]> AND Private Git Repository - ThesisAhmed.git/blob - thesis-presentation/AhmedSlides.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
correction
[ThesisAhmed.git] / thesis-presentation / AhmedSlides.tex
1  \documentclass{beamer}
2 \usepackage{beamerthemefemto}
3 \usepackage[latin1]{inputenc}
4 \usepackage[T1]{fontenc}
5 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12 \usepackage{xspace}
13  \usepackage{movie15}
14  \usepackage{animate}
15 \usepackage{xmpmulti} 
16  \newcommand{\AG}[2][inline]{%
17   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
18 \newcommand{\JC}[2][inline]{%
19   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
20 \definecolor{myblue}{RGB}{0,29,119}
21 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
22 \usepackage{fixltx2e}
23 %% used to put some subscripts lower, and make them more legible
24 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
25
26 \newcommand{\CL}{\Xsub{C}{L}}
27 \newcommand{\Dist}{\mathit{Dist}}
28 \newcommand{\EdNew}{\Xsub{E}{dNew}}
29 \newcommand{\Eind}{\Xsub{E}{ind}}
30 \newcommand{\Enorm}{\Xsub{E}{Norm}}
31 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
32 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
33 \newcommand{\Es}{\Xsub{E}{S}}
34 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
35 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
36 \newcommand{\Fnew}{\Xsub{F}{new}}
37 \newcommand{\Vnew}{\Xsub{V}{new}}
38 \newcommand{\Vmax}{\Xsub{V}{max}}
39 \newcommand{\Ileak}{\Xsub{I}{leak}}
40 \newcommand{\Kdesign}{\Xsub{K}{design}}
41 \newcommand{\MaxDist}{\mathit{Max}\Dist}
42 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
43 \newcommand{\Ntrans}{\Xsub{N}{trans}}
44 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
45 \newcommand{\PdNew}{\Xsub{P}{dNew}}
46
47 \newcommand{\PdOld}{\Xsub{P}{dOld}}
48 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
49 \newcommand{\Tnorm}{\Xsub{T}{Norm}}
50 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
51 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
52 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
53 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
54 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
55 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
56 \newcommand{\Tnew}{\Xsub{T}{New}}
57 \newcommand{\Told}{\Xsub{T}{Old}}
58 \newcommand{\Ltcm}[1][]{\Xsub{L}{tcm}_{\fxheight{#1}}}
59 \newcommand{\Etcm}[1][]{\Xsub{E}{tcm}_{\fxheight{#1}}}
60 \newcommand{\Niter}[1][]{\Xsub{N}{iter}_{\fxheight{#1}}}
61 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
62 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
63  \usepackage{pifont}
64 \usepackage{xcolor}
65 \definecolor{myblue}{RGB}{0,29,119}
66 \usepackage[textsize=footnotesize]{todonotes}
67 \newcommand{\bsquare}{\item[\color{myblue}\ding{110}]} 
68 \newcommand{\barrow}{\item[\color{myblue}\ding{228}]}
69 \newcommand{\bwarrow}{\item[\color{myblue}\ding{227}]}
70 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
71
72
73
74 %\title{Energy Consumption Optimization of Parallel Applications with
75 %Iterations using CPU Frequency Scaling} 
76 \vspace{2cm}
77
78 \title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-0.5cm}
79 \author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under the supervision of: \\ \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ UBFC - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
80
81 \date{}
82 \vspace{-3cm}
83 %  ____  _____ ____  _   _ _____ 
84 % |  _ \| ____| __ )| | | |_   _|
85 % | | | |  _| |  _ \| | | | | |  
86 % | |_| | |___| |_) | |_| | | |  
87 % |____/|_____|____/ \___/  |_|  
88
89 \begin{document}
90 \setbeamertemplate{background}{\titrefemto}
91
92 %%%%%%%%%%%%%%%%%%%%
93 %%    SLIDE 01    %%
94 %%%%%%%%%%%%%%%%%%%% 
95 \begin{frame}[plain]
96 \vspace{1cm}
97 \centering
98    \titlepage
99 \end{frame}
100
101
102 %%%%%%%%%%%%%%%%%%%%
103 %%    SLIDE 02    %%
104 %%%%%%%%%%%%%%%%%%%% 
105 \setbeamertemplate{background}{\pagefemto}
106 \begin{frame}{Outline}
107
108 \setbeamertemplate{section in toc}[sections numbered] 
109 \tableofcontents
110 \end{frame}
111
112
113 %%%%%%%%%%%%%%%%%%%%
114 %%    SLIDE 03    %%
115 %%%%%%%%%%%%%%%%%%%% 
116 \begin{frame}{Introduction and problem definition}
117  \section{\small {Introduction and Problem definition}}
118    \bf \textcolor{blue}{To get more computing power:}
119      \begin{minipage}{0.5\textwidth} 
120       \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increase the frequency of a  processor.\\ (limited due to overheating)}
121     \end{minipage}%
122     \begin{minipage}{0.6\textwidth} 
123     
124 \begin{figure}[h!]
125         
126     \includegraphics[width=0.7\textwidth]{fig/freq-years} 
127     \end{figure}
128     \end{minipage}%
129     \vspace{0.2cm}
130     \begin{minipage}{0.5\textwidth} 
131      \textcolor{blue}{2)} \small \bf \textcolor{black}{Use more nodes.}
132      
133  \textcolor{black}{The supercomputer Tianhe-2 has more than 3 million cores and consumes around 17.8 megawatts.}  
134           
135     \end{minipage}%
136     \begin{minipage}{0.6\textwidth} 
137     \begin{figure}[h!]
138      \includegraphics[width=0.7\textwidth]{fig/clusters} 
139     \end{figure}
140     \end{minipage}%
141  \end{frame}
142  
143  
144  
145
146  %%%%%%%%%%%%%%%%%%%
147 %%    SLIDE 04   %%
148 %%%%%%%%%%%%%%%%%%%% 
149 \begin{frame}{Techniques for energy consumption reduction}
150  \vspace{0.1cm}
151  
152  
153      \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}  
154     \vspace{-0.9cm}
155     \begin{figure}
156      \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
157      %\includegraphics[width=0.6\textwidth]{on-off/a-69}
158     \end{figure}
159  \end{frame}
160
161 %%%%%%%%%%%%%%%%%%%%
162 %%    SLIDE 06    %%
163 %%%%%%%%%%%%%%%%%%%% 
164 \begin{frame}{Techniques for energy consumption reduction}
165  
166   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic voltage and frequency Scaling (DVFS)}
167      \vspace{-0.5cm}
168     \begin{figure}
169     \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
170      %\includegraphics[width=0.6\textwidth]{DVFS-meq/a-109}
171     \end{figure}
172     \end{frame}
173  
174
175
176 %%%%%%%%%%%%%%%%%%%%
177 %%    SLIDE 07    %%
178 %%%%%%%%%%%%%%%%%%%% 
179 \begin{frame}{Motivations}
180 \vspace{0.05cm}
181 \section{\small {Motivations}}
182 \textcolor{blue}{Why we used the DVFS method:}
183 \vspace{-0.49cm}
184 \begin{minipage}{0.5\textwidth} 
185     \vspace{-0.49cm} 
186       \begin{itemize} 
187        \item  \small \textcolor{black}{ The CPU is the component that consumes the  highest amount of energy in a node \textsuperscript{1}. }
188                 
189          \end{itemize}
190
191     \end{minipage}%
192     \begin{minipage}{0.5\textwidth}
193      \vspace{-0.49cm} 
194     \begin{figure}[h!]
195      \includegraphics[width=0.85\textwidth]{fig/node-power} 
196      
197     \end{figure}
198     \end{minipage}%
199     
200   \begin{itemize} \item \small  \textcolor{black}{DVFS reduces the energy consumption while 
201    keeping all the nodes working.}
202                 \item \small \textcolor{black}{It has a very small overhead compared to switching-off the idle nodes.}  \end{itemize} 
203     
204 \vspace{-0.12cm}
205
206  \begin{block}{\textcolor{white}{Challenge and Objective}}
207
208         \small  \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy consumption, \textcolor{blue}{but} it degrades the performance simultaneously.}
209                 
210                 \vspace{0.1cm}
211  \small  \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel application.}
212 \end{block}
213  
214  \tiny \textsuperscript{1} Fan, X., Weber, W., and Barroso, L. A. 2007.  Power provisioning
215 for a warehouse-sized computer.
216
217     \end{frame}
218
219
220
221 %%%%%%%%%%%%%%%%%%%%
222 %%    SLIDE 08    %%
223 %%%%%%%%%%%%%%%%%%%% 
224
225
226 \begin{frame}{The first contribution}
227
228 \section{\small {Energy optimization of a homogeneous platform}}
229 %\vspace{-3cm}
230  % \includegraphics[width=0.6\textwidth]{white.pdf} 
231
232 \begin{center}
233 \bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a homogeneous platform}
234 \end{center}
235  \end{frame}
236
237
238
239 %%%%%%%%%%%%%%%%%%%%
240 %%    SLIDE 09    %%
241 %%%%%%%%%%%%%%%%%%%% 
242  
243 \begin{frame}{Objectives}
244         \begin{femtoBlock}{} \vspace{-12 mm}
245                 \begin{itemize} \small
246                    \item  Study the effect of the scaling factor on the \textbf{energy consumption and performance } of parallel  applications with iterations. \medskip
247                    
248                    \item  Discovering the \textbf{energy-performance trade-off relation} when changing the frequency of the processor.\medskip
249                    \item  Proposing an algorithm for selecting the scaling factor that produces  \textbf {the optimal trade-off} between the energy consumption and the performance. \medskip
250                    \item  Comparing the proposed algorithm to existing methods.
251                    
252                    
253                    %\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the  
254                           %energy consumption \\  \quad ~ ~\quad    of  independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on. 
255                 \end{itemize}
256                  %\let\thefootnote\relax\footnote{}
257           \vspace{-10 mm}
258         \end{femtoBlock}      
259 \end{frame}
260
261
262
263 %%%%%%%%%%%%%%%%%%%%
264 %%    SLIDE 10    %%
265 %%%%%%%%%%%%%%%%%%%% 
266
267
268 \begin{frame}{Execution of synchronous parallel tasks}
269 \vspace{-0.5 cm}
270 \begin{figure}
271   \centering
272   \subfloat[Synchronous imbalanced communications]{%
273     \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
274   \subfloat[Synchronous imbalanced computations]{%
275     \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
276  % \caption{Parallel tasks on homogeneous platform}
277   \label{fig:homo}
278 \end{figure}
279
280  \end{frame}
281  
282  
283  
284
285 %%%%%%%%%%%%%%%%%%%%
286 %%    SLIDE 11   %%
287 %%%%%%%%%%%%%%%%%%%% 
288 \begin{frame}{Energy model for a homogeneous platform}    
289       The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static   
290        (\textcolor{red}{$P_s$}) power. 
291     \begin{equation}
292      \label{eq:pd}
293      \textcolor{red}{ P_d} = \textcolor{blue}{\alpha \cdot CL \cdot V^2 \cdot F}
294    \end{equation}
295     \scriptsize \underline{Where}: \\ 
296     \scriptsize {\textcolor{blue}{$\alpha$}: switching activity \hspace{15 mm}  \textcolor{blue}{$CL$}: load capacitance\\     
297     \textcolor{blue}{$V$} the supply voltage \hspace{14 mm} \textcolor{blue}{$F$}: operational frequency}
298    \begin{equation}
299      \label{eq:ps}
300      \small \textcolor{red}{P_s} = \textcolor{blue}{V \cdot N_{trans} \cdot K_{design} \cdot I_{Leak}}
301    \end{equation}
302     \underline{Where}:\\ 
303         \scriptsize{ \textcolor{blue}{$V$}: the supply voltage.  \hspace{28 mm}   \textcolor{blue}{$N_{trans}$}: number of transistors. \\   
304         \textcolor{blue}{$K_{design}$}: design dependent parameter. \hspace{8 mm} \textcolor{blue}{$I_{leak}$}: technology dependent  
305              parameter.} 
306 \end{frame}
307
308 %%%%%%%%%%%%%%%%%%%%
309 %%    SLIDE 12   %%
310 %%%%%%%%%%%%%%%%%%%% 
311
312 \begin{frame}{Energy model for a homogeneous platform}
313        
314           The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.  \medskip     
315               
316               
317               
318         \begin{block}{\small Rauber and Rünger's energy model}
319          $ E = P_{d} \cdot S_1^{-2} \cdot
320          \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
321             P_{s} \cdot S_1  \cdot T_1 \cdot N$
322         \end{block}     
323            \textcolor{blue}{$S_1$}: the maximum scaling factor.\\ 
324            \textcolor{blue}{$P_{d}$}: the dynamic power.\\
325            \textcolor{blue}{$P_{s}$}: the static power.\\
326            \textcolor{blue}{$T_I$}: the execution time of the slower task.\\ 
327            \textcolor{blue}{$T_i$}: the execution time of task i.\\ 
328            \textcolor{blue}{$N$}:  the number of  nodes.
329        
330 \end{frame}
331   
332   
333 %%%%%%%%%%%%%%%%%%%%
334 %%    SLIDE 13   %%
335 %%%%%%%%%%%%%%%%%%%% 
336 \begin{frame}{Performance evaluation of MPI programs}      
337         \begin{femtoBlock}{}
338               \vspace{-5 mm}
339               \begin{block}{\small Execution time prediction model}
340                      \centering{ $ \textcolor{red}{T_{new}} = \textcolor{blue}{T_{Max Comp Old} \cdot S + T_{{Min Comm Old}}}$}
341           \end{block}   
342           \vspace{10 mm}
343            \centering{\includegraphics[width=.4\textwidth]{c1/cg_per}
344            \quad%
345            \includegraphics[width=.4\textwidth]{c1/lu_pre}}
346             \vspace{5 mm}
347             
348            \small The maximum normalized error for CG=0.0073 \textbf{(the smallest)} and LU=0.031 \textbf{(the worst)}.
349            \end{femtoBlock}
350 \end{frame}
351
352
353
354
355  %%%%%%%%%%%%%%%%%%%%
356 %%    SLIDE 14   %%
357 %%%%%%%%%%%%%%%%%%%%  
358 \begin{frame}{Performance and energy reduction trade-off}      
359         \begin{femtoBlock}{} \vspace{-15 mm}
360                \begin{figure}
361      \centering
362      \subfloat[\small  Real relation.]{%
363      \includegraphics[width=.43\textwidth]{c1/file3}\label{fig:r2}}
364      \quad%
365      \subfloat[\small Converted relation.]{%
366      \includegraphics[width=.43\textwidth]{c1/file}\label{fig:r1}}%
367   \label{fig:rel}
368  % \caption{The energy and performance relation}
369 \end{figure}
370
371  Where:~~~ $\textcolor{blue}{Performance} = execution~time^{-1}$
372
373 %\vspace{-0.3cm}
374       \small 
375          \begin{block}{\small Our objective function}
376          \centering{$\textbf{\emph {\textcolor{red}{MaxDist}}} = \max_{j=1,2,\dots ,F}             
377                     (\overbrace{P_{Norm}(S_j)}^{{\textcolor{blue}{Maximize}}} - 
378                      \overbrace{E_{Norm}(S_j)}^{{\textcolor{blue}{Minimize}}} )$}
379                                          
380         \end{block}                
381         \end{femtoBlock}
382        
383 \end{frame}
384
385 %%%%%%%%%%%%%%%%%%%%
386 %%    SLIDE 15   %%
387 %%%%%%%%%%%%%%%%%%%% 
388  \begin{frame}{Scaling factor selection algorithm}
389 \vspace{-0.75cm}
390      \begin{center}
391       \includegraphics[width=.56 \textwidth]{c1/algo-homo}
392      \end{center}
393      
394 \end{frame}
395
396
397 %%%%%%%%%%%%%%%%%%%%
398 %%    SLIDE 16   %%
399 %%%%%%%%%%%%%%%%%%%% 
400 \begin{frame}{Scaling algorithm example}
401 \vspace{-0.75cm}
402      
403      \begin{figure}
404   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
405   %\includegraphics[width=0.6\textwidth]{dvfs-homo/a-159}
406   \end{figure}
407 \end{frame}
408
409 %%%%%%%%%%%%%%%%%%%%
410 %%    SLIDE 17   %%
411 %%%%%%%%%%%%%%%%%%%% 
412 \begin{frame}{Experimental results }
413       \begin{femtoBlock}{}      
414         \begin{itemize}
415          \small
416            \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
417            \item The proposed algorithm was applied to the NAS parallel benchmarks.\medskip
418            \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
419            \item The proposed algorithm was evaluated over the A, B and C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively. \medskip
420            \item $P_d=20W$,  $P_s=4W$.
421                 \end{itemize}
422         \end{femtoBlock}
423 \end{frame}
424
425
426 %%%%%%%%%%%%%%%%%%%%
427 %%    SLIDE 18   %%
428 %%%%%%%%%%%%%%%%%%%% 
429 \begin{frame}{Experimental results}
430   \begin{femtoBlock}{}  
431       \centering { 
432      \includegraphics[width=.35\textwidth]{c1/ep}
433      \includegraphics[width=.35\textwidth]{c1/cg}
434      \includegraphics[width=.35\textwidth]{c1/bt}}
435      
436      \centering {\includegraphics[width=.55\textwidth]{c1/results.pdf}}
437  \end{femtoBlock}
438 \end{frame}
439
440
441   %%%%%%%%%%%%%%%%%%%%
442 %%    SLIDE 19   %%
443 %%%%%%%%%%%%%%%%%%%% 
444 \begin{frame}{Results comparison}
445          \begin{block}{\small Rauber and Rünger's optimal scaling factor} 
446            $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot
447             \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $
448         \end{block}   
449         
450         
451     \centering {
452          %\includegraphics[width=.33\textwidth]{c1/c1.pdf}
453          %\qquad
454          %\includegraphics[width=.33\textwidth]{c1/c2.pdf}}
455            
456          
457             \includegraphics[width=.55\textwidth]{c1/compare-c.pdf}}
458         
459 \end{frame}
460
461
462 %%%%%%%%%%%%%%%%%%%%
463 %%    SLIDE 20   %%
464 %%%%%%%%%%%%%%%%%%%% 
465 \begin{frame}{The proposed new energy model}
466     \vspace{-0.75cm}     
467   \begin{figure}
468   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
469   %\includegraphics[width=0.6\textwidth]{homo-model/a-356}
470   \end{figure}
471 \end{frame}
472
473
474 %%%%%%%%%%%%%%%%%%%%
475 %%    SLIDE 21   %%
476 %%%%%%%%%%%%%%%%%%%% 
477 \begin{frame}{\large Comparing the new model with Rauber's model }
478  \vspace{0.1cm}    
479  \centering
480     \includegraphics[width=.45\textwidth]{c1/energy_con}
481     
482     \includegraphics[width=.5\textwidth]{c1/compare-scales}
483 \end{frame}
484
485
486
487
488    % \begin{frame}{Summary}
489      % \begin{femtoBlock}{}    
490      % \begin{itemize}
491       %\small
492        %\item  We have presented a new online scaling factor selection method that  \textcolor{blue}{optimizes simultaneously the energy and performance}.\medskip
493        % \item It predicts \textcolor{blue}{ the energy consumption and the performance} of the parallel applications. \medskip
494          %\item Our algorithm  \textcolor{blue}{saves more energy} when the communication and the other slacks times are big.     \medskip    
495          %\item It gives the  \textcolor{blue}{best trade-off between energy reduction and
496                % performance}. \medskip
497          %\item  Our method \ \textcolor{blue}{outperforms Rauber and Rünger's method} in terms of  energy-performance ratio.
498          %\item The proposed new energy model is  \textcolor{blue}{more accurate} then Rauber energy model.
499          %\end{itemize}      
500          
501         %\end{femtoBlock}
502 %\end{frame}
503
504
505 %%%%%%%%%%%%%%%%%%%%
506 %%    SLIDE 22    %%
507 %%%%%%%%%%%%%%%%%%%% 
508
509
510 \begin{frame}{The second contribution}
511
512 \section{\small {Energy optimization of a heterogeneous platform}}
513 \begin{center}
514
515
516 \bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a Heterogeneous platform}
517 \end{center}
518  \end{frame}
519  
520
521
522 %%%%%%%%%%%%%%%%%%%%
523 %%    SLIDE 23    %%
524 %%%%%%%%%%%%%%%%%%%% 
525  
526 \begin{frame}{Objectives}
527         \begin{femtoBlock}{} \vspace{-12 mm}
528                 \begin{itemize} \small
529                   \item   Proposing  \textcolor{blue}{new energy and performance models} for message passing  applications with iterations running  
530                           over a heterogeneous platform (cluster or Grid). \medskip
531                    \item  Studying the effect of the scaling factor $S$ on both the \textcolor{blue}{energy consumption  and the performance} of
532                           message passing iterative applications.    \medskip                      
533                    
534                    \item  Computing  the vector of scaling factors ($S_1, S_2, ..., S_n$)  producing \textcolor{blue} {the optimal trade-off} between
535                           the energy consumption and the performance. 
536                 \end{itemize}
537                  
538           \vspace{-10 mm}
539         \end{femtoBlock}      
540 \end{frame}
541
542
543 %%%%%%%%%%%%%%%%%%%%
544 %%    SLIDE 24    %%
545 %%%%%%%%%%%%%%%%%%%%
546 \begin{frame}{The execution time model}    
547       \vspace{-8 mm}
548      \begin{figure}[!t]
549        \centering
550        \includegraphics[scale=0.5]{c2/commtasks}
551        \label{fig:heter}
552      \end{figure}     
553        \vspace{-12 mm}
554        \medskip
555        
556     \begin{block}{\small The execution time prediction model}
557     \begin{equation}
558      \label{eq:perf}
559      \small\textcolor{red}{ T_{new}} = \textcolor{blue}{\max_{i=1,2,\dots,N} ({TcpOld_i} \cdot S_{i}) + \min_{i=1,2,\dots,N} (Tcm_i)}
560     \end{equation}
561     \end{block}   
562  \small  Where: $ \textcolor{red}{Tcm} = \textcolor{blue}{communication~times + slack~times}$
563   
564 \end{frame}
565  
566  %%%%%%%%%%%%%%%%%%%%
567 %%    SLIDE 25    %%
568 %%%%%%%%%%%%%%%%%%%%
569  \begin{frame}{The energy consumption model} 
570     The overall energy consumption of a message passing synchronous  application executed over
571      a heterogeneous platform can be computed as  follows:
572     \begin{multline}
573      \label{eq:energy}
574      \textcolor{red}{E} = \textcolor{blue}{\sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)}} + {} \\
575      \textcolor{blue}{\sum_{i=1}^{N} (Ps_i \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) + {\min_{i=1,2,\dots,N} (Tcm_i))}}   
576       \hspace{10 mm}
577     \end{multline}
578     \underline{where}:\\
579     \textcolor{blue}{N} : is the number of nodes.
580 \end{frame}
581  
582  
583 %%%%%%%%%%%%%%%%%%%%
584 %%    SLIDE 26    %%
585 %%%%%%%%%%%%%%%%%%%%
586   \begin{frame}{The  energy  model example for heter. cluster}
587   \vspace{-0.5cm}
588  \begin{figure}
589   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
590   %\includegraphics[width=0.6\textwidth]{heter-model/a-272}
591   \end{figure}
592  \end{frame}
593  
594  
595  
596  
597 %%%%%%%%%%%%%%%%%%%%
598 %%    SLIDE 27    %%
599 %%%%%%%%%%%%%%%%%%%%
600 %\begin{frame}{The trade-off between energy  and performance}
601    % \vspace{-7 mm}
602     %\begin{figure}
603    %  \centering{ \includegraphics[width=.4\textwidth]{c2/heter}}
604    % \end{figure}
605    % \vspace{-7 mm}
606    % \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}%{$E_{norm} = \frac{E_{reduced}} 
607     %{E_{Max}}$}. \\
608     % \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}.
609    
610    %  \begin{block}{\small The tradeoff model}
611     % \begin{equation}
612     %  \label{eq:max}
613     %  \textcolor{red}{MaxDist} =
614      % \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N}
615       % (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} -
616       % \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} )
617       %\end{equation}
618     % \end{block}  
619 %\end{frame}
620    
621  
622 %%%%%%%%%%%%%%%%%%%%
623 %%    SLIDE 28    %%
624 %%%%%%%%%%%%%%%%%%%%
625  \begin{frame}{The scaling algorithm for heter. cluster}
626
627  \centering
628    \includegraphics[width=.52\textwidth]{algo-heter}
629  \end{frame}
630  
631  
632  %%%%%%%%%%%%%%%%%%%%
633 %%    SLIDE 29    %%
634 %%%%%%%%%%%%%%%%%%%%
635  \begin{frame}{The scaling algorithm example}
636  \vspace{-0.5cm}
637  \centering
638  
639   \begin{figure}
640   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
641  % \includegraphics[width=0.6\textwidth]{dvfs-heter/a-650}
642   \end{figure}
643 \end{frame}
644
645
646
647
648 %%%%%%%%%%%%%%%%%%%%
649 %%    SLIDE 30    %%
650 %%%%%%%%%%%%%%%%%%%%
651 \begin{frame}{Experiments over a heterogeneous cluster  }   
652         \begin{itemize}
653          \small
654            \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
655            \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip
656            \item Four types of processors with different computing powers were used.\medskip
657            \item The benchmarks were executed with different number of nodes ranging from 4 to 144 nodes.\medskip
658            \item It was assumed that the total power consumption of the CPU consist of 80\% dynamic power and 20\% static power.
659                   \medskip
660          
661         \end{itemize}
662
663 \end{frame}  
664
665
666 %%%%%%%%%%%%%%%%%%%%
667 %%    SLIDE 31    %%
668 %%%%%%%%%%%%%%%%%%%%
669 \begin{frame}{The experimental results}
670    \vspace{-5 mm}
671    \begin{figure}[!t]
672    \centering
673     \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
674     
675     \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} 
676      for the class C of the NAS Benchmarks executed over 8 nodes}
677     
678    \end{figure}
679 \end{frame} 
680  
681  
682  
683 %%%%%%%%%%%%%%%%%%%%
684 %%    SLIDE 32    %%
685 %%%%%%%%%%%%%%%%%%%%
686 \begin{frame}{The experimental results}
687    \vspace{-5 mm}
688    \begin{figure}[!t]
689    \centering
690     
691     \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
692    
693    \textcolor{blue}{On average, it degrades  by \textcolor{red}{3.8\%} the performance
694      of NAS Benchmarks class C executed over 8 nodes}
695      \end{figure}
696 \end{frame} 
697  
698  
699  
700 %%%%%%%%%%%%%%%%%%%%
701 %%    SLIDE 33    %%
702 %%%%%%%%%%%%%%%%%%%%
703 \begin{frame}{The results of the three power scenarios}
704    \vspace{-5 mm}
705    \begin{figure}[!t]
706    \centering
707    \includegraphics[width=.55\textwidth]{c2/three_power.pdf}
708    \vspace{10 mm}
709    \includegraphics[width=.55\textwidth]{c2/three_scenarios.pdf}
710    \end{figure}
711 \end{frame}  
712
713
714
715 %%%%%%%%%%%%%%%%%%%%
716 %%    SLIDE 34    %%
717 %%%%%%%%%%%%%%%%%%%%
718 \begin{frame}{Comparing the objective function to EDP}
719      
720      EDP is the products between the energy consumption and the delay.
721     \vspace{-5 mm}
722     \begin{figure}[!t]
723     \centering
724     \includegraphics[width=.55\textwidth]{c2/avg_compare.pdf}
725     
726     \includegraphics[width=.55\textwidth]{c2/compare_with_EDP.pdf}
727     \end{figure}
728 \end{frame} 
729
730
731
732
733 %%%%%%%%%%%%%%%%%%%%
734 %%    SLIDE 35    %%
735 %%%%%%%%%%%%%%%%%%%%
736 %\begin{frame}{Energy optimization of grid platform} 
737   % \begin{figure}[!t]
738    % \centering
739          %    \includegraphics[width=.6\textwidth]{c2/grid5000.pdf}
740              
741         %   \small  10 sites distributed over France and Luxembourg
742         %\end{figure}
743 %\end{frame} 
744
745
746 %%%%%%%%%%%%%%%%%%%%
747 %%    SLIDE 36    %%
748 %%%%%%%%%%%%%%%%%%%%
749 \begin{frame}{The grid architecture}
750 \begin{center}
751 \includegraphics[width=.8\textwidth]{c2/init_freq.pdf}
752 \end{center}
753
754  %\begin{frame}{Performance, Energy and trade-off models} \small
755   %\begin{block}{\small The performance model of grid}
756    % \begin{equation}
757   %\label{eq:perf}
758   %\Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
759  % +\mathop{\min_{j=1,\dots,M_h}}  (\Tcm[hj])
760 %\end{equation}
761     %\end{block}   
762  
763  
764  %\begin{block}{\small The energy model of grid}\small
765   %  \begin{equation}
766   %\label{eq:energy}
767  %E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
768 % \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew)
769 %\end{equation}
770    % \end{block}  
771
772 %\begin{block}{\small The trade-off model of grid}
773 %\small
774     %\begin{equation}
775    %\label{eq:max}
776   %\MaxDist =
777   %\mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j}
778    %   (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
779     %   \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
780 %\end{equation}
781    % \end{block}  
782      
783      
784  \end{frame}
785   
786   
787   
788 %%%%%%%%%%%%%%%%%%%%
789 %%    SLIDE 37    %%
790 %%%%%%%%%%%%%%%%%%%%
791  \begin{frame}{Experiments over Grid'5000}
792  
793    \textcolor{blue}{The experiments were conducted using three 
794           clusters distributed over one or two sites.}
795            \vspace{-7 mm}
796           \begin{center}
797           \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf}
798           \end{center}          
799       \vspace{-10 mm}
800   \textcolor{blue}{Grid'5000 power measurement tools were used.} 
801         \vspace{-9 mm}
802   \begin{center}
803           \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf}
804           \end{center}
805           
806       
807 \end{frame}   
808
809
810
811
812 %%%%%%%%%%%%%%%%%%%%
813 %%    SLIDE 38    %%
814 %%%%%%%%%%%%%%%%%%%%
815 \begin{frame}{Experiments over Grid'5000}
816
817    \begin{minipage}{0.4\textwidth}
818        %\textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by  
819         %\textcolor{red}{30\%}}
820      \small \textcolor{blue}{The average energy saving =  \textcolor{red}{30\%}}
821    \end{minipage}  
822      \begin{minipage}{0.55\textwidth}
823         \begin{figure}[h!]
824           \includegraphics[width=0.83 \textwidth]{c2/eng_s.eps}
825      \end{figure}
826 \end{minipage}
827
828          \begin{minipage}{0.4\textwidth}
829            %\textcolor{blue}{Execution the NAS class D on 16 nodes degrades the 
830                 %performance by \textcolor{red}{3.2\%}}
831       \small  \textcolor{blue}{The average performance degradation  =  \textcolor{red}{3.2\%}}  
832         \end{minipage}
833        \begin{minipage}{0.55\textwidth}
834          \begin{figure}[h!] 
835            \includegraphics[width=.83\textwidth]{c2/per_d.eps}
836          \end{figure}  
837           \end{minipage}
838  \end{frame}
839
840
841
842 %%%%%%%%%%%%%%%%%%%%
843 %%    SLIDE 39    %%
844 %%%%%%%%%%%%%%%%%%%%
845 \begin{frame}{Experiments over Grid'5000}
846    \textcolor{blue}{One core  and Multi-cores per node results:}
847    
848   \begin{figure}[h!] 
849   \includegraphics[width=.48\textwidth]{c2/eng_s_mc.eps}
850   \hspace{0.3cm}
851   \includegraphics[width=.48\textwidth]{c2/per_d_mc.eps}
852   \end{figure} 
853   
854   \centering \small \textcolor{blue}{Using multi-cores per node scenario decreases the computations to communications ratio}.
855 \end{frame}
856
857
858
859 %\begin{frame}{Summary}
860 %\begin{itemize}
861      % \small
862         % \item  Two scaling algorithm were applies to \textcolor{blue}{heterogeneous %cluster} and \textcolor{blue}{grid}.
863         % \item  A new \textcolor{blue}{energy} and \textcolor{blue}{performance} models were proposed.
864       %   \item  The experimental results ere conducted over \textcolor{blue}{SimGrid}  simulators and real 
865           %test-bed \textcolor{blue}{Grid'5000}.
866          
867          %\item The algorithm saves the energy by \textcolor{blue}{29\%} and only
868         %  degrades the performance by \textcolor{blue}{3.8\%} for simulated  heterogeneous
869       %    clusters.
870          
871          %\item The algorithm saves the energy by \textcolor{blue}{30\%} and only
872         % degrades the performance by \textcolor{blue}{3.2\%} for  Grid'5000 results.
873          
874        %  \item  The proposed method \textcolor{blue}{outperforms the EDP method} in terms of  energy-performance ratio.
875      %    \end{itemize}   
876 %\end{frame}
877
878
879 %%%%%%%%%%%%%%%%%%%%
880 %%    SLIDE 40    %%
881 %%%%%%%%%%%%%%%%%%%%
882 \begin{frame}{The third contribution}
883 \section{\small {Energy optimization of asynchronous applications}}
884 \begin{center}
885 \bf  \Large \textcolor{blue}{Energy optimization of asynchronous iterative message passing  applications}
886 \end{center}
887  \end{frame}
888
889
890
891 %%%%%%%%%%%%%%%%%%%%
892 %%    SLIDE 41   %%
893 %%%%%%%%%%%%%%%%%%%%
894 \begin{frame}{Problem definition}\vspace{0.8 mm}
895 \textcolor{blue}{The execution of a synchronous parallel iterative application over a grid }
896 \vspace{-8 mm}
897 \begin{figure}
898  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
899  %\includegraphics[width=0.6\textwidth]{syn/a-503}
900   \end{figure}
901 \end{frame}
902
903
904
905 %%%%%%%%%%%%%%%%%%%%
906 %%    SLIDE 42   %%
907 %%%%%%%%%%%%%%%%%%%%
908 \begin{frame}{Problem definition}\vspace{0.8 mm}
909 \textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid }
910 \vspace{-8 mm}
911 \begin{figure}
912  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
913  %\includegraphics[width=0.6\textwidth]{asyn/a-440}
914   \end{figure}
915 \end{frame}
916
917
918
919 %%%%%%%%%%%%%%%%%%%%
920 %%    SLIDE 43   %%
921 %%%%%%%%%%%%%%%%%%%%
922 \begin{frame}{Solution}\vspace{0.8mm}
923 \textcolor{blue}{Using asynchronous communications with DVFS }
924 \vspace{-8 mm}
925 \begin{figure}
926   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
927   %\includegraphics[width=0.6\textwidth]{asyn+dvfs/a-314}
928   \end{figure}
929 \end{frame}
930
931
932
933
934 %%%%%%%%%%%%%%%%%%%%
935 %%    SLIDE 44   %%
936 %%%%%%%%%%%%%%%%%%%%
937 %\begin{frame}{The performance models}
938
939 %\begin{block}{\small The performance model of Asynch. Applications}\small
940 %\begin{equation}
941   %\label{eq:asyn_time}
942  %\Tnew =  \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N  \cdot M_i }
943 %\end{equation}
944 %\end{block}
945
946
947 %\begin{block}{\small The performance model of Hybrid Applications}\small
948 %\begin{equation}
949   %\label{eq:asyn_perf}
950   %\Tnew =  \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) +  
951    %\min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N}
952 %\end{equation}
953 %\end{block}
954
955
956 %\end{frame}
957
958
959
960 %%%%%%%%%%%%%%%%%%%%
961 %%    SLIDE 45   %%
962 %%%%%%%%%%%%%%%%%%%%
963 %\begin{frame}{The energy consumption models}
964
965 %\begin{block}{\small The energy model of Asynch. Applications}\small
966 %\begin{equation}
967   %\label{eq:asyn_energy1}
968 % E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot  \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )} 
969 %\end{equation} 
970 %\end{block}
971
972
973 %\begin{block}{\small The energy model of Hybrid Applications}\small
974 %\begin{multline}
975   %\label{eq:asyn_energy}
976  %E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\
977 % ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]}))) 
978 %\end{multline}
979 %\end{block}
980 %\end{frame}
981
982
983
984 %%%%%%%%%%%%%%%%%%%%
985 %%    SLIDE 44   %%
986 %%%%%%%%%%%%%%%%%%%%
987 \begin{frame}{The performance and the energy models }
988
989 \centering
990 \includegraphics[width=0.9\textwidth]{syn-vs-asyn.pdf}
991 \end{frame}
992
993
994
995
996
997 %%%%%%%%%%%%%%%%%%%%
998 %%    SLIDE 46   %%
999 %%%%%%%%%%%%%%%%%%%%
1000 \begin{frame}{The scaling algorithm for Asynch.  applications}
1001 \vspace{-0.1 mm}
1002 \centering
1003 \includegraphics[width=0.55\textwidth]{algo-hybrid.pdf}
1004 \end{frame}
1005
1006
1007
1008 %%%%%%%%%%%%%%%%%%%%
1009 %%    SLIDE 47   %%
1010 %%%%%%%%%%%%%%%%%%%%
1011 \begin{frame}{The experiments}
1012    \vspace{-5 mm}
1013    \begin{figure}[!t]
1014    \begin{itemize}
1015       \small
1016         \item The architecture of the grid:
1017    \end{itemize}
1018     \includegraphics[width=0.5\textwidth]{c3/hybrid-model.pdf} 
1019    \end{figure}
1020    \begin{itemize}
1021       \small
1022         \item Applying the proposed algorithm to the asynchronous iterative message passing multi-splitting method.
1023         \item Evaluating the application over the simulator and Grid'5000.
1024    \end{itemize}
1025 \end{frame} 
1026
1027
1028
1029 %%%%%%%%%%%%%%%%%%%%
1030 %%    SLIDE 48   %%
1031 %%%%%%%%%%%%%%%%%%%%
1032 \begin{frame}{The simulation results}
1033 \centering \small \textcolor{blue}{The best scenario in terms of energy and performance  is the Async. MS with Sync. DVFS}
1034
1035 \centering
1036     \includegraphics[scale=0.42]{c3/energy_saving.eps}
1037
1038  \centering  The average energy saving  = \textcolor{red}{22\%}
1039 \end{frame} 
1040
1041
1042
1043 %%%%%%%%%%%%%%%%%%%%
1044 %%    SLIDE 49   %%
1045 %%%%%%%%%%%%%%%%%%%%
1046 \begin{frame}{The simulation results}
1047 \centering
1048    
1049      \includegraphics[scale=0.42]{c3/perf_degra.eps}
1050      
1051  \centering    The average speed-up  = \textcolor{red}{5.72\%}
1052 \end{frame} 
1053
1054
1055
1056 %%%%%%%%%%%%%%%%%%%%
1057 %%    SLIDE 50   %%
1058 %%%%%%%%%%%%%%%%%%%%
1059  \begin{frame}{The Grid'5000 results}
1060    \vspace{-20 mm}
1061    \begin{figure}[!t]
1062    \centering
1063    \hspace{-8 mm}
1064     \includegraphics[width=0.53\textwidth]{c3/energy-s-compare.eps}                    
1065     \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps}
1066    \end{figure}
1067     \vspace{-5 mm}
1068      \centering \footnotesize
1069 The average energy saving = \textcolor{red}{26.93\%}, the average speed-up =  \textcolor{red}{21.48\%}
1070 \end{frame} 
1071
1072
1073 %%%%%%%%%%%%%%%%%%%%
1074 %%    SLIDE 51   %%
1075 %%%%%%%%%%%%%%%%%%%%
1076 \begin{frame}{The comparison results}
1077  \centering
1078     \includegraphics[width=.5\textwidth]{c3/compare.eps}
1079     
1080     \includegraphics[width=.5\textwidth]{c3/compare_scales.eps}
1081 \end{frame} 
1082
1083
1084
1085
1086 %%%%%%%%%%%%%%%%%%%%
1087 %%    SLIDE 52  %%
1088 %%%%%%%%%%%%%%%%%%%%
1089 \begin{frame}{Conclusions}
1090 \section{Conclusions and Perspectives}
1091 \begin{itemize}
1092
1093 \small  \barrow  Three \textcolor{blue}{ new energy consumption and performance} models were proposed for synchronous or asynchronous parallel applications with iterations running over 
1094 \textcolor{blue}{homogeneous and  heterogeneous clusters or grids}.  
1095       
1096
1097
1098 \small \barrow \textcolor{blue}{A new objective function} to optimize both the energy consumption and the performance was proposed.
1099
1100 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.
1101
1102 \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the
1103 Multi-splitting} method.
1104
1105 \small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator} and over  the \textcolor{blue}{Grid'5000 testbed}.
1106
1107 \small  \barrow All the proposed methods were compared to either \textcolor{blue}{Rauber and Rünger's  method} or to the \textcolor{blue}{EDP objective function}.
1108
1109
1110 \end{itemize}
1111 \end{frame}
1112
1113
1114
1115 %%%%%%%%%%%%%%%%%%%%
1116 %%    SLIDE 53   %%
1117 %%%%%%%%%%%%%%%%%%%%
1118 \begin{frame}{Publications}
1119
1120 \begin{block}{\small Journal Articles }\scriptsize
1121 \begin{enumerate}[$\lbrack$1$\rbrack$]
1122
1123 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. Optimizing the energy consumption of message passing applications with iterations executed over grids. \textit{Journal of Computational 
1124       Science}, 2016.
1125
1126 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. Energy Consumption Reduction for     
1127       Asynchronous Message Passing Applications.  \textit{Journal of Supercomputing}, 2016, (Submitted)
1128  
1129 \end{enumerate}
1130 \end{block}
1131
1132
1133 \begin{block}{\small Conference Articles }\scriptsize
1134
1135 \begin{enumerate}[$\lbrack$1$\rbrack$]
1136
1137 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Dynamic Frequency Scaling for
1138       Energy Consumption Reduction in Distributed MPI Programs. \textit{ISPA 2014}, pp.
1139       225-230. IEEE Computer Society, Milan, Italy (2014).
1140
1141 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Energy Consumption Reduction
1142       with DVFS for Message Passing Iterative Applications on Heterogeneous Architectures.
1143       \textit{The $16^{th}$ PDSEC}. pp. 922-931. IEEE Computer Society, INDIA (2015).
1144
1145 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. CPUs Energy Consumption
1146       Reduction for Asynchronous Parallel Methods Running over Grids. \textit{The $19^{th}$ CSE conference}. IEEE Computer Society, 
1147       Paris (2016).  
1148
1149 \end{enumerate}
1150
1151 \end{block}
1152 \end{frame}
1153
1154
1155 %%%%%%%%%%%%%%%%%%%%
1156 %%    SLIDE 54   %%
1157 %%%%%%%%%%%%%%%%%%%%
1158 \begin{frame}{Perspectives}
1159
1160 \begin{itemize}
1161
1162 \small  \barrow The proposed algorithms should  take into consideration the
1163 \textcolor{blue}{variability between some iterations}.
1164
1165 \small  \barrow The proposed algorithms should be applied to \textcolor{blue}{other message passing methods with iterations} in order to see how they adapt to the characteristics of these methods.
1166
1167 \small \barrow The proposed algorithms for heterogeneous platforms should be applied to heterogeneous platforms composed of \textcolor{blue}{CPUs and GPUs}.
1168
1169 \small \barrow Comparing the results returned by the energy models to the values given by  \textcolor{blue}{real instruments that measure the energy consumptions} of CPUs during the execution time.
1170 \end{itemize}
1171
1172 \end{frame}
1173
1174 %%%%%%%%%%%%%%%%%%%%
1175 %%    SLIDE 55  %%
1176 %%%%%%%%%%%%%%%%%%%%
1177 \begin{frame}{Fin} \vspace{-10 mm}
1178
1179             \centering \Large \textcolor{blue}{Thank you for your listening}
1180             
1181             \vspace{2cm}
1182             \centering \textcolor{blue}{ {\Large Questions?}}
1183         
1184 \end{frame}
1185 \end{document}
1186 %  _____ ___ _   _ 
1187 % |  ___|_ _| \ | |
1188 % | |_   | ||  \| |
1189 % |  _|  | || |\  |
1190 % |_|   |___|_| \_|
1191 %