]> AND Private Git Repository - ThesisAhmed.git/blob - thesis-presentation/AhmedSlides.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
addind the presentation corrections
[ThesisAhmed.git] / thesis-presentation / AhmedSlides.tex
1  \documentclass{beamer}
2 \usepackage{beamerthemefemto}
3 \usepackage[latin1]{inputenc}
4 \usepackage[T1]{fontenc}
5 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12 \usepackage{xspace}
13  \usepackage{movie15}
14  \usepackage{animate}
15 \usepackage{xmpmulti} 
16  \newcommand{\AG}[2][inline]{%
17   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
18 \newcommand{\JC}[2][inline]{%
19   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
20 \definecolor{myblue}{RGB}{0,29,119}
21 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
22 \usepackage{fixltx2e}
23 %% used to put some subscripts lower, and make them more legible
24 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
25 \usepackage{ragged2e}
26 \newcommand{\CL}{\Xsub{C}{L}}
27 \newcommand{\Dist}{\mathit{Dist}}
28 \newcommand{\EdNew}{\Xsub{E}{dNew}}
29 \newcommand{\Eind}{\Xsub{E}{ind}}
30 \newcommand{\Enorm}{\Xsub{E}{Norm}}
31 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
32 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
33 \newcommand{\Es}{\Xsub{E}{S}}
34 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
35 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
36 \newcommand{\Fnew}{\Xsub{F}{new}}
37 \newcommand{\Vnew}{\Xsub{V}{new}}
38 \newcommand{\Vmax}{\Xsub{V}{max}}
39 \newcommand{\Ileak}{\Xsub{I}{leak}}
40 \newcommand{\Kdesign}{\Xsub{K}{design}}
41 \newcommand{\MaxDist}{\mathit{Max}\Dist}
42 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
43 \newcommand{\Ntrans}{\Xsub{N}{trans}}
44 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
45 \newcommand{\PdNew}{\Xsub{P}{dNew}}
46
47 \newcommand{\PdOld}{\Xsub{P}{dOld}}
48 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
49 \newcommand{\Tnorm}{\Xsub{T}{Norm}}
50 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
51 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
52 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
53 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
54 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
55 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
56 \newcommand{\Tnew}{\Xsub{T}{New}}
57 \newcommand{\Told}{\Xsub{T}{Old}}
58 \newcommand{\Ltcm}[1][]{\Xsub{L}{tcm}_{\fxheight{#1}}}
59 \newcommand{\Etcm}[1][]{\Xsub{E}{tcm}_{\fxheight{#1}}}
60 \newcommand{\Niter}[1][]{\Xsub{N}{iter}_{\fxheight{#1}}}
61 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
62 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
63  \usepackage{pifont}
64 \usepackage{xcolor}
65 \definecolor{myblue}{RGB}{0,29,119}
66 \usepackage[textsize=footnotesize]{todonotes}
67 \newcommand{\bsquare}{\item[\color{myblue}\ding{110}]} 
68 \newcommand{\barrow}{\item[\color{myblue}\ding{228}]}
69 \newcommand{\bwarrow}{\item[\color{myblue}\ding{227}]}
70 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
71
72
73
74 %\title{Energy Consumption Optimization of Parallel Applications with
75 %Iterations using CPU Frequency Scaling} 
76 \vspace{2cm}
77
78 \title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-0.5cm}
79 \author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under the supervision of: \\ \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ UBFC - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
80
81 \date{}
82 \vspace{-3cm}
83 %  ____  _____ ____  _   _ _____ 
84 % |  _ \| ____| __ )| | | |_   _|
85 % | | | |  _| |  _ \| | | | | |  
86 % | |_| | |___| |_) | |_| | | |  
87 % |____/|_____|____/ \___/  |_|  
88
89 \begin{document}
90 \setbeamertemplate{background}{\titrefemto}
91
92 %%%%%%%%%%%%%%%%%%%%
93 %%    SLIDE 01    %%
94 %%%%%%%%%%%%%%%%%%%% 
95 \begin{frame}[plain]
96 \vspace{1cm}
97 \centering
98    \titlepage
99 \end{frame}
100
101
102 %%%%%%%%%%%%%%%%%%%%
103 %%    SLIDE 02    %%
104 %%%%%%%%%%%%%%%%%%%% 
105 \setbeamertemplate{background}{\pagefemto}
106 \begin{frame}{Outline}
107
108 \setbeamertemplate{section in toc}[sections numbered] 
109 \tableofcontents
110 \end{frame}
111
112
113 %%%%%%%%%%%%%%%%%%%%
114 %%    SLIDE 03    %%
115 %%%%%%%%%%%%%%%%%%%% 
116 \begin{frame}{Introduction and problem definition}
117  \section{\small {Introduction and Problem definition}}
118    \bf \textcolor{blue}{To get more computing power:}
119      \begin{minipage}{0.5\textwidth} 
120       \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increase the frequency of a  processor.\\ (limited due to overheating)}
121     \end{minipage}%
122     \begin{minipage}{0.6\textwidth} 
123     
124 \begin{figure}[h!]
125         
126     \includegraphics[width=0.7\textwidth]{fig/freq-years} 
127     \end{figure}
128     \end{minipage}%
129     \vspace{0.2cm}
130     \begin{minipage}{0.5\textwidth} 
131      \textcolor{blue}{2)} \small \bf \textcolor{black}{Use more nodes.}
132      
133  \textcolor{black}{The supercomputer Tianhe-2 has more than 3 million cores and consumes around 17.8 megawatts.}  
134           
135     \end{minipage}%
136     \begin{minipage}{0.6\textwidth} 
137     \begin{figure}[h!]
138      \includegraphics[width=0.7\textwidth]{fig/clusters} 
139     \end{figure}
140     \end{minipage}%
141  \end{frame}
142  
143  
144  
145
146  %%%%%%%%%%%%%%%%%%%
147 %%    SLIDE 04   %%
148 %%%%%%%%%%%%%%%%%%%% 
149 \begin{frame}{Techniques for energy consumption reduction}
150
151      \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}  
152     \vspace{-0.9cm}
153     \begin{figure}
154      \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
155      %\includegraphics[width=0.6\textwidth]{on-off/a-69}
156     \end{figure}
157  \end{frame}
158
159 %%%%%%%%%%%%%%%%%%%%
160 %%    SLIDE 05    %%
161 %%%%%%%%%%%%%%%%%%%% 
162 \begin{frame}{Techniques for energy consumption reduction}
163  
164   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic Voltage and Frequency Scaling (DVFS)}
165      \vspace{-0.9cm}
166     \begin{figure}
167     \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
168      %\includegraphics[width=0.6\textwidth]{DVFS-meq/a-109}
169     \end{figure}
170     \end{frame}
171  
172
173
174 %%%%%%%%%%%%%%%%%%%%
175 %%    SLIDE 06    %%
176 %%%%%%%%%%%%%%%%%%%% 
177 \begin{frame}{Motivations}
178 \vspace{0.05cm}
179 \section{\small {Motivations}}
180 \textcolor{blue}{Why we used the DVFS method:}
181 \vspace{-0.49cm}
182 \begin{minipage}{0.5\textwidth} 
183     \vspace{-0.49cm} 
184       \begin{itemize} 
185        \item  \small \textcolor{black}{ The CPU is the component that consumes the  highest amount of energy in a node \textsuperscript{1}. }
186                 
187          \end{itemize}
188
189     \end{minipage}%
190     \begin{minipage}{0.5\textwidth}
191      \vspace{-0.49cm} 
192     \begin{figure}[h!]
193      \includegraphics[width=0.85\textwidth]{fig/node-power} 
194      
195     \end{figure}
196     \end{minipage}%
197     
198   \begin{itemize} \item \small  \textcolor{black}{DVFS reduces the energy consumption while 
199    keeping all the nodes working.}
200                 \item \small \textcolor{black}{It has a very small overhead compared to switching-off the idle nodes.}  \end{itemize} 
201     
202 \vspace{-0.12cm}
203
204  \begin{block}{\textcolor{white}{Challenge and Objective}}
205
206         \small  \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy consumption, \textcolor{blue}{but} it also degrades the performance of the CPU.}
207                 
208                 \vspace{0.1cm}
209  \small  \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel application.}
210 \end{block}
211  
212  \tiny \textsuperscript{1} Fan, X., Weber, W., and Barroso, L. A. 2007.  Power provisioning
213 for a warehouse-sized computer.
214
215     \end{frame}
216
217
218
219 %%%%%%%%%%%%%%%%%%%%
220 %%    SLIDE 08    %%
221 %%%%%%%%%%%%%%%%%%%% 
222
223
224 \begin{frame}{The first contribution}
225
226 \section{\small {Energy optimization of a homogeneous platform}}
227 %\vspace{-3cm}
228  % \includegraphics[width=0.6\textwidth]{white.pdf} 
229
230 \begin{center}
231 \bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a homogeneous platform}
232 \end{center}
233  \end{frame}
234
235
236
237 %%%%%%%%%%%%%%%%%%%%
238 %%    SLIDE 09    %%
239 %%%%%%%%%%%%%%%%%%%% 
240  
241 \begin{frame}{Objectives}
242         
243                 \begin{itemize}   \small \justifying
244                  
245                    \item   Study the effect of the scaling factor on the \textbf{energy consumption and performance } of parallel  applications with iterations. \medskip
246                    
247                    \item   Discovering the \textbf{energy-performance trade-off relation} when changing the frequency of the processor.\medskip
248                    \item   Proposing an algorithm for selecting the scaling factor that produces  \textbf {the optimal trade-off} between the energy consumption and the performance. \medskip
249                    \item   Comparing the proposed algorithm to existing methods.
250                    
251                    
252                    %\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the  
253                           %energy consumption \\  \quad ~ ~\quad    of  independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on. 
254                 \end{itemize}
255                  %\let\thefootnote\relax\footnote{}
256         
257         
258 \end{frame}
259
260
261
262 %%%%%%%%%%%%%%%%%%%%
263 %%    SLIDE 10    %%
264 %%%%%%%%%%%%%%%%%%%% 
265
266
267 \begin{frame}{Execution of synchronous parallel tasks}
268 \vspace{-0.5 cm}
269 \begin{figure}
270   \centering
271   \subfloat[Synchronous imbalanced communications]{%
272     \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
273   \subfloat[Synchronous imbalanced computations]{%
274     \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
275  % \caption{Parallel tasks on homogeneous platform}
276   \label{fig:homo}
277 \end{figure}
278
279  \end{frame}
280  
281  
282  
283
284 %%%%%%%%%%%%%%%%%%%%
285 %%    SLIDE 11   %%
286 %%%%%%%%%%%%%%%%%%%% 
287 \begin{frame}{Energy model for a homogeneous platform}    
288       The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static   
289        (\textcolor{red}{$P_s$}) power. 
290     \begin{equation}
291      \label{eq:pd}
292      \textcolor{red}{ P_d} = \textcolor{blue}{\alpha \cdot CL \cdot V^2 \cdot F}
293    \end{equation}
294     \scriptsize \underline{Where}: \\ 
295     \scriptsize {\textcolor{blue}{$\alpha$}: switching activity \hspace{15 mm}  \textcolor{blue}{$CL$}: load capacitance\\     
296     \textcolor{blue}{$V$}: the supply voltage \hspace{14 mm} \textcolor{blue}{$F$}: operational frequency}
297    \begin{equation}
298      \label{eq:ps}
299      \small \textcolor{red}{P_s} = \textcolor{blue}{V \cdot N_{trans} \cdot K_{design} \cdot I_{Leak}}
300    \end{equation}
301     \underline{Where}:\\ 
302         \scriptsize{ \textcolor{blue}{$V$}: the supply voltage.  \hspace{28 mm}   \textcolor{blue}{$N_{trans}$}: number of transistors. \\   
303         \textcolor{blue}{$K_{design}$}: design dependent parameter. \hspace{8 mm} \textcolor{blue}{$I_{leak}$}: technology dependent  
304              parameter.} 
305 \end{frame}
306
307 %%%%%%%%%%%%%%%%%%%%
308 %%    SLIDE 12   %%
309 %%%%%%%%%%%%%%%%%%%% 
310
311 \begin{frame}{Energy model for a homogeneous platform}
312        
313           The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.  \medskip     
314               
315               
316               
317         \begin{block}{\small Rauber and Rünger's energy model}
318          $ E = P_{d} \cdot S_1^{-2} \cdot
319          \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
320             P_{s} \cdot S_1  \cdot T_1 \cdot N$
321         \end{block}     
322            \textcolor{blue}{$S_1$}: the maximum scaling factor.\\ 
323            \textcolor{blue}{$P_{d}$}: the dynamic power.\\
324            \textcolor{blue}{$P_{s}$}: the static power.\\
325            \textcolor{blue}{$T_I$}: the execution time of the slower task.\\ 
326            \textcolor{blue}{$T_i$}: the execution time of task i.\\ 
327            \textcolor{blue}{$N$}:  the number of  nodes.
328        
329 \end{frame}
330   
331   
332 %%%%%%%%%%%%%%%%%%%%
333 %%    SLIDE 13   %%
334 %%%%%%%%%%%%%%%%%%%% 
335 \begin{frame}{Performance evaluation of MPI programs}      
336         \begin{femtoBlock}{}
337               \vspace{-5 mm}
338               \begin{block}{\small Execution time prediction model}
339                      \centering{ $ \textcolor{red}{T_{new}} = \textcolor{blue}{T_{Max Comp Old} \cdot S + T_{{Min Comm Old}}}$}
340           \end{block}   
341           \vspace{10 mm}
342            \centering{\includegraphics[width=.4\textwidth]{c1/cg_per}
343            \quad%
344            \includegraphics[width=.4\textwidth]{c1/lu_pre}}
345             \vspace{5 mm}
346             
347            \small The maximum normalized error for CG=0.0073 \textbf{(the smallest)} and LU=0.031 \textbf{(the worst)}.
348            \end{femtoBlock}
349 \end{frame}
350
351
352
353
354  %%%%%%%%%%%%%%%%%%%%
355 %%    SLIDE 14   %%
356 %%%%%%%%%%%%%%%%%%%%  
357 \begin{frame}{Performance and energy reduction trade-off}      
358         \begin{femtoBlock}{} \vspace{-15 mm}
359                \begin{figure}
360      \centering
361      \subfloat[\small  Real relation.]{%
362      \includegraphics[width=.43\textwidth]{c1/file3}\label{fig:r2}}
363      \quad%
364      \subfloat[\small Converted relation.]{%
365      \includegraphics[width=.43\textwidth]{c1/file}\label{fig:r1}}%
366   \label{fig:rel}
367  % \caption{The energy and performance relation}
368 \end{figure}
369
370  Where:~~~ $\textcolor{blue}{Performance} = execution~time^{-1}$
371
372 %\vspace{-0.3cm}
373       \small 
374          \begin{block}{\small Our objective function}
375          \centering{$\textbf{\emph {\textcolor{red}{MaxDist}}} = \max_{j=1,2,\dots ,F}             
376                     (\overbrace{P_{Norm}(S_j)}^{{\textcolor{blue}{Maximize}}} - 
377                      \overbrace{E_{Norm}(S_j)}^{{\textcolor{blue}{Minimize}}} )$}
378                                          
379         \end{block}                
380         \end{femtoBlock}
381        
382 \end{frame}
383
384 %%%%%%%%%%%%%%%%%%%%
385 %%    SLIDE 15   %%
386 %%%%%%%%%%%%%%%%%%%% 
387  \begin{frame}{Scaling factor selection algorithm}
388 \vspace{-0.75cm}
389      \begin{center}
390       \includegraphics[width=.56 \textwidth]{c1/algo-homo}
391      \end{center}
392      
393 \end{frame}
394
395
396 %%%%%%%%%%%%%%%%%%%%
397 %%    SLIDE 16   %%
398 %%%%%%%%%%%%%%%%%%%% 
399 \begin{frame}{Scaling algorithm example}
400 \vspace{-0.75cm}
401      
402      \begin{figure}
403   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
404   %\includegraphics[width=0.6\textwidth]{dvfs-homo/a-159}
405   \end{figure}
406 \end{frame}
407
408 %%%%%%%%%%%%%%%%%%%%
409 %%    SLIDE 17   %%
410 %%%%%%%%%%%%%%%%%%%% 
411 \begin{frame}{Experimental results }
412       \begin{femtoBlock}{}      
413         \begin{itemize}
414          \small
415            \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
416            \item The proposed algorithm was applied to the NAS parallel benchmarks.\medskip
417            \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
418            \item The proposed algorithm was evaluated over the A, B and C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively. \medskip
419            \item $P_d=20W$,  $P_s=4W$.
420                 \end{itemize}
421         \end{femtoBlock}
422 \end{frame}
423
424
425 %%%%%%%%%%%%%%%%%%%%
426 %%    SLIDE 18   %%
427 %%%%%%%%%%%%%%%%%%%% 
428 \begin{frame}{Experimental results}
429   \begin{femtoBlock}{}  
430       \centering { 
431      \includegraphics[width=.35\textwidth]{c1/ep}
432      \includegraphics[width=.35\textwidth]{c1/cg}
433      \includegraphics[width=.35\textwidth]{c1/bt}}
434      
435      \centering {\includegraphics[width=.55\textwidth]{c1/results.pdf}}
436  \end{femtoBlock}
437 \end{frame}
438
439
440   %%%%%%%%%%%%%%%%%%%%
441 %%    SLIDE 19   %%
442 %%%%%%%%%%%%%%%%%%%% 
443 \begin{frame}{Results comparison}
444          \begin{block}{\small Rauber and Rünger's optimal scaling factor} 
445            $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot
446             \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $
447         \end{block}   
448         
449         
450     \centering {
451          %\includegraphics[width=.33\textwidth]{c1/c1.pdf}
452          %\qquad
453          %\includegraphics[width=.33\textwidth]{c1/c2.pdf}}
454            
455          
456             \includegraphics[width=.55\textwidth]{c1/compare-c.pdf}}
457         
458 \end{frame}
459
460
461 %%%%%%%%%%%%%%%%%%%%
462 %%    SLIDE 20   %%
463 %%%%%%%%%%%%%%%%%%%% 
464 \begin{frame}{The proposed new energy model}
465     \vspace{-0.75cm}     
466   \begin{figure}
467   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
468   %\includegraphics[width=0.6\textwidth]{homo-model/a-356}
469   \end{figure}
470 \end{frame}
471
472
473 %%%%%%%%%%%%%%%%%%%%
474 %%    SLIDE 21   %%
475 %%%%%%%%%%%%%%%%%%%% 
476 \begin{frame}{\large Comparing the new model with Rauber's model }
477  \vspace{0.1cm}    
478  \centering
479     \includegraphics[width=.45\textwidth]{c1/energy_con}
480     
481     \includegraphics[width=.5\textwidth]{c1/compare-scales}
482 \end{frame}
483
484
485
486
487    % \begin{frame}{Summary}
488      % \begin{femtoBlock}{}    
489      % \begin{itemize}
490       %\small
491        %\item  We have presented a new online scaling factor selection method that  \textcolor{blue}{optimizes simultaneously the energy and performance}.\medskip
492        % \item It predicts \textcolor{blue}{ the energy consumption and the performance} of the parallel applications. \medskip
493          %\item Our algorithm  \textcolor{blue}{saves more energy} when the communication and the other slacks times are big.     \medskip    
494          %\item It gives the  \textcolor{blue}{best trade-off between energy reduction and
495                % performance}. \medskip
496          %\item  Our method \ \textcolor{blue}{outperforms Rauber and Rünger's method} in terms of  energy-performance ratio.
497          %\item The proposed new energy model is  \textcolor{blue}{more accurate} then Rauber energy model.
498          %\end{itemize}      
499          
500         %\end{femtoBlock}
501 %\end{frame}
502
503
504 %%%%%%%%%%%%%%%%%%%%
505 %%    SLIDE 22    %%
506 %%%%%%%%%%%%%%%%%%%% 
507
508
509 \begin{frame}{The second contribution}
510
511 \section{\small {Energy optimization of a heterogeneous platform}}
512 \begin{center}
513
514
515 \bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a Heterogeneous platform}
516 \end{center}
517  \end{frame}
518  
519
520
521 %%%%%%%%%%%%%%%%%%%%
522 %%    SLIDE 23    %%
523 %%%%%%%%%%%%%%%%%%%% 
524  
525 \begin{frame}{Objectives}
526         \begin{femtoBlock}{} \vspace{-12 mm}
527                 \begin{itemize} \small
528                   \item   Proposing  \textcolor{blue}{new energy and performance models} for message passing  applications with iterations running  
529                           over a heterogeneous platform (cluster or Grid). \medskip
530                    \item  Studying the effect of the scaling factor $S$ on both the \textcolor{blue}{energy consumption  and the performance} of
531                           message passing iterative applications.    \medskip                      
532                    
533                    \item  Computing  the vector of scaling factors ($S_1, S_2, ..., S_n$)  producing \textcolor{blue} {the optimal trade-off} between
534                           the energy consumption and the performance. 
535                 \end{itemize}
536                  
537           \vspace{-10 mm}
538         \end{femtoBlock}      
539 \end{frame}
540
541
542 %%%%%%%%%%%%%%%%%%%%
543 %%    SLIDE 24    %%
544 %%%%%%%%%%%%%%%%%%%%
545 \begin{frame}{The execution time model}    
546       \vspace{-8 mm}
547      \begin{figure}[!t]
548        \centering
549        \includegraphics[scale=0.5]{c2/commtasks}
550        \label{fig:heter}
551      \end{figure}     
552        \vspace{-12 mm}
553        \medskip
554        
555     \begin{block}{\small The execution time prediction model}
556     \begin{equation}
557      \label{eq:perf}
558      \small\textcolor{red}{ T_{new}} = \textcolor{blue}{\max_{i=1,2,\dots,N} ({TcpOld_i} \cdot S_{i}) + \min_{i=1,2,\dots,N} (Tcm_i)}
559     \end{equation}
560     \end{block}   
561  \small  Where: $ \textcolor{red}{Tcm} = \textcolor{blue}{communication~times + slack~times}$
562   
563 \end{frame}
564  
565  %%%%%%%%%%%%%%%%%%%%
566 %%    SLIDE 25    %%
567 %%%%%%%%%%%%%%%%%%%%
568  \begin{frame}{The energy consumption model} 
569     The overall energy consumption of a message passing synchronous  application executed over
570      a heterogeneous platform can be computed as  follows:
571     \begin{multline}
572      \label{eq:energy}
573      \textcolor{red}{E} = \textcolor{blue}{\sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)}} + {} \\
574      \textcolor{blue}{\sum_{i=1}^{N} (Ps_i \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) + {\min_{i=1,2,\dots,N} (Tcm_i))}}   
575       \hspace{10 mm}
576     \end{multline}
577     \underline{where}:\\
578     \textcolor{blue}{N} : is the number of nodes.
579 \end{frame}
580  
581  
582 %%%%%%%%%%%%%%%%%%%%
583 %%    SLIDE 26    %%
584 %%%%%%%%%%%%%%%%%%%%
585   \begin{frame}{The  energy  model example for heter. cluster}
586   \vspace{-0.5cm}
587  \begin{figure}
588   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
589   %\includegraphics[width=0.6\textwidth]{heter-model/a-272}
590   \end{figure}
591  \end{frame}
592  
593  
594  
595  
596 %%%%%%%%%%%%%%%%%%%%
597 %%    SLIDE 27    %%
598 %%%%%%%%%%%%%%%%%%%%
599 %\begin{frame}{The trade-off between energy  and performance}
600    % \vspace{-7 mm}
601     %\begin{figure}
602    %  \centering{ \includegraphics[width=.4\textwidth]{c2/heter}}
603    % \end{figure}
604    % \vspace{-7 mm}
605    % \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}%{$E_{norm} = \frac{E_{reduced}} 
606     %{E_{Max}}$}. \\
607     % \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}.
608    
609    %  \begin{block}{\small The tradeoff model}
610     % \begin{equation}
611     %  \label{eq:max}
612     %  \textcolor{red}{MaxDist} =
613      % \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N}
614       % (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} -
615       % \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} )
616       %\end{equation}
617     % \end{block}  
618 %\end{frame}
619    
620  
621 %%%%%%%%%%%%%%%%%%%%
622 %%    SLIDE 28    %%
623 %%%%%%%%%%%%%%%%%%%%
624  \begin{frame}{The scaling algorithm for heter. cluster}
625
626  \centering
627    \includegraphics[width=.52\textwidth]{algo-heter}
628  \end{frame}
629  
630  
631  %%%%%%%%%%%%%%%%%%%%
632 %%    SLIDE 29    %%
633 %%%%%%%%%%%%%%%%%%%%
634  \begin{frame}{The scaling algorithm example}
635  \vspace{-0.5cm}
636  \centering
637  
638   \begin{figure}
639   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
640  % \includegraphics[width=0.6\textwidth]{dvfs-heter/a-650}
641   \end{figure}
642 \end{frame}
643
644
645
646
647 %%%%%%%%%%%%%%%%%%%%
648 %%    SLIDE 30    %%
649 %%%%%%%%%%%%%%%%%%%%
650 \begin{frame}{Experiments over a heterogeneous cluster  }   
651         \begin{itemize}
652          \small
653            \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
654            \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip
655            \item Four types of processors with different computing powers were used.\medskip
656            \item The benchmarks were executed with different number of nodes ranging from 4 to 144 nodes.\medskip
657            \item It was assumed that the total power consumption of the CPU consist of 80\% dynamic power and 20\% static power.
658                   \medskip
659          
660         \end{itemize}
661
662 \end{frame}  
663
664
665 %%%%%%%%%%%%%%%%%%%%
666 %%    SLIDE 31    %%
667 %%%%%%%%%%%%%%%%%%%%
668 \begin{frame}{The experimental results}
669    \vspace{-5 mm}
670    \begin{figure}[!t]
671    \centering
672     \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
673     
674     \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} 
675      for the class C of the NAS Benchmarks executed over 8 nodes}
676     
677    \end{figure}
678 \end{frame} 
679  
680  
681  
682 %%%%%%%%%%%%%%%%%%%%
683 %%    SLIDE 32    %%
684 %%%%%%%%%%%%%%%%%%%%
685 \begin{frame}{The experimental results}
686    \vspace{-5 mm}
687    \begin{figure}[!t]
688    \centering
689     
690     \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
691    
692    \textcolor{blue}{On average, it degrades  by \textcolor{red}{3.8\%} the performance
693      of NAS Benchmarks class C executed over 8 nodes}
694      \end{figure}
695 \end{frame} 
696  
697  
698  
699 %%%%%%%%%%%%%%%%%%%%
700 %%    SLIDE 33    %%
701 %%%%%%%%%%%%%%%%%%%%
702 \begin{frame}{The results of the three power scenarios}
703    \vspace{-5 mm}
704    \begin{figure}[!t]
705    \centering
706    \includegraphics[width=.55\textwidth]{c2/three_power.pdf}
707    \vspace{10 mm}
708    \includegraphics[width=.55\textwidth]{c2/three_scenarios.pdf}
709    \end{figure}
710 \end{frame}  
711
712
713
714 %%%%%%%%%%%%%%%%%%%%
715 %%    SLIDE 34    %%
716 %%%%%%%%%%%%%%%%%%%%
717 \begin{frame}{Comparing the objective function to EDP}
718      
719      EDP is the products between the energy consumption and the delay.
720     \vspace{-5 mm}
721     \begin{figure}[!t]
722     \centering
723     \includegraphics[width=.55\textwidth]{c2/avg_compare.pdf}
724     
725     \includegraphics[width=.55\textwidth]{c2/compare_with_EDP.pdf}
726     \end{figure}
727 \end{frame} 
728
729
730
731
732 %%%%%%%%%%%%%%%%%%%%
733 %%    SLIDE 35    %%
734 %%%%%%%%%%%%%%%%%%%%
735 %\begin{frame}{Energy optimization of grid platform} 
736   % \begin{figure}[!t]
737    % \centering
738          %    \includegraphics[width=.6\textwidth]{c2/grid5000.pdf}
739              
740         %   \small  10 sites distributed over France and Luxembourg
741         %\end{figure}
742 %\end{frame} 
743
744
745 %%%%%%%%%%%%%%%%%%%%
746 %%    SLIDE 36    %%
747 %%%%%%%%%%%%%%%%%%%%
748 \begin{frame}{The grid architecture}
749 \begin{center}
750 \includegraphics[width=.8\textwidth]{c2/init_freq.pdf}
751 \end{center}
752
753  %\begin{frame}{Performance, Energy and trade-off models} \small
754   %\begin{block}{\small The performance model of grid}
755    % \begin{equation}
756   %\label{eq:perf}
757   %\Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
758  % +\mathop{\min_{j=1,\dots,M_h}}  (\Tcm[hj])
759 %\end{equation}
760     %\end{block}   
761  
762  
763  %\begin{block}{\small The energy model of grid}\small
764   %  \begin{equation}
765   %\label{eq:energy}
766  %E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
767 % \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew)
768 %\end{equation}
769    % \end{block}  
770
771 %\begin{block}{\small The trade-off model of grid}
772 %\small
773     %\begin{equation}
774    %\label{eq:max}
775   %\MaxDist =
776   %\mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j}
777    %   (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
778     %   \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
779 %\end{equation}
780    % \end{block}  
781      
782      
783  \end{frame}
784   
785   
786   
787 %%%%%%%%%%%%%%%%%%%%
788 %%    SLIDE 37    %%
789 %%%%%%%%%%%%%%%%%%%%
790  \begin{frame}{Experiments over Grid'5000}
791  
792    \textcolor{blue}{The experiments were conducted using three 
793           clusters distributed over one or two sites.}
794            \vspace{-7 mm}
795           \begin{center}
796           \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf}
797           \end{center}          
798       \vspace{-10 mm}
799   \textcolor{blue}{Grid'5000 power measurement tools were used.} 
800         \vspace{-9 mm}
801   \begin{center}
802           \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf}
803           \end{center}
804           
805       
806 \end{frame}   
807
808
809
810
811 %%%%%%%%%%%%%%%%%%%%
812 %%    SLIDE 38    %%
813 %%%%%%%%%%%%%%%%%%%%
814 \begin{frame}{Experiments over Grid'5000}
815
816    \begin{minipage}{0.4\textwidth}
817        %\textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by  
818         %\textcolor{red}{30\%}}
819      \small \textcolor{blue}{The average energy saving =  \textcolor{red}{30\%}}
820    \end{minipage}  
821      \begin{minipage}{0.55\textwidth}
822         \begin{figure}[h!]
823           \includegraphics[width=0.83 \textwidth]{c2/eng_s.eps}
824      \end{figure}
825 \end{minipage}
826
827          \begin{minipage}{0.4\textwidth}
828            %\textcolor{blue}{Execution the NAS class D on 16 nodes degrades the 
829                 %performance by \textcolor{red}{3.2\%}}
830       \small  \textcolor{blue}{The average performance degradation  =  \textcolor{red}{3.2\%}}  
831         \end{minipage}
832        \begin{minipage}{0.55\textwidth}
833          \begin{figure}[h!] 
834            \includegraphics[width=.83\textwidth]{c2/per_d.eps}
835          \end{figure}  
836           \end{minipage}
837  \end{frame}
838
839
840
841 %%%%%%%%%%%%%%%%%%%%
842 %%    SLIDE 39    %%
843 %%%%%%%%%%%%%%%%%%%%
844 \begin{frame}{Experiments over Grid'5000}
845    \textcolor{blue}{One core  and Multi-cores per node results:}
846    
847   \begin{figure}[h!] 
848   \includegraphics[width=.48\textwidth]{c2/eng_s_mc.eps}
849   \hspace{0.3cm}
850   \includegraphics[width=.48\textwidth]{c2/per_d_mc.eps}
851   \end{figure} 
852   
853   \centering \small \textcolor{blue}{Using multi-cores per node scenario decreases the computations to communications ratio}.
854 \end{frame}
855
856
857
858 %\begin{frame}{Summary}
859 %\begin{itemize}
860      % \small
861         % \item  Two scaling algorithm were applies to \textcolor{blue}{heterogeneous %cluster} and \textcolor{blue}{grid}.
862         % \item  A new \textcolor{blue}{energy} and \textcolor{blue}{performance} models were proposed.
863       %   \item  The experimental results ere conducted over \textcolor{blue}{SimGrid}  simulators and real 
864           %test-bed \textcolor{blue}{Grid'5000}.
865          
866          %\item The algorithm saves the energy by \textcolor{blue}{29\%} and only
867         %  degrades the performance by \textcolor{blue}{3.8\%} for simulated  heterogeneous
868       %    clusters.
869          
870          %\item The algorithm saves the energy by \textcolor{blue}{30\%} and only
871         % degrades the performance by \textcolor{blue}{3.2\%} for  Grid'5000 results.
872          
873        %  \item  The proposed method \textcolor{blue}{outperforms the EDP method} in terms of  energy-performance ratio.
874      %    \end{itemize}   
875 %\end{frame}
876
877
878 %%%%%%%%%%%%%%%%%%%%
879 %%    SLIDE 40    %%
880 %%%%%%%%%%%%%%%%%%%%
881 \begin{frame}{The third contribution}
882 \section{\small {Energy optimization of asynchronous applications}}
883 \begin{center}
884 \bf  \Large \textcolor{blue}{Energy optimization of asynchronous iterative message passing  applications}
885 \end{center}
886  \end{frame}
887
888
889
890 %%%%%%%%%%%%%%%%%%%%
891 %%    SLIDE 41   %%
892 %%%%%%%%%%%%%%%%%%%%
893 \begin{frame}{Problem definition}\vspace{0.8 mm}
894 \textcolor{blue}{The execution of a synchronous parallel iterative application over a grid }
895 \vspace{-8 mm}
896 \begin{figure}
897  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
898  %\includegraphics[width=0.6\textwidth]{syn/a-503}
899   \end{figure}
900 \end{frame}
901
902
903
904 %%%%%%%%%%%%%%%%%%%%
905 %%    SLIDE 42   %%
906 %%%%%%%%%%%%%%%%%%%%
907 \begin{frame}{Problem definition}\vspace{0.8 mm}
908 \textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid }
909 \vspace{-8 mm}
910 \begin{figure}
911  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
912  %\includegraphics[width=0.6\textwidth]{asyn/a-440}
913   \end{figure}
914 \end{frame}
915
916
917
918 %%%%%%%%%%%%%%%%%%%%
919 %%    SLIDE 43   %%
920 %%%%%%%%%%%%%%%%%%%%
921 \begin{frame}{Solution}\vspace{0.8mm}
922 \textcolor{blue}{Using asynchronous communications with DVFS }
923 \vspace{-8 mm}
924 \begin{figure}
925   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
926   %\includegraphics[width=0.6\textwidth]{asyn+dvfs/a-314}
927   \end{figure}
928 \end{frame}
929
930
931
932
933 %%%%%%%%%%%%%%%%%%%%
934 %%    SLIDE 44   %%
935 %%%%%%%%%%%%%%%%%%%%
936 %\begin{frame}{The performance models}
937
938 %\begin{block}{\small The performance model of Asynch. Applications}\small
939 %\begin{equation}
940   %\label{eq:asyn_time}
941  %\Tnew =  \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N  \cdot M_i }
942 %\end{equation}
943 %\end{block}
944
945
946 %\begin{block}{\small The performance model of Hybrid Applications}\small
947 %\begin{equation}
948   %\label{eq:asyn_perf}
949   %\Tnew =  \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) +  
950    %\min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N}
951 %\end{equation}
952 %\end{block}
953
954
955 %\end{frame}
956
957
958
959 %%%%%%%%%%%%%%%%%%%%
960 %%    SLIDE 45   %%
961 %%%%%%%%%%%%%%%%%%%%
962 %\begin{frame}{The energy consumption models}
963
964 %\begin{block}{\small The energy model of Asynch. Applications}\small
965 %\begin{equation}
966   %\label{eq:asyn_energy1}
967 % E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot  \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )} 
968 %\end{equation} 
969 %\end{block}
970
971
972 %\begin{block}{\small The energy model of Hybrid Applications}\small
973 %\begin{multline}
974   %\label{eq:asyn_energy}
975  %E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\
976 % ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]}))) 
977 %\end{multline}
978 %\end{block}
979 %\end{frame}
980
981
982
983 %%%%%%%%%%%%%%%%%%%%
984 %%    SLIDE 44   %%
985 %%%%%%%%%%%%%%%%%%%%
986 \begin{frame}{The performance and the energy models }
987
988 \centering
989 \includegraphics[width=0.9\textwidth]{syn-vs-asyn.pdf}
990 \end{frame}
991
992
993
994
995
996 %%%%%%%%%%%%%%%%%%%%
997 %%    SLIDE 46   %%
998 %%%%%%%%%%%%%%%%%%%%
999 \begin{frame}{The scaling algorithm for Asynch.  applications}
1000 \vspace{-0.1 mm}
1001 \centering
1002 \includegraphics[width=0.55\textwidth]{algo-hybrid.pdf}
1003 \end{frame}
1004
1005
1006
1007 %%%%%%%%%%%%%%%%%%%%
1008 %%    SLIDE 47   %%
1009 %%%%%%%%%%%%%%%%%%%%
1010 \begin{frame}{The experiments}
1011    \vspace{-5 mm}
1012    \begin{figure}[!t]
1013    \begin{itemize}
1014       \small
1015         \item The architecture of the grid:
1016    \end{itemize}
1017     \includegraphics[width=0.5\textwidth]{c3/hybrid-model.pdf} 
1018    \end{figure}
1019    \begin{itemize}
1020       \small
1021         \item Applying the proposed algorithm to the asynchronous iterative message passing multi-splitting method.
1022         \item Evaluating the application over the simulator and Grid'5000.
1023    \end{itemize}
1024 \end{frame} 
1025
1026
1027
1028 %%%%%%%%%%%%%%%%%%%%
1029 %%    SLIDE 48   %%
1030 %%%%%%%%%%%%%%%%%%%%
1031 \begin{frame}{The simulation results}
1032 \centering \small \textcolor{blue}{The best scenario in terms of energy and performance  is the Async. MS with Sync. DVFS}
1033
1034 \centering
1035     \includegraphics[scale=0.42]{c3/energy_saving.eps}
1036
1037  \centering  The average energy saving  = \textcolor{red}{22\%}
1038 \end{frame} 
1039
1040
1041
1042 %%%%%%%%%%%%%%%%%%%%
1043 %%    SLIDE 49   %%
1044 %%%%%%%%%%%%%%%%%%%%
1045 \begin{frame}{The simulation results}
1046 \centering
1047    
1048      \includegraphics[scale=0.42]{c3/perf_degra.eps}
1049      
1050  \centering    The average speed-up  = \textcolor{red}{5.72\%}
1051 \end{frame} 
1052
1053
1054
1055 %%%%%%%%%%%%%%%%%%%%
1056 %%    SLIDE 50   %%
1057 %%%%%%%%%%%%%%%%%%%%
1058  \begin{frame}{The Grid'5000 results}
1059    \vspace{-20 mm}
1060    \begin{figure}[!t]
1061    \centering
1062    \hspace{-8 mm}
1063     \includegraphics[width=0.53\textwidth]{c3/energy-s-compare.eps}                    
1064     \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps}
1065    \end{figure}
1066     \vspace{-5 mm}
1067      \centering \footnotesize
1068 The average energy saving = \textcolor{red}{26.93\%}, the average speed-up =  \textcolor{red}{21.48\%}
1069 \end{frame} 
1070
1071
1072 %%%%%%%%%%%%%%%%%%%%
1073 %%    SLIDE 51   %%
1074 %%%%%%%%%%%%%%%%%%%%
1075 \begin{frame}{The comparison results}
1076  \centering
1077     \includegraphics[width=.5\textwidth]{c3/compare.eps}
1078     
1079     \includegraphics[width=.5\textwidth]{c3/compare_scales.eps}
1080 \end{frame} 
1081
1082
1083
1084
1085 %%%%%%%%%%%%%%%%%%%%
1086 %%    SLIDE 52  %%
1087 %%%%%%%%%%%%%%%%%%%%
1088 \begin{frame}{Conclusions}
1089 \section{Conclusions and Perspectives}
1090 \begin{itemize}
1091
1092 \small  \barrow  Three \textcolor{blue}{ new energy consumption and performance} models were proposed for synchronous or asynchronous parallel applications with iterations running over 
1093 \textcolor{blue}{homogeneous and  heterogeneous clusters or grids}.  
1094       
1095
1096
1097 \small \barrow \textcolor{blue}{A new objective function} to optimize both the energy consumption and the performance was proposed.
1098
1099 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.
1100
1101 \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the
1102 Multi-splitting} method.
1103
1104 \small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator} and over  the \textcolor{blue}{Grid'5000 testbed}.
1105
1106 \small  \barrow All the proposed methods were compared to either \textcolor{blue}{Rauber and Rünger's  method} or to the \textcolor{blue}{EDP objective function}.
1107
1108
1109 \end{itemize}
1110 \end{frame}
1111
1112
1113
1114 %%%%%%%%%%%%%%%%%%%%
1115 %%    SLIDE 53   %%
1116 %%%%%%%%%%%%%%%%%%%%
1117 \begin{frame}{Publications}
1118
1119 \begin{block}{\small Journal Articles }\scriptsize
1120 \begin{enumerate}[$\lbrack$1$\rbrack$]
1121
1122 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. Optimizing the energy consumption of message passing applications with iterations executed over grids. \textit{Journal of Computational 
1123       Science}, 2016.
1124
1125 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. Energy Consumption Reduction for     
1126       Asynchronous Message Passing Applications.  \textit{Journal of Supercomputing}, 2016, (Submitted)
1127  
1128 \end{enumerate}
1129 \end{block}
1130
1131
1132 \begin{block}{\small Conference Articles }\scriptsize
1133
1134 \begin{enumerate}[$\lbrack$1$\rbrack$]
1135
1136 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Dynamic Frequency Scaling for
1137       Energy Consumption Reduction in Distributed MPI Programs. \textit{ISPA 2014}, pp.
1138       225-230. IEEE Computer Society, Milan, Italy (2014).
1139
1140 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Energy Consumption Reduction
1141       with DVFS for Message Passing Iterative Applications on Heterogeneous Architectures.
1142       \textit{The $16^{th}$ PDSEC}. pp. 922-931. IEEE Computer Society, INDIA (2015).
1143
1144 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. CPUs Energy Consumption
1145       Reduction for Asynchronous Parallel Methods Running over Grids. \textit{The $19^{th}$ CSE conference}. IEEE Computer Society, 
1146       Paris (2016).  
1147
1148 \end{enumerate}
1149
1150 \end{block}
1151 \end{frame}
1152
1153
1154 %%%%%%%%%%%%%%%%%%%%
1155 %%    SLIDE 54   %%
1156 %%%%%%%%%%%%%%%%%%%%
1157 \begin{frame}{Perspectives}
1158
1159 \begin{itemize}
1160
1161 \small  \barrow The proposed algorithms should  take into consideration the
1162 \textcolor{blue}{variability between some iterations}.
1163
1164 \small  \barrow The proposed algorithms should be applied to \textcolor{blue}{other message passing methods with iterations} in order to see how they adapt to the characteristics of these methods.
1165
1166 \small \barrow The proposed algorithms for heterogeneous platforms should be applied to heterogeneous platforms composed of \textcolor{blue}{CPUs and GPUs}.
1167
1168 \small \barrow Comparing the results returned by the energy models to the values given by  \textcolor{blue}{real instruments that measure the energy consumptions} of CPUs during the execution time.
1169 \end{itemize}
1170
1171 \end{frame}
1172
1173 %%%%%%%%%%%%%%%%%%%%
1174 %%    SLIDE 55  %%
1175 %%%%%%%%%%%%%%%%%%%%
1176 \begin{frame}{Fin} \vspace{-10 mm}
1177
1178             \centering \Large \textcolor{blue}{Thank you for your attention}
1179             
1180             \vspace{2cm}
1181             \centering \textcolor{blue}{ {\Large Questions?}}
1182         
1183 \end{frame}
1184 \end{document}
1185 %  _____ ___ _   _ 
1186 % |  ___|_ _| \ | |
1187 % | |_   | ||  \| |
1188 % |  _|  | || |\  |
1189 % |_|   |___|_| \_|
1190 %