT show more 
1390 energy saving percentage in the one site scenario when executed over 16 nodes than on 32 nodes.  LU and SP consume more energy with 16 nodes than with 32 node  on one site  because their computations to communications ratio is not affected by the increase of the number of local communications. 
1391 \begin{figure}[!h]
1392   \centering
1393   \centering
1394    \includegraphics[width=.7\textwidth]{fig/ch3/eng_con_scenarios.eps}\\~~~~~~~~~(a)\\
1395    \includegraphics[width=.7\textwidth]{fig/ch3/time_scenarios.eps}\\~~~~~~~~~(b)
1396   \caption{ (a) energy consumption and (b) execution time of NAS  Benchmarks over different scenarios}
1397   \label{fig:exp-time-energy} 
1398 \end{figure}
1399
1400 \begin{figure*}[!h]
1401 \centering
1402 \includegraphics[width=.7\textwidth]{fig/ch3/eng_s.eps}
1403 \caption{The energy reduction while executing the NAS benchmarks over different scenarios}
1404 \label{fig:eng_s}
1405 \end{figure*}
1406
1407 \begin{figure*}[!h]
1408 \centering
1409 \includegraphics[width=.7\textwidth]{fig/ch3/per_d.eps}
1410 \caption{The performance degradation of the NAS benchmarks over different scenarios}
1411 \label{fig:per_d}
1412 \end{figure*}
1413
1414 \begin{figure*}[!h]
1415 \centering
1416 \includegraphics[width=.7\textwidth]{fig/ch3/dist.eps}
1417 \caption{The trade-off distance between the energy reduction and the performance of the NAS benchmarks  
1418       over different scenarios}
1419 \label{fig:dist-grid}
1420 \end{figure*}
1421
1422 The energy saving percentage is reduced for all the benchmarks because of the long distance communications in the two sites 
1423 scenario, except for the   EP benchmark which has  no communication. Therefore, the energy saving percentage of this benchmark is 
1424 dependent on the maximum difference between the computing powers of the heterogeneous computing nodes, for example 
1425 in the one site scenario, the graphite cluster is selected but in the two sites scenario 
1426 this cluster is replaced with the Taurus cluster which is more powerful. 
1427 Therefore, the energy savings of the EP benchmark are bigger in the two sites scenario due 
1428 to the higher maximum difference between the computing powers of the nodes. 
1429
1430 In fact, high differences between the nodes' computing powers make the proposed frequencies selecting  
1431 algorithm  select smaller frequencies for the powerful nodes which 
1432 produces less energy consumption and thus more energy saving.
1433 The best energy saving percentage was obtained in the one site scenario with 16 nodes, the energy consumption was on average reduced up to 30\%.
1434
1435 Figure \ref{fig:per_d} presents the performance degradation percentages for all the benchmarks over the two scenarios.
1436 The performance degradation percentage for the benchmarks running on two sites  with
1437 16 and 32  nodes is on average equal to 8.3\% and 4.7\% respectively. 
1438 For this scenario, the proposed scaling algorithm selects smaller frequencies for the executions with 32 nodes  without significantly degrading their performance because the communication times are high with 32 nodes which results in smaller  computations to communications ratio.  On the other hand, the performance degradation percentage  for the benchmarks running  on one site  with
1439 16 and 32  nodes is on average equal to 3.2\% and 10.6\% respectively. In contrary to the two sites scenario, when the number of computing nodes is increased in the one site scenario, the performance degradation percentage is increased. Therefore, doubling the number of computing 
1440 nodes when the communications occur in high speed network does not decrease the computations to 
1441 communication ratio. 
1442
1443 The performance degradation percentage of the EP benchmark after applying the scaling factors selection algorithm is the highest in comparison to 
1444 the other benchmarks. Indeed, in the EP benchmark, there are no communication and slack times and its 
1445 performance degradation percentage only depends on the frequencies values selected by the algorithm for the computing nodes.
1446 The rest of the benchmarks showed different performance degradation percentages which decrease
1447 when the communication times increase and vice versa.
1448
1449 Figure \ref{fig:dist-grid} presents the  distance percentage between the energy saving  and the performance degradation for each benchmark  over both  scenarios. The trade-off distance percentage can be 
1450 computed as in Equation~\ref{eq:max-grid}. The one site scenario with 16 nodes gives the best energy and performance 
1451 trade-off, on average it is equal to  26.8\%. The one site scenario using both 16 and 32 nodes had better energy and performance 
1452 trade-off comparing to the two sites scenario  because the former has high speed local communications 
1453 which increase the computations to communications ratio  and the latter uses long distance communications which decrease this ratio. 
1454
1455  Finally, the best energy and performance trade-off depends on all of the following:
1456 1) the computations to communications ratio when there are  communications and slack times, 2) the heterogeneity of the computing powers of the nodes and 3) the heterogeneity of the consumed  static and dynamic powers of the nodes.
1457
1458
1459
1460
1461 \subsection{The experimental results over multi-core clusters}
1462 \label{ch3:4:2}
1463
1464 The  clusters of Grid'5000 have different number of cores embedded in their nodes
1465 as shown in Table~\ref{table:grid5000-1}. In 
1466 this section, the proposed scaling algorithm  is evaluated over the Grid'5000 platform  while using multi-core nodes selected according to the one site scenario described in  Section
1467 ~\ref{ch3:4:1}.
1468
1469 \begin{table}[!h]
1470 \centering
1471 \caption{The multi-core scenarios}
1472 \begin{tabular}{|*{4}{c|}}
1473 \hline
1474 Scenario name                          & Cluster name & Nodes per cluster & 
1475                                        Cores per node  \\ \hline
1476 \multirow{3}{*}{One core per node}    & Graphite     & 4               & 1                   \\  \cline{2-4}
1477                                        & Graphene     & 14              & 1                   \\  \cline{2-4}
1478                                        & Griffon      & 14              & 1                   \\ \hline
1479 \multirow{3}{*}{Multi-core per node}  & Graphite     & 1               &  4              \\  \cline{2-4}
1480                                        & Graphene     & 4               & 3 or 4              \\  \cline{2-4}
1481                                        & Griffon      & 4               & 3 or 4                   \\ \hline
1482 \end{tabular}
1483
1484 \label{table:sen-mc}
1485 \end{table}
1486 \begin{figure}[!h]
1487  \centering
1488  \includegraphics[width=.7\textwidth]{fig/ch3/time.eps}
1489  \caption{The execution times of  NAS benchmarks running over the one core and the multi-core scenarios}
1490   \label{fig:time-mc}
1491 \end{figure}
1492 \begin{figure}[!h]
1493  \centering
1494  \includegraphics[width=.7\textwidth]{fig/ch3/eng_con.eps}
1495  \caption{The energy consumptions and execution times of NAS benchmarks over one core and multi-core per node architectures}
1496 \label{fig:eng-cons-mc}
1497 \end{figure}
1498
1499 The one site scenario uses  32 cores from multi-core nodes instead of 32 distinct nodes. For example if 
1500 the participating number of cores from a certain cluster is equal to 14, 
1501 in the multi-core  4 nodes are selected and 3 or 4 cores  from each node are used. The platforms with one  
1502 core per node and  multi-core nodes are  shown in Table~\ref{table:sen-mc}. 
1503 The energy consumptions and execution times of running  class D of the NAS parallel 
1504 benchmarks over these two different platforms are presented 
1505 in Figures \ref{fig:eng-cons-mc} and \ref{fig:time-mc} respectively.
1506
1507 The execution times for most of  the NAS  benchmarks are higher over the multi-core per node scenario 
1508 than over the  single core per node  scenario. Indeed,  
1509  the communication times  are higher in the one site multi-core scenario than in the latter scenario because all the cores of a node  share  the same node network link which can be  saturated when running communication bound applications. Moreover, the cores of a node share the memory bus which can be also saturated and might become a bottleneck.    
1510 Moreover, the energy consumptions of the NAS benchmarks are lower over the 
1511  one core scenario  than over the multi-core scenario because 
1512 the first scenario had less execution time than the latter which results in less static energy being consumed.
1513 The computations to communications ratios of the NAS benchmarks are higher over 
1514 the one site one core scenario  when compared to the ratio of the multi-core scenario. 
1515 More energy reduction can be gained when this ratio is big because it pushes the proposed scaling algorithm to select smaller frequencies that decrease the dynamic power consumption. These experiments also showed that the energy 
1516 consumption and the execution times of the EP and MG benchmarks do not change significantly over these two
1517 scenarios  because there are no or small communications. Contrary to EP and MG, the  energy consumptions and the execution times of the rest of the  benchmarks  vary according to the  communication times that are different from one scenario to the other.
1518 \begin{figure*}[!h]
1519  \centering
1520  \includegraphics[width=.7\textwidth]{fig/ch3/eng_s_mc.eps}
1521   \caption{The energy saving of running NAS benchmarks over one core and multi-core scenarios}
1522   \label{fig:eng-s-mc}
1523 \end{figure*}   
1524
1525 \begin{figure*}[!h]
1526  \centering
1527 \includegraphics[width=.7\textwidth]{fig/ch3/per_d_mc.eps}
1528   \caption{The performance degradation of running NAS benchmarks over one core and multi-core scenarios}
1529   \label{fig:per-d-mc}
1530 \end{figure*}
1531
1532 \begin{figure*}[!h]
1533  \centering
1534  \includegraphics[width=.7\textwidth]{fig/ch3/dist_mc.eps}
1535   \caption{The trade-off distance of running NAS benchmarks over one core and multi-core scenarios}
1536   \label{fig:dist-mc}
1537 \end{figure*}
1538 The energy saving percentages of all the NAS benchmarks running over these two scenarios are presented in Figure~\ref{fig:eng-s-mc}. 
1539 It shows that  the energy saving percentages in the one 
1540 core and the multi-core scenarios
1541 are approximately equivalent, on average they are equal to  25.9\% and 25.1\% respectively.
1542 The energy consumption is reduced at the same rate in the two scenarios when compared to the energy consumption of the executions without DVFS. 
1543
1544 The performance degradation percentages of the NAS benchmarks are presented in
1545 Figure~\ref{fig:per-d-mc}. It shows that the performance degradation percentages are higher for the NAS benchmarks executed over the one core per node scenario  (on average equal to 10.6\%)  than over the  multi-core scenario (on average equal to 7.5\%). The performance degradation percentages over the multi-core scenario are lower because  the computations to communications ratios are smaller than the ratios of the other scenario. 
1546
1547 The trade-off distances percentages of the NAS benchmarks over both scenarios are presented 
1548 in~Figure~\ref{fig:dist-mc}. These  trade-off distances between energy consumption reduction and performance  are used to verify which scenario is the best in both terms  at the same time. The figure shows that  the  trade-off distance percentages are on average   bigger over the multi-core scenario  (17.6\%) than over the  one core per node scenario  (15.3\%).
1549
1550
1551 \subsection{Experiments with different static power scenarios}
1552 \label{ch3:4:3}
1553
1554 In Section~\ref{ch3:4}, since it was not possible to measure the static power consumed by a CPU,   the static power was assumed to be equal to 20\% of the measured dynamic power. This power is consumed during the whole execution time, during computation and communication times. Therefore, when the DVFS operations are applied by the scaling algorithm and the CPUs' frequencies lowered, the execution time might increase and consequently the consumed static energy will be increased too. 
1555
1556 The aim of  this section is to evaluate the scaling algorithm while assuming different values of static powers. 
1557 In addition to the previously used  percentage of static power, two new static power ratios,  10\% and 30\% of the measured dynamic power of the core, are used in this section.
1558 The experiments have been executed with these two new static power scenarios  over the one site one core per node scenario.
1559 In these experiments, the class D of the NAS parallel benchmarks were executed over the Nancy site. 16 computing nodes from the three clusters, Graphite, Graphene and Griffon, were used in this experiment. 
1560
1561
1562
1563
1564 \begin{figure}[!h]
1565   \centering
1566   \includegraphics[width=.7\textwidth]{fig/ch3/eng_pow.eps}
1567   \caption{The energy saving percentages for the nodes executing the NAS benchmarks over the three power scenarios}
1568   \label{fig:eng-pow}
1569 \end{figure}
1570 \begin{figure}[!h]
1571   \centering
1572    \includegraphics[width=.7\textwidth]{fig/ch3/per_pow.eps}
1573   \caption{The performance degradation percentages for the NAS benchmarks over the three power scenarios}
1574   \label{fig:per-pow}
1575 \end{figure}
1576
1577 \begin{figure}[!h]
1578   \centering
1579   \includegraphics[width=.7\textwidth]{fig/ch3/dist_pow.eps}
1580   \caption{The trade-off distance between the energy reduction and the performance of the NAS benchmarks over the three power scenarios}
1581   \label{fig:dist-pow}
1582 \end{figure}
1583
1584
1585 \begin{figure}[!h]
1586   \centering
1587   \includegraphics[scale=0.7]{fig/ch3/three_scenarios2.pdf}
1588   \caption{Comparing the selected frequency scaling factors for the MG benchmark over the three static power scenarios}
1589   \label{fig:fre-pow}
1590 \end{figure}
1591
1592 The energy saving percentages of the NAS benchmarks with the three static power scenarios are presented 
1593 in Figure~\ref{fig:eng-pow}. This figure shows that the  10\% of static power scenario 
1594 gives the biggest energy saving percentages in comparison to the 20\% and 30\% static power 
1595 scenarios. The small value of the static power consumption makes the proposed 
1596 scaling algorithm  select smaller frequencies for the CPUs. 
1597 These smaller frequencies reduce the dynamic energy consumption more than increasing the consumed static energy which gives             less overall energy consumption. 
1598 The energy saving percentages of the 30\% static power scenario is the smallest between the other scenarios, because the scaling algorithm selects bigger frequencies for the CPUs which increases the energy consumption. Figure \ref{fig:fre-pow} demonstrates that the proposed scaling algorithm selects   the best frequency scaling factors   according to the static power consumption ratio being used.
1599
1600 The performance degradation percentages are presented in Figure~\ref{fig:per-pow}.
1601 The 30\% static power scenario had less performance degradation percentage  because the scaling algorithm
1602 had  selected big frequencies for the CPUs. While, 
1603 the inverse happens in the 10\% and 20\% scenarios because the scaling algorithm had selected  CPUs' frequencies smaller than those of the 30\% scenario. The trade-off distance percentage for the NAS benchmarks with these three static power scenarios 
1604 are presented in Figure~\ref{fig:dist-pow}. 
1605 It shows that the best  trade-off
1606 distance percentage is obtained with  the  10\% static power scenario  and this percentage 
1607 is decreased for the other two scenarios because the scaling algorithm had selected different frequencies according to the static power values.
1608
1609 In the EP benchmark, the energy saving, performance degradation and trade-off 
1610 distance percentages for these static power scenarios are not significantly different because there is no communication in this benchmark. Therefore, the static power is only consumed during computation and   the proposed scaling algorithm selects similar frequencies for the three scenarios.  On the other hand,  for the rest of the benchmarks,  the scaling algorithm  selects  the values of the frequencies according to the communication times of each benchmark because the static energy consumption increases  proportionally to the  communication times.
1611
1612
1613  
1614 \subsection{Comparison between the proposed frequencies selecting algorithm and the EDP method}
1615 \label{ch3:4:4}
1616
1617 Finding the frequencies that give the best trade-off between the energy consumption and the performance for a parallel 
1618 application is not a trivial task.  Many algorithms have been proposed to tackle this problem.  
1619 In this section, the proposed frequencies selecting algorithm is compared to a method that uses the well known  energy and delay product objective function, $EDP=energy \times delay$, that has been used by many researchers  \cite{ref80,ref81,ref82}. 
1620 This objective function  was also used by Spiliopoulos et al. algorithm \cite{ref67} where they select the frequencies that minimize the EDP product and apply them with DVFS operations to  the multi-core 
1621 architecture. Their online algorithm predicts the energy consumption and execution time of a processor before using the EDP method.
1622
1623 To fairly compare the proposed frequencies scaling algorithm to  Spiliopoulos et al. algorithm, called Maxdist and EDP respectively, both algorithms use the same energy model,  Equation~\ref{eq:energy-grid} and
1624 execution time model, Equation~\ref{eq:perf-grid}, to predict the energy consumption and the execution time for each computing node.
1625 Moreover, both algorithms start the search space from the upper bound computed as in Equation~\ref{eq:Fint}.
1626 Finally, the resulting EDP algorithm is an exhaustive search algorithm that tests all the possible frequencies, starting from the initial frequencies (upper bound), 
1627 and selects the vector of frequencies that minimize the EDP product.
1628 Both algorithms were applied to the class D of the NAS benchmarks running over 16 nodes.
1629 The participating computing nodes are distributed  according to the two scenarios described in  Section~\ref{ch3:4:1}. 
1630 The experimental results, the energy saving, performance degradation and trade-off distance percentages, are 
1631 presented in  Figures~\ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp-dist} respectively.
1632 \begin{figure*}[!h]
1633   \centering
1634   \includegraphics[width=.7\textwidth]{fig/ch3/edp_eng}
1635 \caption{The energy reduction induced by the Maxdist method and the EDP method}
1636 \label{fig:edp-eng}
1637 \end{figure*}
1638
1639 \begin{figure*}[!h]
1640   \centering
1641   \includegraphics[width=.7\textwidth]{fig/ch3/edp_per}
1642 \caption{The performance degradation induced by the Maxdist method and the EDP method}
1643 \label{fig:edp-perf}
1644 \end{figure*}
1645
1646 \begin{figure*}[!h]
1647   \centering
1648    \includegraphics[width=.7\textwidth]{fig/ch3/edp_dist}
1649 \caption{The trade-off distance between the energy consumption reduction and the performance for the Maxdist method and the  EDP method}
1650 \label{fig:edp-dist}
1651 \end{figure*}
1652
1653
1654 As shown in these figures, the proposed frequencies selection algorithm, Maxdist, outperforms the EDP algorithm in terms of energy consumption reduction and performance for all of the benchmarks executed over the two scenarios. 
1655 The proposed algorithm gives better results than the EDP method because it 
1656 maximizes the energy saving and the performance at the same time. 
1657 Moreover, the proposed scaling algorithm gives the same weight for these two metrics.
1658 Whereas, the EDP algorithm gives sometimes negative trade-off values for some benchmarks in the two sites scenarios.
1659 These negative trade-off values mean that the performance degradation percentage is higher than the energy saving percentage.
1660 The high positive values of the trade-off distance percentage mean that the  energy saving percentage is much higher than the performance degradation percentage. 
1661 The  complexity of both algoriths, Maxdist and EDP, are of order $O(N \cdot M_i \cdot F_j)$ and 
1662 $O(N \cdot M_i \cdot F_j^2)$ respectively, where $N$ is the number of the clusters, $M_i$ is the number of nodes and $F_j$ is the 
1663 maximum number of available frequencies of node $j$. When Maxdist is applied to a benchmark that is being executed over 32 nodes distributed between Nancy and Lyon sites, it takes on average  $0.01$ $ms$  to compute the best frequencies while the EDP method is on average ten times slower over the same architecture.  
1664
1665
1666 \section{Conclusion}
1667 \label{ch3:concl}
1668 In this chapter,  two new online frequency scaling factors selecting algorithms have been presented. They select the best possible vectors of frequency scaling factors that give the
1669 maximum distance (optimal trade-off) between the predicted energy   and the
1670 predicted performance curves for a heterogeneous cluster and grid. Both  algorithms use a
1671 new energy models for measuring and predicting the energy consumption of message passing 
1672 iterative applications running over a heterogeneous local cluster and a grid platform. 
1673 Firstly, the  proposed scaling factors selection algorithm for a heterogeneous local cluster  is applied to  the class C of NAS parallel benchmarks and  simulated by SimGrid.
1674 The results of the simulations showed  that the algorithm on average reduces by 29.8\% the energy 
1675 consumption of the NAS benchmarks executed over 8 nodes while limiting the degradation of the performance by 3.8\%.  The algorithm also selects different scaling factors according to
1676 the percentage of the computing and communication times, and according to the
1677 values of the static and dynamic powers of the CPUs. 
1678 Secondly, the proposed scaling factors selection algorithm for a grid is applied to the class D of the  NAS parallel benchmarks  and  executed over the Grid5000 testbed platform.
1679 The experiments executed on 16 nodes distributed over three clusters, showed that the algorithm   on average reduces by 30\% the energy consumption
1680 of all the NAS benchmarks   while  on average only degrading by 3.2\%   their performance. 
1681 The  algorithm was also evaluated in different scenarios that vary in the distribution of the computing nodes between different clusters' sites or  use multi-core per node architecture or consume different static power values. The algorithm selects different vectors of frequencies according to the 
1682 computations and communication times ratios, and  the values of the static and measured dynamic powers of the CPUs. Thus, the simulation and the real results are comparable in term of energy saving and performance degradation percentages.
1683 Finally, both algorithms were compared to a method that uses
1684 the well known energy and delay product as an objective function. The comparison results showed 
1685 that the proposed algorithms outperform the latter by selecting vectors of frequencies that give a better 
1686 trade-off results.