]> AND Private Git Repository - ThesisAhmed.git/blob - thesis-presentation/AhmedSlides.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
adding thesis presentation
[ThesisAhmed.git] / thesis-presentation / AhmedSlides.tex
1  \documentclass{beamer}
2 \usepackage{beamerthemefemto}
3 \usepackage[latin1]{inputenc}
4 \usepackage[T1]{fontenc}
5 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12 \usepackage{xspace}
13  \usepackage{movie15}
14  \usepackage{animate}
15 \usepackage{xmpmulti} 
16  \newcommand{\AG}[2][inline]{%
17   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
18 \newcommand{\JC}[2][inline]{%
19   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
20 \definecolor{myblue}{RGB}{0,29,119}
21 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
22
23 %% used to put some subscripts lower, and make them more legible
24 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
25
26 \newcommand{\CL}{\Xsub{C}{L}}
27 \newcommand{\Dist}{\mathit{Dist}}
28 \newcommand{\EdNew}{\Xsub{E}{dNew}}
29 \newcommand{\Eind}{\Xsub{E}{ind}}
30 \newcommand{\Enorm}{\Xsub{E}{Norm}}
31 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
32 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
33 \newcommand{\Es}{\Xsub{E}{S}}
34 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
35 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
36 \newcommand{\Fnew}{\Xsub{F}{new}}
37 \newcommand{\Vnew}{\Xsub{V}{new}}
38 \newcommand{\Vmax}{\Xsub{V}{max}}
39 \newcommand{\Ileak}{\Xsub{I}{leak}}
40 \newcommand{\Kdesign}{\Xsub{K}{design}}
41 \newcommand{\MaxDist}{\mathit{Max}\Dist}
42 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
43 \newcommand{\Ntrans}{\Xsub{N}{trans}}
44 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
45 \newcommand{\PdNew}{\Xsub{P}{dNew}}
46
47 \newcommand{\PdOld}{\Xsub{P}{dOld}}
48 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
49 \newcommand{\Tnorm}{\Xsub{T}{Norm}}
50 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
51 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
52 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
53 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
54 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
55 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
56 \newcommand{\Tnew}{\Xsub{T}{New}}
57 \newcommand{\Told}{\Xsub{T}{Old}}
58 \newcommand{\Ltcm}[1][]{\Xsub{L}{tcm}_{\fxheight{#1}}}
59 \newcommand{\Etcm}[1][]{\Xsub{E}{tcm}_{\fxheight{#1}}}
60 \newcommand{\Niter}[1][]{\Xsub{N}{iter}_{\fxheight{#1}}}
61 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
62 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
63  \usepackage{pifont}
64 \usepackage{xcolor}
65 \definecolor{myblue}{RGB}{0,29,119}
66 \usepackage[textsize=footnotesize]{todonotes}
67 \newcommand{\bsquare}{\item[\color{myblue}\ding{110}]} 
68 \newcommand{\barrow}{\item[\color{myblue}\ding{228}]}
69 \newcommand{\bwarrow}{\item[\color{myblue}\ding{227}]}
70 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
71
72
73
74 %\title{Energy Consumption Optimization of Parallel Applications with
75 %Iterations using CPU Frequency Scaling} 
76 \vspace{2cm}
77
78 \title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-1cm}
79 \author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under Supervision: \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ University of Franche-Comté - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
80
81 \date{}
82 \vspace{-3cm}
83 %  ____  _____ ____  _   _ _____ 
84 % |  _ \| ____| __ )| | | |_   _|
85 % | | | |  _| |  _ \| | | | | |  
86 % | |_| | |___| |_) | |_| | | |  
87 % |____/|_____|____/ \___/  |_|  
88
89 \begin{document}
90 \setbeamertemplate{background}{\titrefemto}
91
92 %%%%%%%%%%%%%%%%%%%%
93 %%    SLIDE 01    %%
94 %%%%%%%%%%%%%%%%%%%% 
95 \begin{frame}[plain]
96 \vspace{1cm}
97 \centering
98    \titlepage
99 \end{frame}
100
101
102 %%%%%%%%%%%%%%%%%%%%
103 %%    SLIDE 02    %%
104 %%%%%%%%%%%%%%%%%%%% 
105 \setbeamertemplate{background}{\pagefemto}
106 \begin{frame}{Outline}
107
108 \setbeamertemplate{section in toc}[sections numbered] 
109 \tableofcontents
110 \end{frame}
111
112
113 %%%%%%%%%%%%%%%%%%%%
114 %%    SLIDE 03    %%
115 %%%%%%%%%%%%%%%%%%%% 
116 \begin{frame}{Introduction and problem definition}
117  \section{\small {Introduction and Problem definition}}
118    \bf \textcolor{blue}{Approaches to increase the computing power:}
119      \begin{minipage}{0.5\textwidth} 
120       \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increasing the frequency of processor}
121     \end{minipage}%
122     \begin{minipage}{0.6\textwidth} 
123     
124 \begin{figure}[h!]
125         
126     \includegraphics[width=0.7\textwidth]{fig/freq-years} 
127     \end{figure}
128     \end{minipage}%
129     \vspace{0.2cm}
130     \begin{minipage}{0.5\textwidth} 
131      \textcolor{blue}{2)} \small \bf \textcolor{black}{Increasing the number of nodes}        
132     \end{minipage}%
133     \begin{minipage}{0.6\textwidth} 
134     \begin{figure}[h!]
135      \includegraphics[width=0.7\textwidth]{fig/clusters} 
136     \end{figure}
137     \end{minipage}%
138  \end{frame}
139  
140  
141  
142 %%%%%%%%%%%%%%%%%%%%
143 %%    SLIDE 04    %%
144 %%%%%%%%%%%%%%%%%%%% 
145 \begin{frame}{Introduction and problem definition}
146  \bf \textcolor{blue}{Processor frequency and its energy consumption}
147  \vspace{0.4cm}
148    \begin{minipage}{0.5\textwidth} 
149    \textcolor{blue}{$\blacktriangleright$} 
150   \small  \bf \textcolor{black}{ The power consumption of a processor increases exponentially  when its    
151       frequency is increased}
152     \end{minipage}%
153     \begin{minipage}{0.5\textwidth} 
154     \begin{figure}[h!]
155      \includegraphics[width=0.7\textwidth]{fig/freq-power} 
156     \end{figure}
157     \end{minipage}%
158        
159     \begin{minipage}{0.5\textwidth} 
160      \textcolor{blue}{$\blacktriangleright$} 
161      \small \bf \textcolor{black}{The biggest power consumption is consumed by a processor in the computing node}
162       
163     \end{minipage}%
164     \begin{minipage}{0.6\textwidth} 
165     \begin{figure}[h!]
166      \includegraphics[width=0.9\textwidth]{fig/node-power} 
167     \end{figure}
168     \end{minipage}%
169     
170  \end{frame}
171  
172  %%%%%%%%%%%%%%%%%%%
173 %%    SLIDE 05   %%
174 %%%%%%%%%%%%%%%%%%%% 
175 \begin{frame}{Introduction and problem definition}
176  \vspace{0.1cm}
177  \bf \textcolor{blue}{Techniques for energy consumption reduction}
178  
179      \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}  
180     \vspace{-0.9cm}
181     \begin{figure}
182      \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
183     \end{figure}
184  \end{frame}
185
186 %%%%%%%%%%%%%%%%%%%%
187 %%    SLIDE 06    %%
188 %%%%%%%%%%%%%%%%%%%% 
189 \begin{frame}{Techniques for energy consumption reduction}
190  
191   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic voltage and frequency Scaling (DVFS)}
192      \vspace{-0.5cm}
193     \begin{figure}
194      \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
195     \end{figure}
196     \end{frame}
197  
198
199
200 %%%%%%%%%%%%%%%%%%%%
201 %%    SLIDE 07    %%
202 %%%%%%%%%%%%%%%%%%%% 
203 \begin{frame}{Using the energy reduction method}
204 \section{\small {Using the energy reduction method}}
205 \begin{block}{\textcolor{white}{Why we used DVFS method:}}
206 \begin{itemize}
207                 \item \textcolor{black}{It used to reduce the energy while keeping all node working, thus  it is more conventional with parallel computing.}
208                 \item \textcolor{black}{It has a very small overhead compared to switch-off idle nodes method.}
209          \end{itemize}
210 \end{block}
211
212  \vspace{0.1cm}
213  \begin{block}{\textcolor{white}{Challenge and Objective}}
214
215                 \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy, \textcolor{blue}{but} it degrades the performance simultaneously.}
216                 
217                 \vspace{0.1cm}
218          \textcolor{blue}{Objective:} \textcolor{black}{Optimizing both energy consumption and performance of a parallel application at the same time when DVFS is used.}
219 \end{block}
220
221     \end{frame}
222
223
224
225 %%%%%%%%%%%%%%%%%%%%
226 %%    SLIDE 08    %%
227 %%%%%%%%%%%%%%%%%%%% 
228
229
230 \begin{frame}{Contributions}
231 \section{\small {Contributions}}
232 \subsection{\small {3.1 Energy optimization of homogeneous platform}}
233 \begin{center}
234 \bf \textcolor{black}{First contribution} \\ 
235 \vspace{1cm}
236 \bf  \Large \textcolor{blue}{Energy optimization of homogeneous platform}
237 \end{center}
238  \end{frame}
239
240
241
242 %%%%%%%%%%%%%%%%%%%%
243 %%    SLIDE 09    %%
244 %%%%%%%%%%%%%%%%%%%% 
245  
246 \begin{frame}{Objectives}
247         \begin{femtoBlock}{} \vspace{-12 mm}
248                 \begin{itemize} \small
249                    \item  Study the effect of the scaling factor $S$ on \textbf{energy consumption} of parallel iterative applications such as NAS 
250                           Benchmarks. \includegraphics[width=.06\textwidth]{c1/nasa.pdf} \medskip
251                    \item  Study the effect of the scaling factor $S$ on \textbf{performance} of these benchmarks.\medskip
252                    \item  Discovering the \textbf{energy-performance trade-off relation} when changing the frequency.\medskip
253                    \item  We propose an algorithm for selecting the scaling factor $S$ producing \textbf {optimal trade-off} between the energy and performance. \medskip
254                    \item  Improving Rauber and Rünger's\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the  
255                           energy consumption \\  \quad ~ ~\quad    of  independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on. 
256                 \end{itemize}
257                  \let\thefootnote\relax\footnote{}
258           \vspace{-10 mm}
259         \end{femtoBlock}      
260 \end{frame}
261
262
263
264 %%%%%%%%%%%%%%%%%%%%
265 %%    SLIDE 10    %%
266 %%%%%%%%%%%%%%%%%%%% 
267
268
269 \begin{frame}{Parallel tasks execution over Homo. Platform}
270 \vspace{-0.5 cm}
271 \begin{figure}
272   \centering
273   \subfloat[Sync. imbalanced communications]{%
274     \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
275   \subfloat[Sync. imbalanced computations]{%
276     \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
277   \caption{Parallel tasks on homogeneous platform}
278   \label{fig:homo}
279 \end{figure}
280
281  \end{frame}
282  
283  
284  
285
286 %%%%%%%%%%%%%%%%%%%%
287 %%    SLIDE 11   %%
288 %%%%%%%%%%%%%%%%%%%% 
289 \begin{frame}{Energy model for homogeneous platform}    
290       The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static   
291        (\textcolor{red}{$P_s$}) power. 
292     \begin{equation}
293      \label{eq:pd}
294      \textcolor{red}{ P_d} = \textcolor{blue}{\alpha \cdot CL \cdot V^2 \cdot F}
295    \end{equation}
296     \scriptsize \underline{Where}: \\ 
297     \scriptsize {\textcolor{blue}{$\alpha$}: switching activity \hspace{15 mm}  \textcolor{blue}{$CL$}: load capacitance\\     
298     \textcolor{blue}{$V$} the supply voltage \hspace{14 mm} \textcolor{blue}{$F$}: operational frequency}
299    \begin{equation}
300      \label{eq:ps}
301      \small \textcolor{red}{P_s} = \textcolor{blue}{V \cdot N_{trans} \cdot K_{design} \cdot I_{Leak}}
302    \end{equation}
303     \underline{Where}:\\ 
304         \scriptsize{ \textcolor{blue}{$V$}: the supply voltage.  \hspace{28 mm}   \textcolor{blue}{$N_{trans}$}: number of transistors. \\   
305         \textcolor{blue}{$K_{design}$}: design dependent parameter. \hspace{8 mm} \textcolor{blue}{$I_{leak}$}: technology dependent  
306              parameter.} 
307 \end{frame}
308
309 %%%%%%%%%%%%%%%%%%%%
310 %%    SLIDE 12   %%
311 %%%%%%%%%%%%%%%%%%%% 
312
313 \begin{frame}{Energy model for homogeneous platform}
314        
315           The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.  \medskip     
316               
317               
318               
319         \begin{block}{\small Rauber and Rünger's energy model}
320          $ E = P_{d} \cdot S_1^{-2} \cdot
321          \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
322             P_{s} \cdot S_1  \cdot T_1 \cdot N$
323         \end{block}     
324            \textcolor{blue}{$S_1$}: the max. scaling factor\\ 
325            \textcolor{blue}{$P_{d}$}: the dynamic power\\
326            \textcolor{blue}{$P_{s}$}: the static power\\
327            \textcolor{blue}{$T_I$}: the time of the slower task\\ 
328            \textcolor{blue}{$T_i$}: the time of the other tasks\\ 
329            \textcolor{blue}{$N$}:  the number of  nodes
330        
331 \end{frame}
332   
333   
334 %%%%%%%%%%%%%%%%%%%%
335 %%    SLIDE 13   %%
336 %%%%%%%%%%%%%%%%%%%% 
337 \begin{frame}{Performance evaluation of MPI programs}      
338         \begin{femtoBlock}{}
339               \vspace{-5 mm}
340               \begin{block}{\small Execution time prediction model}
341                      \centering{ $ \textcolor{red}{T_{new}} = \textcolor{blue}{T_{Max Comp Old} \cdot S + T_{{Min Comm Old}}}$}
342           \end{block}   
343           \vspace{10 mm}
344            \centering{\includegraphics[width=.4\textwidth]{c1/cg_per}
345            \quad%
346            \includegraphics[width=.4\textwidth]{c1/lu_pre}}
347             \vspace{5 mm}
348             
349            \small The maximum normalized error for CG=0.0073 \textbf{(the smallest)} and LU=0.031 \textbf{(the worst)}.
350            \end{femtoBlock}
351 \end{frame}
352
353
354
355
356  %%%%%%%%%%%%%%%%%%%%
357 %%    SLIDE 14   %%
358 %%%%%%%%%%%%%%%%%%%%  
359 \begin{frame}{Performance and energy reduction trade-off}      
360         \begin{femtoBlock}{} \vspace{-15 mm}
361                \begin{figure}
362      \centering
363      \subfloat[\small  Real relation.]{%
364      \includegraphics[width=.43\textwidth]{c1/file3}\label{fig:r2}}
365      \quad%
366      \subfloat[\small Converted relation.]{%
367      \includegraphics[width=.43\textwidth]{c1/file}\label{fig:r1}}%
368   \label{fig:rel}
369  % \caption{The energy and performance relation}
370 \end{figure}
371
372  Where:~~~ $\textcolor{blue}{Performance} = execution~time^{-1}$
373
374 %\vspace{-0.3cm}
375       \small 
376          \begin{block}{\small Our objective function}
377          \centering{$\textbf{\emph {MaxDist}} = \max_{j=1,2,\dots ,F}             
378                     (\overbrace{P_{Norm}(S_j)}^{{Maximize}} - 
379                      \overbrace{E_{Norm}(S_j)}^{{Minimize}} )$}
380                                          
381         \end{block}                
382         \end{femtoBlock}
383        
384 \end{frame}
385
386 %%%%%%%%%%%%%%%%%%%%
387 %%    SLIDE 15   %%
388 %%%%%%%%%%%%%%%%%%%% 
389  \begin{frame}{Scaling factor selection algorithm}
390 \vspace{-0.75cm}
391      \begin{center}
392       \includegraphics[width=.56 \textwidth]{c1/algo-homo}
393      \end{center}
394      
395 \end{frame}
396
397
398 %%%%%%%%%%%%%%%%%%%%
399 %%    SLIDE 16   %%
400 %%%%%%%%%%%%%%%%%%%% 
401 \begin{frame}{Scaling algorithm example}
402 \vspace{-0.75cm}
403      
404      \begin{figure}
405   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
406
407   \end{figure}
408 \end{frame}
409
410 %%%%%%%%%%%%%%%%%%%%
411 %%    SLIDE 17   %%
412 %%%%%%%%%%%%%%%%%%%% 
413 \begin{frame}{Experimental results }
414       \begin{femtoBlock}{}      
415         \begin{itemize}
416          \small
417            \item Our experiments are executed on the simulator SimGrid/SMPI v3.10.\medskip
418            \item Our algorithm is applied to  NAS parallel benchmarks.\medskip
419            \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
420            \item We run the classes A, B and C on 4, 8 or 9 and 16 nodes respectively.\medskip
421            \item The dynamic power with the highest frequency is equal to \textbf{20 $W$} and the power static is equal to \textbf{4 $W$}.
422                 \end{itemize}
423         \end{femtoBlock}
424 \end{frame}
425
426
427 %%%%%%%%%%%%%%%%%%%%
428 %%    SLIDE 18   %%
429 %%%%%%%%%%%%%%%%%%%% 
430 \begin{frame}{Experimental results}
431   \begin{femtoBlock}{}  
432       \centering { 
433      \includegraphics[width=.35\textwidth]{c1/ep}
434      \includegraphics[width=.35\textwidth]{c1/cg}
435      \includegraphics[width=.35\textwidth]{c1/bt}}
436      
437      \centering {\includegraphics[width=.55\textwidth]{c1/results.pdf}}
438  \end{femtoBlock}
439 \end{frame}
440
441
442   %%%%%%%%%%%%%%%%%%%%
443 %%    SLIDE 19   %%
444 %%%%%%%%%%%%%%%%%%%% 
445 \begin{frame}{Results comparison}
446          \begin{block}{\small Rauber and Rünger's optimal scaling factor} 
447            $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot
448             \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $
449         \end{block}   
450     \centering {
451          %\includegraphics[width=.33\textwidth]{c1/c1.pdf}
452          %\qquad
453          %\includegraphics[width=.33\textwidth]{c1/c2.pdf}}
454            
455          
456             \includegraphics[width=.55\textwidth]{c1/compare_c.pdf}}
457         
458 \end{frame}
459
460
461 %%%%%%%%%%%%%%%%%%%%
462 %%    SLIDE 20   %%
463 %%%%%%%%%%%%%%%%%%%% 
464 \begin{frame}{The proposed new energy model}
465     \vspace{-0.75cm}     
466   \begin{figure}
467   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
468   \end{figure}
469 \end{frame}
470
471
472 %%%%%%%%%%%%%%%%%%%%
473 %%    SLIDE 21   %%
474 %%%%%%%%%%%%%%%%%%%% 
475 \begin{frame}{Comparing the new model with Rauber model }
476  \vspace{0.1cm}    
477  \centering
478     \includegraphics[width=.45\textwidth]{c1/energy_con}
479     
480     \includegraphics[width=.5\textwidth]{c1/compare-scales}
481 \end{frame}
482
483
484
485
486    % \begin{frame}{Summary}
487      % \begin{femtoBlock}{}    
488      % \begin{itemize}
489       %\small
490        %\item  We have presented a new online scaling factor selection method that  \textcolor{blue}{optimizes simultaneously the energy and performance}.\medskip
491        % \item It predicts \textcolor{blue}{ the energy consumption and the performance} of the parallel applications. \medskip
492          %\item Our algorithm  \textcolor{blue}{saves more energy} when the communication and the other slacks times are big.     \medskip    
493          %\item It gives the  \textcolor{blue}{best trade-off between energy reduction and
494                % performance}. \medskip
495          %\item  Our method \ \textcolor{blue}{outperforms Rauber and Rünger's method} in terms of  energy-performance ratio.
496          %\item The proposed new energy model is  \textcolor{blue}{more accurate} then Rauber energy model.
497          %\end{itemize}      
498          
499         %\end{femtoBlock}
500 %\end{frame}
501
502
503 %%%%%%%%%%%%%%%%%%%%
504 %%    SLIDE 22    %%
505 %%%%%%%%%%%%%%%%%%%% 
506
507
508 \begin{frame}{Contribution}
509
510 \subsection{\small {3.2 Energy optimization of heterogeneous platform}}
511 \begin{center}
512 \bf \textcolor{black}{Second contribution} \\ 
513 \vspace{1cm}
514 \bf  \Large \textcolor{blue}{Energy optimization of Heterogeneous platform}
515 \end{center}
516  \end{frame}
517  
518
519
520 %%%%%%%%%%%%%%%%%%%%
521 %%    SLIDE 23    %%
522 %%%%%%%%%%%%%%%%%%%% 
523  
524 \begin{frame}{Objectives}
525         \begin{femtoBlock}{} \vspace{-12 mm}
526                 \begin{itemize} \small
527                   \item   Evaluating the  \textcolor{blue}{new energy and performance models} of message passing  applications with iterations running  
528                           over a heterogeneous platform (cluster and Grid). \medskip
529                    \item  Study the effect of the scaling factor $S$ on both \textcolor{blue}{energy consumption  and the performance} of
530                           message passing iterative applications.    \medskip                      
531                    
532                    \item  Computing  the vector of scaling factors ($S_1, S_2, ..., S_n$)  producing \textcolor{blue} {optimal trade-off} between
533                            energy consumption and performance. 
534                 \end{itemize}
535                  
536           \vspace{-10 mm}
537         \end{femtoBlock}      
538 \end{frame}
539
540
541 %%%%%%%%%%%%%%%%%%%%
542 %%    SLIDE 24    %%
543 %%%%%%%%%%%%%%%%%%%%
544 \begin{frame}{The execution time model}    
545       \vspace{-8 mm}
546      \begin{figure}[!t]
547        \centering
548        \includegraphics[scale=0.5]{c2/commtasks}
549        \label{fig:heter}
550      \end{figure}     
551        \vspace{-12 mm}
552        \medskip
553        
554     \begin{block}{\small The execution time prediction model}
555     \begin{equation}
556      \label{eq:perf}
557      \small\textcolor{red}{ T_{new}} = \textcolor{blue}{\max_{i=1,2,\dots,N} ({TcpOld_i} \cdot S_{i}) + \min_{i=1,2,\dots,N} (Tcm_i)}
558     \end{equation}
559     \end{block}   
560  \small  Where: $ \textcolor{red}{Tcm} = \textcolor{blue}{communication~times + slack~times}$
561   
562 \end{frame}
563  
564  %%%%%%%%%%%%%%%%%%%%
565 %%    SLIDE 25    %%
566 %%%%%%%%%%%%%%%%%%%%
567  \begin{frame}{The energy consumption model} 
568     -The overall energy consumption of a message passing synchronous distributed application executed over a
569     heterogeneous platform is computed as  follows:
570     \begin{multline}
571      \label{eq:energy}
572      \textcolor{red}{E} = \textcolor{blue}{\sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)}} + {} \\
573      \textcolor{blue}{\sum_{i=1}^{N} (Ps_i \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) + {\min_{i=1,2,\dots,N} (Tcm_i))}}   
574       \hspace{10 mm}
575     \end{multline}
576     \underline{where}:\\
577     \textcolor{blue}{N} : is the number of nodes.
578 \end{frame}
579  
580  
581 %%%%%%%%%%%%%%%%%%%%
582 %%    SLIDE 26    %%
583 %%%%%%%%%%%%%%%%%%%%
584   \begin{frame}{The  energy  model example for heter. cluster}
585   \vspace{-0.5cm}
586  \begin{figure}
587   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
588   \end{figure}
589  \end{frame}
590  
591  
592  
593  
594 %%%%%%%%%%%%%%%%%%%%
595 %%    SLIDE 27    %%
596 %%%%%%%%%%%%%%%%%%%%
597 \begin{frame}{The trade-off between energy  and performance}
598     \vspace{-7 mm}
599     \begin{figure}
600      \centering{ \includegraphics[width=.4\textwidth]{c2/heter}}
601     \end{figure}
602     \vspace{-7 mm}
603     \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}{$E_{norm} = \frac{E_{reduced}} 
604      {E_{Max}}$}. \\
605      \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}.
606    
607      \begin{block}{\small The tradeoff model}
608      \begin{equation}
609       \label{eq:max}
610       \textcolor{red}{MaxDist} =
611       \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N}
612        (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} -
613        \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} )
614       \end{equation}
615      \end{block}  
616 \end{frame}
617    
618  
619 %%%%%%%%%%%%%%%%%%%%
620 %%    SLIDE 28    %%
621 %%%%%%%%%%%%%%%%%%%%
622  \begin{frame}{The scaling algorithm for heter. cluster}
623
624  \centering
625    \includegraphics[width=.52\textwidth]{algo-heter}
626  \end{frame}
627  
628  
629  %%%%%%%%%%%%%%%%%%%%
630 %%    SLIDE 29    %%
631 %%%%%%%%%%%%%%%%%%%%
632  \begin{frame}{The scaling algorithm example}
633  \vspace{-0.5cm}
634  \centering
635  
636   \begin{figure}
637   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
638   \end{figure}
639 \end{frame}
640
641
642
643
644 %%%%%%%%%%%%%%%%%%%%
645 %%    SLIDE 30    %%
646 %%%%%%%%%%%%%%%%%%%%
647 \begin{frame}{Experiments over heterogeneous cluster  }   
648         \begin{itemize}
649          \small
650            \item The experiments executed on the simulator SimGrid/SMPI v3.10.\medskip
651            \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip
652            \item Four types of processors with different computing powers were used.\medskip
653            \item We ran the benchmarks on different number of nodes ranging from 4 to 144 nodes.\medskip
654            \item The total power consumption of the chosen CPUs  is composed of $80\%$ for dynamic power and $20\%$ for static power.
655                   \medskip
656          
657         \end{itemize}
658
659 \end{frame}  
660
661
662 %%%%%%%%%%%%%%%%%%%%
663 %%    SLIDE 31    %%
664 %%%%%%%%%%%%%%%%%%%%
665 \begin{frame}{The experimental results}
666    \vspace{-5 mm}
667    \begin{figure}[!t]
668    \centering
669     \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
670     
671     \textcolor{blue}{On average, it saves the energy consumption by \textcolor{red}{29\%} 
672      of NAS benchmarks class C executed over 8 nodes}
673     
674    \end{figure}
675 \end{frame} 
676  
677  
678  
679 %%%%%%%%%%%%%%%%%%%%
680 %%    SLIDE 32    %%
681 %%%%%%%%%%%%%%%%%%%%
682 \begin{frame}{The experimental results}
683    \vspace{-5 mm}
684    \begin{figure}[!t]
685    \centering
686     
687     \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
688    
689    \textcolor{blue}{On average, it degrades the performance by \textcolor{red}{3.8\%} 
690      of NAS benchmarks class C executed over 8 nodes}
691      \end{figure}
692 \end{frame} 
693  
694  
695  
696 %%%%%%%%%%%%%%%%%%%%
697 %%    SLIDE 33    %%
698 %%%%%%%%%%%%%%%%%%%%
699 \begin{frame}{The results of the three powers scenarios}
700    \vspace{-5 mm}
701    \begin{figure}[!t]
702    \centering
703    \includegraphics[width=.55\textwidth]{c2/three_power.pdf}
704    \vspace{10 mm}
705    \includegraphics[width=.55\textwidth]{c2/three_scenarios.pdf}
706    \end{figure}
707 \end{frame}  
708
709
710
711 %%%%%%%%%%%%%%%%%%%%
712 %%    SLIDE 34    %%
713 %%%%%%%%%%%%%%%%%%%%
714 \begin{frame}{The comparing our method}
715     The proposed method (MaxDist) was compared to the EDP algorithm that minimizes  the \textcolor{blue}{
716     $\mathit{energy}\times \mathit{delay}$} value.
717     \vspace{-5 mm}
718     \begin{figure}[!t]
719     \centering
720     \includegraphics[width=.55\textwidth]{c2/avg_compare.pdf}
721     
722     \includegraphics[width=.55\textwidth]{c2/compare_with_EDP.pdf}
723     \end{figure}
724 \end{frame} 
725
726
727
728
729 %%%%%%%%%%%%%%%%%%%%
730 %%    SLIDE 35    %%
731 %%%%%%%%%%%%%%%%%%%%
732 \begin{frame}{Energy optimization of grid platform} 
733    \begin{figure}[!t]
734     \centering
735              \includegraphics[width=.6\textwidth]{c2/grid5000.pdf}
736              
737            \small  10 sites distributed over France and Luxembourg
738         \end{figure}
739 \end{frame} 
740
741
742 %%%%%%%%%%%%%%%%%%%%
743 %%    SLIDE 36    %%
744 %%%%%%%%%%%%%%%%%%%%
745  \begin{frame}{Performance, Energy and trade-off models} \small
746   \begin{block}{\small The performance model of grid}
747     \begin{equation}
748   \label{eq:perf}
749   \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
750   +\mathop{\min_{j=1,\dots,M_h}}  (\Tcm[hj])
751 \end{equation}
752     \end{block}   
753  
754  
755  \begin{block}{\small The energy model of grid}\small
756     \begin{equation}
757   \label{eq:energy}
758  E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
759  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew)
760 \end{equation}
761     \end{block}  
762
763 \begin{block}{\small The trade-off model of grid}
764 \small
765     \begin{equation}
766    \label{eq:max}
767   \MaxDist =
768   \mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j}
769       (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
770        \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
771 \end{equation}
772     \end{block}  
773      
774  \end{frame}
775   
776   
777   
778 %%%%%%%%%%%%%%%%%%%%
779 %%    SLIDE 37    %%
780 %%%%%%%%%%%%%%%%%%%%
781  \begin{frame}{Experiments over Grid'5000}
782   \centering
783
784           \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf}
785           
786           \vspace{-3 mm}
787           \textcolor{blue}{The experiments executed over one site and two sites scenarios}
788           
789               \vspace{1mm}
790
791           \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf}
792           
793         \textcolor{blue}{We used Grid'5000 power measurement tools} 
794 \end{frame}   
795
796
797
798
799 %%%%%%%%%%%%%%%%%%%%
800 %%    SLIDE 38    %%
801 %%%%%%%%%%%%%%%%%%%%
802 \begin{frame}{Experiments over Grid'5000}
803
804    \begin{minipage}{0.4\textwidth}
805        \textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by  
806         \textcolor{red}{30\%}}
807    \end{minipage}  
808      \begin{minipage}{0.55\textwidth}
809         \begin{figure}[h!]
810           \includegraphics[width=0.83 \textwidth]{c2/eng_s.eps}
811      \end{figure}
812 \end{minipage}
813
814          \begin{minipage}{0.4\textwidth}
815            \textcolor{blue}{Execution the NAS class D on 16 nodes degrades the 
816                 performance by \textcolor{red}{3.2\%}}
817         \end{minipage}
818        \begin{minipage}{0.55\textwidth}
819          \begin{figure}[h!] 
820            \includegraphics[width=.83\textwidth]{c2/per_d.eps}
821          \end{figure}  
822           \end{minipage}
823  \end{frame}
824
825
826
827 %%%%%%%%%%%%%%%%%%%%
828 %%    SLIDE 39    %%
829 %%%%%%%%%%%%%%%%%%%%
830 \begin{frame}{Experiments over Grid'5000}
831    \textcolor{blue}{One core  and Multi-cores per node results:}
832    
833   \begin{figure}[h!] 
834   \includegraphics[width=.48\textwidth]{c2/eng_s_mc.eps}
835   \hspace{0.3cm}
836   \includegraphics[width=.48\textwidth]{c2/per_d_mc.eps}
837   \end{figure} 
838   
839   \centering \small \textcolor{blue}{Using multi-core per node scenario decreases the computations to communications ratio}.
840 \end{frame}
841
842
843
844 %\begin{frame}{Summary}
845 %\begin{itemize}
846      % \small
847         % \item  Two scaling algorithm were applies to \textcolor{blue}{heterogeneous %cluster} and \textcolor{blue}{grid}.
848         % \item  A new \textcolor{blue}{energy} and \textcolor{blue}{performance} models were proposed.
849       %   \item  The experimental results ere conducted over \textcolor{blue}{SimGrid}  simulators and real 
850           %test-bed \textcolor{blue}{Grid'5000}.
851          
852          %\item The algorithm saves the energy by \textcolor{blue}{29\%} and only
853         %  degrades the performance by \textcolor{blue}{3.8\%} for simulated  heterogeneous
854       %    clusters.
855          
856          %\item The algorithm saves the energy by \textcolor{blue}{30\%} and only
857         % degrades the performance by \textcolor{blue}{3.2\%} for  Grid'5000 results.
858          
859        %  \item  The proposed method \textcolor{blue}{outperforms the EDP method} in terms of  energy-performance ratio.
860      %    \end{itemize}   
861 %\end{frame}
862
863
864 %%%%%%%%%%%%%%%%%%%%
865 %%    SLIDE 40    %%
866 %%%%%%%%%%%%%%%%%%%%
867 \begin{frame}{Continuation}
868 \subsection{\small {3.3 Energy optimization of asynchronous applications}}
869 \begin{center}
870 \bf \textcolor{black}{Third contribution} \\ 
871 \vspace{1cm}
872 \bf  \Large \textcolor{blue}{Energy optimization of asynchronous applications}
873 \end{center}
874  \end{frame}
875
876
877
878 %%%%%%%%%%%%%%%%%%%%
879 %%    SLIDE 41   %%
880 %%%%%%%%%%%%%%%%%%%%
881 \begin{frame}{Problem definition}\vspace{0.8 mm}
882 \textcolor{blue}{Execution the parallel iterative application with synchronous communications }
883 \vspace{-8 mm}
884 \begin{figure}
885   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
886   \end{figure}
887 \end{frame}
888
889
890
891 %%%%%%%%%%%%%%%%%%%%
892 %%    SLIDE 42   %%
893 %%%%%%%%%%%%%%%%%%%%
894 \begin{frame}{Problem definition}\vspace{0.8 mm}
895 \textcolor{blue}{Execution the parallel iterative application with synchronous communications }
896 \vspace{-8 mm}
897 \begin{figure}
898   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
899   \end{figure}
900 \end{frame}
901
902
903
904 %%%%%%%%%%%%%%%%%%%%
905 %%    SLIDE 43   %%
906 %%%%%%%%%%%%%%%%%%%%
907 \begin{frame}{Solution}\vspace{0.8mm}
908 \textcolor{blue}{Using asynchronous communications with DVFS }
909 \vspace{-8 mm}
910 \begin{figure}
911   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
912   \end{figure}
913 \end{frame}
914
915
916
917
918 %%%%%%%%%%%%%%%%%%%%
919 %%    SLIDE 44   %%
920 %%%%%%%%%%%%%%%%%%%%
921 \begin{frame}{The performance models}
922
923 \begin{block}{\small The performance model of Asynch. Applications}\small
924 \begin{equation}
925   \label{eq:asyn_time}
926   \Tnew =  \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N  \cdot M_i }
927 \end{equation}
928 \end{block}
929
930
931 \begin{block}{\small The performance model of Hybrid Applications}\small
932 \begin{equation}
933   \label{eq:asyn_perf}
934   \Tnew =  \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) +  
935    \min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N}
936 \end{equation}
937 \end{block}
938
939
940 \end{frame}
941
942
943
944 %%%%%%%%%%%%%%%%%%%%
945 %%    SLIDE 45   %%
946 %%%%%%%%%%%%%%%%%%%%
947 \begin{frame}{The energy consumption models}
948
949 \begin{block}{\small The energy model of Asynch. Applications}\small
950 \begin{equation}
951   \label{eq:asyn_energy1}
952  E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot  \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )} 
953 \end{equation} 
954 \end{block}
955
956
957 \begin{block}{\small The energy model of Hybrid Applications}\small
958 \begin{multline}
959   \label{eq:asyn_energy}
960  E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\
961  ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]}))) 
962 \end{multline}
963 \end{block}
964 \end{frame}
965
966
967
968 %%%%%%%%%%%%%%%%%%%%
969 %%    SLIDE 46   %%
970 %%%%%%%%%%%%%%%%%%%%
971 \begin{frame}{The scaling algorithm for Asynch.  applications}
972 \vspace{-0.1 mm}
973 \centering
974 \includegraphics[width=0.55\textwidth]{algo-hybrid.pdf}
975 \end{frame}
976
977
978
979 %%%%%%%%%%%%%%%%%%%%
980 %%    SLIDE 47   %%
981 %%%%%%%%%%%%%%%%%%%%
982 \begin{frame}{The experimental results}
983    \vspace{-5 mm}
984    \begin{figure}[!t]
985    \centering
986     \includegraphics[width=0.5\textwidth]{c3/hybrid-model.pdf} 
987    \end{figure}
988    \begin{itemize}
989       \small
990         \item Execution the iterative multi-splitting method over simulated Grid.
991         \item Execution the iterative multi-splitting method over Grid'5000 test-bed.
992    \end{itemize}
993 \end{frame} 
994
995
996
997 %%%%%%%%%%%%%%%%%%%%
998 %%    SLIDE 48   %%
999 %%%%%%%%%%%%%%%%%%%%
1000 \begin{frame}{The simulation results}
1001 \centering \small \textcolor{blue}{The best scenario in term of energy and performance  is the Async. MS with Sync. DVFS}
1002
1003 \centering
1004     \includegraphics[scale=0.46]{c3/energy_saving.eps}
1005
1006  \centering  The average of energy saving  = \textcolor{red}{22\%}
1007 \end{frame} 
1008
1009
1010
1011 %%%%%%%%%%%%%%%%%%%%
1012 %%    SLIDE 49   %%
1013 %%%%%%%%%%%%%%%%%%%%
1014 \begin{frame}{The simulation results}
1015 \centering
1016    
1017      \includegraphics[scale=0.46]{c3/perf_degra.eps}
1018      
1019  \centering    The average of  speed-up  = \textcolor{red}{5.72\%}
1020 \end{frame} 
1021
1022
1023
1024 %%%%%%%%%%%%%%%%%%%%
1025 %%    SLIDE 50   %%
1026 %%%%%%%%%%%%%%%%%%%%
1027  \begin{frame}{The Grid'5000 results}
1028    \vspace{-20 mm}
1029    \begin{figure}[!t]
1030    \centering
1031    \hspace{-8 mm}
1032     \includegraphics[width=0.53\textwidth]{c3/energy-s-compare.eps}                    
1033     \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps}
1034    \end{figure}
1035     \vspace{-5 mm}
1036      \centering
1037    The energy saving = \textcolor{red}{26.93\%}, speeds up =  \textcolor{red}{21.48\%}
1038 \end{frame} 
1039
1040
1041 %%%%%%%%%%%%%%%%%%%%
1042 %%    SLIDE 51   %%
1043 %%%%%%%%%%%%%%%%%%%%
1044 \begin{frame}{The comparison results}
1045  \centering
1046     \includegraphics[width=.5\textwidth]{c3/compare.eps}
1047     
1048     \includegraphics[width=.5\textwidth]{c3/compare_scales.eps}
1049 \end{frame} 
1050
1051
1052
1053
1054 %%%%%%%%%%%%%%%%%%%%
1055 %%    SLIDE 52  %%
1056 %%%%%%%%%%%%%%%%%%%%
1057 \begin{frame}{Conclusions}
1058 \section{Conclusions}
1059 \begin{itemize}
1060
1061 \small  \barrow  We have proposed \textcolor{blue}{a new energy consumption and performance} models for 
1062      synchronous and asynchronous parallel applications with iterations.
1063      
1064       
1065 \small \barrow The parallel applications with iterations were executed over different parallel architectures such as: \textcolor{blue}{homogeneous  cluster, heterogeneous  cluster and
1066 grid}.
1067
1068 \small \barrow We have proposed \textcolor{blue}{new objective function} to optimize both the energy consumption and the performance.
1069
1070 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.
1071
1072 \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the
1073 Multi-splitting} method.
1074
1075 \small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator and over  Grid'5000 testbed}.
1076
1077 \small  \barrow All the proposed methods were compared with either \textcolor{blue}{Rauber and Rünger  method} or  \textcolor{blue}{EDP objective function}.
1078
1079
1080 \end{itemize}
1081 \end{frame}
1082
1083
1084
1085 %%%%%%%%%%%%%%%%%%%%
1086 %%    SLIDE 53   %%
1087 %%%%%%%%%%%%%%%%%%%%
1088 \begin{frame}{Publication}
1089
1090 \begin{block}{\small Journal Articles }\scriptsize
1091 \begin{enumerate}[$\lbrack$1$\rbrack$]
1092
1093 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. Optimizing the energy consumption of message passing applications with iterations executed over grids. \textit{Journal of Computational 
1094       Science}, 2016.
1095
1096 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. Energy Consumption Reduction for     
1097       Asynchronous Message Passing Applications.  \textit{Journal of Supercomputing}, 2016, (Submitted)
1098  
1099 \end{enumerate}
1100 \end{block}
1101
1102
1103 \begin{block}{\small Conference Articles }\scriptsize
1104
1105 \begin{enumerate}[$\lbrack$1$\rbrack$]
1106
1107 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Dynamic Frequency Scaling for
1108       Energy Consumption Reduction in Distributed MPI Programs. \textit{ISPA 2014}, pp.
1109       225-230. IEEE Computer Society, Milan, Italy (2014).
1110
1111 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Energy Consumption Reduction
1112       with DVFS for Message Passing Iterative Applications on Heterogeneous Architectures.
1113       \textit{The $16^{th}$ PDSEC}. pp. 922-931. IEEE Computer Society, INDIA (2015).
1114
1115 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. CPUs Energy Consumption
1116       Reduction for Asynchronous Parallel Methods Running over Grids. \textit{The $19^{th}$ CSE conference}. IEEE Computer Society, 
1117       Paris (2016).  
1118
1119 \end{enumerate}
1120
1121 \end{block}
1122 \end{frame}
1123
1124
1125 %%%%%%%%%%%%%%%%%%%%
1126 %%    SLIDE 54   %%
1127 %%%%%%%%%%%%%%%%%%%%
1128 \begin{frame}{Perspectives}
1129 \section{Perspectives}
1130
1131 \begin{itemize}
1132
1133 \small  \barrow We will adapt the proposed algorithms to take into consideration the
1134 \textcolor{blue}{variability between some iterations}.
1135
1136 \small  \barrow The proposed algorithms should be applied to \textcolor{blue}{other message passing methods with iterations} in order to see how they adapt to the characteristics of these methods.
1137
1138 \small \barrow The proposed algorithms for heterogeneous platforms should be applied to heterogeneous platforms composed of \textcolor{blue}{CPUs and GPUs}.
1139
1140 \small \barrow Comparing the results returned by the energy models to the values given by  \textcolor{blue}{real instruments that measure the energy consumptions} of CPUs during the execution time.
1141 \end{itemize}
1142
1143 \end{frame}
1144
1145 %%%%%%%%%%%%%%%%%%%%
1146 %%    SLIDE 55  %%
1147 %%%%%%%%%%%%%%%%%%%%
1148 \begin{frame}{Fin} \vspace{-10 mm}
1149
1150             \centering \Large \textcolor{blue}{Thanks for Your Listening}
1151             
1152             \vspace{2cm}
1153             \centering \textcolor{blue}{ {\Large Questions?}}
1154         
1155 \end{frame}
1156 \end{document}
1157 %  _____ ___ _   _ 
1158 % |  ___|_ _| \ | |
1159 % | |_   | ||  \| |
1160 % |  _|  | || |\  |
1161 % |_|   |___|_| \_|
1162 %