]> AND Private Git Repository - ThesisAhmed.git/blob - thesis-presentation/AhmedSlides.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
addind the presentation corrections
[ThesisAhmed.git] / thesis-presentation / AhmedSlides.tex
1  \documentclass{beamer}
2 \usepackage{beamerthemefemto}
3 \usepackage[latin1]{inputenc}
4 \usepackage[T1]{fontenc}
5 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12 \usepackage{xspace}
13  \usepackage{movie15}
14  \usepackage{animate}
15 \usepackage{xmpmulti} 
16  \newcommand{\AG}[2][inline]{%
17   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
18 \newcommand{\JC}[2][inline]{%
19   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
20 \definecolor{myblue}{RGB}{0,29,119}
21 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
22 \usepackage{fixltx2e}
23 %% used to put some subscripts lower, and make them more legible
24 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
25
26 \newcommand{\CL}{\Xsub{C}{L}}
27 \newcommand{\Dist}{\mathit{Dist}}
28 \newcommand{\EdNew}{\Xsub{E}{dNew}}
29 \newcommand{\Eind}{\Xsub{E}{ind}}
30 \newcommand{\Enorm}{\Xsub{E}{Norm}}
31 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
32 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
33 \newcommand{\Es}{\Xsub{E}{S}}
34 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
35 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
36 \newcommand{\Fnew}{\Xsub{F}{new}}
37 \newcommand{\Vnew}{\Xsub{V}{new}}
38 \newcommand{\Vmax}{\Xsub{V}{max}}
39 \newcommand{\Ileak}{\Xsub{I}{leak}}
40 \newcommand{\Kdesign}{\Xsub{K}{design}}
41 \newcommand{\MaxDist}{\mathit{Max}\Dist}
42 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
43 \newcommand{\Ntrans}{\Xsub{N}{trans}}
44 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
45 \newcommand{\PdNew}{\Xsub{P}{dNew}}
46
47 \newcommand{\PdOld}{\Xsub{P}{dOld}}
48 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
49 \newcommand{\Tnorm}{\Xsub{T}{Norm}}
50 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
51 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
52 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
53 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
54 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
55 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
56 \newcommand{\Tnew}{\Xsub{T}{New}}
57 \newcommand{\Told}{\Xsub{T}{Old}}
58 \newcommand{\Ltcm}[1][]{\Xsub{L}{tcm}_{\fxheight{#1}}}
59 \newcommand{\Etcm}[1][]{\Xsub{E}{tcm}_{\fxheight{#1}}}
60 \newcommand{\Niter}[1][]{\Xsub{N}{iter}_{\fxheight{#1}}}
61 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
62 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
63  \usepackage{pifont}
64 \usepackage{xcolor}
65 \definecolor{myblue}{RGB}{0,29,119}
66 \usepackage[textsize=footnotesize]{todonotes}
67 \newcommand{\bsquare}{\item[\color{myblue}\ding{110}]} 
68 \newcommand{\barrow}{\item[\color{myblue}\ding{228}]}
69 \newcommand{\bwarrow}{\item[\color{myblue}\ding{227}]}
70 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
71
72
73
74 %\title{Energy Consumption Optimization of Parallel Applications with
75 %Iterations using CPU Frequency Scaling} 
76 \vspace{2cm}
77
78 \title{   \textbf{Energy Consumption Optimization of   Parallel Applications with Iterations   using CPU Frequency Scaling} \\ \vspace{0.2cm} \hspace{1.8cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}\vspace{-1cm}
79 \author{ \textbf{Ahmed Badri Muslim Fanfakh} \\ \vspace{0.5cm}\small Under Supervision: \textcolor{cyan}{\small  Raphaël COUTURIER and Jean-Claude CHARR} \\\vspace{0.1cm} \textcolor{blue}{ University of Bourgogne Franche-Comté - FEMTO-ST - DISC Dept.  - AND Team} \\ ~~~~~~~~~~~~~~~~~~~~~ \textbf{\textcolor{blue}{ 17 October 2016 }}} 
80
81 \date{}
82 \vspace{-3cm}
83 %  ____  _____ ____  _   _ _____ 
84 % |  _ \| ____| __ )| | | |_   _|
85 % | | | |  _| |  _ \| | | | | |  
86 % | |_| | |___| |_) | |_| | | |  
87 % |____/|_____|____/ \___/  |_|  
88
89 \begin{document}
90 \setbeamertemplate{background}{\titrefemto}
91
92 %%%%%%%%%%%%%%%%%%%%
93 %%    SLIDE 01    %%
94 %%%%%%%%%%%%%%%%%%%% 
95 \begin{frame}[plain]
96 \vspace{1cm}
97 \centering
98    \titlepage
99 \end{frame}
100
101
102 %%%%%%%%%%%%%%%%%%%%
103 %%    SLIDE 02    %%
104 %%%%%%%%%%%%%%%%%%%% 
105 \setbeamertemplate{background}{\pagefemto}
106 \begin{frame}{Outline}
107
108 \setbeamertemplate{section in toc}[sections numbered] 
109 \tableofcontents
110 \end{frame}
111
112
113 %%%%%%%%%%%%%%%%%%%%
114 %%    SLIDE 03    %%
115 %%%%%%%%%%%%%%%%%%%% 
116 \begin{frame}{Introduction and problem definition}
117  \section{\small {Introduction and Problem definition}}
118    \bf \textcolor{blue}{Approaches to increase the computing power of the parallel platform :}
119      \begin{minipage}{0.5\textwidth} 
120       \textcolor{blue}{1)} \small  \bf \textcolor{black}{Increasing the frequency of a  processor.}
121     \end{minipage}%
122     \begin{minipage}{0.6\textwidth} 
123     
124 \begin{figure}[h!]
125         
126     \includegraphics[width=0.7\textwidth]{fig/freq-years} 
127     \end{figure}
128     \end{minipage}%
129     \vspace{0.2cm}
130     \begin{minipage}{0.5\textwidth} 
131      \textcolor{blue}{2)} \small \bf \textcolor{black}{Increasing the number of nodes.}
132      
133     \tiny  \textcolor{blue}{Recently, Tianhe-2 supercomputer had more than 3 million cores while consuming around 17.8 megawatts.}  
134           
135     \end{minipage}%
136     \begin{minipage}{0.6\textwidth} 
137     \begin{figure}[h!]
138      \includegraphics[width=0.7\textwidth]{fig/clusters} 
139     \end{figure}
140     \end{minipage}%
141  \end{frame}
142  
143  
144  
145
146  %%%%%%%%%%%%%%%%%%%
147 %%    SLIDE 04   %%
148 %%%%%%%%%%%%%%%%%%%% 
149 \begin{frame}{Introduction and problem definition}
150  \vspace{0.1cm}
151  \bf \textcolor{blue}{Techniques for energy consumption reduction}
152  
153      \textcolor{blue}{1)} \bf \textcolor{black}{Switch-off idle nodes method}  
154     \vspace{-0.9cm}
155     \begin{figure}
156      \animategraphics[autopause,loop,controls,scale=0.25,buttonsize=0.2cm]{200}{on-off/a-}{0}{69}
157      %\includegraphics[width=0.6\textwidth]{on-off/a-69}
158     \end{figure}
159  \end{frame}
160
161 %%%%%%%%%%%%%%%%%%%%
162 %%    SLIDE 06    %%
163 %%%%%%%%%%%%%%%%%%%% 
164 \begin{frame}{Techniques for energy consumption reduction}
165  
166   \textcolor{blue}{2)} \bf \textcolor{black}{Dynamic voltage and frequency Scaling (DVFS)}
167      \vspace{-0.5cm}
168     \begin{figure}
169     \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{DVFS-meq/a-}{0}{109}
170      %\includegraphics[width=0.6\textwidth]{DVFS-meq/a-109}
171     \end{figure}
172     \end{frame}
173  
174
175
176 %%%%%%%%%%%%%%%%%%%%
177 %%    SLIDE 07    %%
178 %%%%%%%%%%%%%%%%%%%% 
179 \begin{frame}{Motivations}
180 \vspace{0.05cm}
181 \section{\small {Motivations}}
182 \textcolor{blue}{Why we used DVFS method:}
183 \vspace{-0.49cm}
184 \begin{minipage}{0.5\textwidth} 
185     \vspace{-0.49cm} 
186       \begin{itemize} 
187        \item  \small \textcolor{black}{The biggest power consumption is consumed by the processor \textsuperscript{1}. }
188                 
189          \end{itemize}
190
191     \end{minipage}%
192     \begin{minipage}{0.5\textwidth}
193      \vspace{-0.49cm} 
194     \begin{figure}[h!]
195      \includegraphics[width=0.85\textwidth]{fig/node-power} 
196      
197     \end{figure}
198     \end{minipage}%
199     
200   \begin{itemize} \item \small  \textcolor{black}{It uses to reduce the energy consumption  while keeping all the nodes working, thus  it is more adapted to parallel computing.}
201                 \item \small \textcolor{black}{It has a very small overhead compared to switching-off the idle nodes method.}  \end{itemize} 
202     
203 \vspace{-0.12cm}
204
205  \begin{block}{\textcolor{white}{Challenge and Objective}}
206
207         \small  \textcolor{blue}{Challenge:} \textcolor{black}{DVFS is used to reduce the energy consumption, \textcolor{blue}{but} it degrades the performance simultaneously.}
208                 
209                 \vspace{0.1cm}
210  \small  \textcolor{blue}{Objective:} \textcolor{black}{Applying the DVFS to minimize the energy consumption while maintaining the performance of the parallel application.}
211 \end{block}
212  
213  \tiny \textsuperscript{1} Fan, X., Weber, W., and Barroso, L. A. 2007.  Power provisioning
214 for a warehouse-sized computer.
215
216     \end{frame}
217
218
219
220 %%%%%%%%%%%%%%%%%%%%
221 %%    SLIDE 08    %%
222 %%%%%%%%%%%%%%%%%%%% 
223
224
225 \begin{frame}{Contribution}
226
227 \section{\small {Energy optimization of homogeneous platform}}
228 \begin{center}
229 \bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a homogeneous platform}
230 \end{center}
231  \end{frame}
232
233
234
235 %%%%%%%%%%%%%%%%%%%%
236 %%    SLIDE 09    %%
237 %%%%%%%%%%%%%%%%%%%% 
238  
239 \begin{frame}{Objectives}
240         \begin{femtoBlock}{} \vspace{-12 mm}
241                 \begin{itemize} \small
242                    \item  Study the effect of the scaling factor $S$ on \textbf{energy consumption and performance } of parallel  applications with iterations such as NAS 
243                           Benchmarks. \includegraphics[width=.06\textwidth]{c1/nasa.pdf} \medskip
244                    
245                    \item  Discovering the \textbf{energy-performance trade-off relation} when changing the frequency of the processor.\medskip
246                    \item  Proposing an algorithm for selecting the scaling factor $S$ producing \textbf {the optimal trade-off} between the energy consumption and the performance. \medskip
247                    \item  Comparing the proposed algorithm to existing methods.
248                    
249                    
250                    %\footnote{\tiny Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the  
251                           %energy consumption \\  \quad ~ ~\quad    of  independent tasks. In Proceedings of the Winter Simulation Conference, 2012.} method that our method best on. 
252                 \end{itemize}
253                  %\let\thefootnote\relax\footnote{}
254           \vspace{-10 mm}
255         \end{femtoBlock}      
256 \end{frame}
257
258
259
260 %%%%%%%%%%%%%%%%%%%%
261 %%    SLIDE 10    %%
262 %%%%%%%%%%%%%%%%%%%% 
263
264
265 \begin{frame}{Execution of synchronous parallel tasks}
266 \vspace{-0.5 cm}
267 \begin{figure}
268   \centering
269   \subfloat[Sync. imbalanced communications]{%
270     \includegraphics[scale=0.49]{c1/commtasks}\label{fig:h1}}
271   \subfloat[Sync. imbalanced computations]{%
272     \includegraphics[scale=0.49]{c1/compt}\label{fig:h2}}
273  % \caption{Parallel tasks on homogeneous platform}
274   \label{fig:homo}
275 \end{figure}
276
277  \end{frame}
278  
279  
280  
281
282 %%%%%%%%%%%%%%%%%%%%
283 %%    SLIDE 11   %%
284 %%%%%%%%%%%%%%%%%%%% 
285 \begin{frame}{Energy model for homogeneous platform}    
286       The power consumed by a processor divided into two power metrics: the dynamic (\textcolor{red}{$P_d$}) and static   
287        (\textcolor{red}{$P_s$}) power. 
288     \begin{equation}
289      \label{eq:pd}
290      \textcolor{red}{ P_d} = \textcolor{blue}{\alpha \cdot CL \cdot V^2 \cdot F}
291    \end{equation}
292     \scriptsize \underline{Where}: \\ 
293     \scriptsize {\textcolor{blue}{$\alpha$}: switching activity \hspace{15 mm}  \textcolor{blue}{$CL$}: load capacitance\\     
294     \textcolor{blue}{$V$} the supply voltage \hspace{14 mm} \textcolor{blue}{$F$}: operational frequency}
295    \begin{equation}
296      \label{eq:ps}
297      \small \textcolor{red}{P_s} = \textcolor{blue}{V \cdot N_{trans} \cdot K_{design} \cdot I_{Leak}}
298    \end{equation}
299     \underline{Where}:\\ 
300         \scriptsize{ \textcolor{blue}{$V$}: the supply voltage.  \hspace{28 mm}   \textcolor{blue}{$N_{trans}$}: number of transistors. \\   
301         \textcolor{blue}{$K_{design}$}: design dependent parameter. \hspace{8 mm} \textcolor{blue}{$I_{leak}$}: technology dependent  
302              parameter.} 
303 \end{frame}
304
305 %%%%%%%%%%%%%%%%%%%%
306 %%    SLIDE 12   %%
307 %%%%%%%%%%%%%%%%%%%% 
308
309 \begin{frame}{Energy model for homogeneous platform}
310        
311           The frequency scaling factor is the ratio between the maximum and the new frequency, \textcolor{blue}{$S = \frac{F_{max}}{F_{new}}$}.  \medskip     
312               
313               
314               
315         \begin{block}{\small Rauber and Rünger's energy model}
316          $ E = P_{d} \cdot S_1^{-2} \cdot
317          \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
318             P_{s} \cdot S_1  \cdot T_1 \cdot N$
319         \end{block}     
320            \textcolor{blue}{$S_1$}: the max. scaling factor\\ 
321            \textcolor{blue}{$P_{d}$}: the dynamic power\\
322            \textcolor{blue}{$P_{s}$}: the static power\\
323            \textcolor{blue}{$T_I$}: the time of the slower task\\ 
324            \textcolor{blue}{$T_i$}: the time of the other tasks\\ 
325            \textcolor{blue}{$N$}:  the number of  nodes
326        
327 \end{frame}
328   
329   
330 %%%%%%%%%%%%%%%%%%%%
331 %%    SLIDE 13   %%
332 %%%%%%%%%%%%%%%%%%%% 
333 \begin{frame}{Performance evaluation of MPI programs}      
334         \begin{femtoBlock}{}
335               \vspace{-5 mm}
336               \begin{block}{\small Execution time prediction model}
337                      \centering{ $ \textcolor{red}{T_{new}} = \textcolor{blue}{T_{Max Comp Old} \cdot S + T_{{Min Comm Old}}}$}
338           \end{block}   
339           \vspace{10 mm}
340            \centering{\includegraphics[width=.4\textwidth]{c1/cg_per}
341            \quad%
342            \includegraphics[width=.4\textwidth]{c1/lu_pre}}
343             \vspace{5 mm}
344             
345            \small The maximum normalized error for CG=0.0073 \textbf{(the smallest)} and LU=0.031 \textbf{(the worst)}.
346            \end{femtoBlock}
347 \end{frame}
348
349
350
351
352  %%%%%%%%%%%%%%%%%%%%
353 %%    SLIDE 14   %%
354 %%%%%%%%%%%%%%%%%%%%  
355 \begin{frame}{Performance and energy reduction trade-off}      
356         \begin{femtoBlock}{} \vspace{-15 mm}
357                \begin{figure}
358      \centering
359      \subfloat[\small  Real relation.]{%
360      \includegraphics[width=.43\textwidth]{c1/file3}\label{fig:r2}}
361      \quad%
362      \subfloat[\small Converted relation.]{%
363      \includegraphics[width=.43\textwidth]{c1/file}\label{fig:r1}}%
364   \label{fig:rel}
365  % \caption{The energy and performance relation}
366 \end{figure}
367
368  Where:~~~ $\textcolor{blue}{Performance} = execution~time^{-1}$
369
370 %\vspace{-0.3cm}
371       \small 
372          \begin{block}{\small Our objective function}
373          \centering{$\textbf{\emph {\textcolor{red}{MaxDist}}} = \max_{j=1,2,\dots ,F}             
374                     (\overbrace{P_{Norm}(S_j)}^{{\textcolor{blue}{Maximize}}} - 
375                      \overbrace{E_{Norm}(S_j)}^{{\textcolor{blue}{Minimize}}} )$}
376                                          
377         \end{block}                
378         \end{femtoBlock}
379        
380 \end{frame}
381
382 %%%%%%%%%%%%%%%%%%%%
383 %%    SLIDE 15   %%
384 %%%%%%%%%%%%%%%%%%%% 
385  \begin{frame}{Scaling factor selection algorithm}
386 \vspace{-0.75cm}
387      \begin{center}
388       \includegraphics[width=.56 \textwidth]{c1/algo-homo}
389      \end{center}
390      
391 \end{frame}
392
393
394 %%%%%%%%%%%%%%%%%%%%
395 %%    SLIDE 16   %%
396 %%%%%%%%%%%%%%%%%%%% 
397 \begin{frame}{Scaling algorithm example}
398 \vspace{-0.75cm}
399      
400      \begin{figure}
401   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-homo/a-}{0}{159}
402   %\includegraphics[width=0.6\textwidth]{dvfs-homo/a-159}
403   \end{figure}
404 \end{frame}
405
406 %%%%%%%%%%%%%%%%%%%%
407 %%    SLIDE 17   %%
408 %%%%%%%%%%%%%%%%%%%% 
409 \begin{frame}{Experimental results }
410       \begin{femtoBlock}{}      
411         \begin{itemize}
412          \small
413            \item The experiments were executed on the simulator SimGrid/SMPI v3.10.\medskip
414            \item The proposed algorithm was applied to the NAS parallel benchmarks.\medskip
415            \item Each node in the cluster has 18 frequency values from \textbf{2.5$GHz$} to \textbf{800$MHz$}.\medskip
416            \item The proposed algorithm was evaluated over the A, B, C classes of the benchmarks using 4, 8 or 9 and 16 nodes respectively. \medskip
417            \item $P_d=20W$,  $P_s=4W$.
418                 \end{itemize}
419         \end{femtoBlock}
420 \end{frame}
421
422
423 %%%%%%%%%%%%%%%%%%%%
424 %%    SLIDE 18   %%
425 %%%%%%%%%%%%%%%%%%%% 
426 \begin{frame}{Experimental results}
427   \begin{femtoBlock}{}  
428       \centering { 
429      \includegraphics[width=.35\textwidth]{c1/ep}
430      \includegraphics[width=.35\textwidth]{c1/cg}
431      \includegraphics[width=.35\textwidth]{c1/bt}}
432      
433      \centering {\includegraphics[width=.55\textwidth]{c1/results.pdf}}
434  \end{femtoBlock}
435 \end{frame}
436
437
438   %%%%%%%%%%%%%%%%%%%%
439 %%    SLIDE 19   %%
440 %%%%%%%%%%%%%%%%%%%% 
441 \begin{frame}{Results comparison}
442          \begin{block}{\small Rauber and Rünger's optimal scaling factor} 
443            $S_{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_{dyn}}{P_{static}} \cdot
444             \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3}\right) } $
445         \end{block}   
446     \centering {
447          %\includegraphics[width=.33\textwidth]{c1/c1.pdf}
448          %\qquad
449          %\includegraphics[width=.33\textwidth]{c1/c2.pdf}}
450            
451          
452             \includegraphics[width=.55\textwidth]{c1/compare_c.pdf}}
453         
454 \end{frame}
455
456
457 %%%%%%%%%%%%%%%%%%%%
458 %%    SLIDE 20   %%
459 %%%%%%%%%%%%%%%%%%%% 
460 \begin{frame}{The proposed new energy model}
461     \vspace{-0.75cm}     
462   \begin{figure}
463   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{homo-model/a-}{0}{356}
464   %\includegraphics[width=0.6\textwidth]{homo-model/a-356}
465   \end{figure}
466 \end{frame}
467
468
469 %%%%%%%%%%%%%%%%%%%%
470 %%    SLIDE 21   %%
471 %%%%%%%%%%%%%%%%%%%% 
472 \begin{frame}{Comparing the new model with Rauber model }
473  \vspace{0.1cm}    
474  \centering
475     \includegraphics[width=.45\textwidth]{c1/energy_con}
476     
477     \includegraphics[width=.5\textwidth]{c1/compare-scales}
478 \end{frame}
479
480
481
482
483    % \begin{frame}{Summary}
484      % \begin{femtoBlock}{}    
485      % \begin{itemize}
486       %\small
487        %\item  We have presented a new online scaling factor selection method that  \textcolor{blue}{optimizes simultaneously the energy and performance}.\medskip
488        % \item It predicts \textcolor{blue}{ the energy consumption and the performance} of the parallel applications. \medskip
489          %\item Our algorithm  \textcolor{blue}{saves more energy} when the communication and the other slacks times are big.     \medskip    
490          %\item It gives the  \textcolor{blue}{best trade-off between energy reduction and
491                % performance}. \medskip
492          %\item  Our method \ \textcolor{blue}{outperforms Rauber and Rünger's method} in terms of  energy-performance ratio.
493          %\item The proposed new energy model is  \textcolor{blue}{more accurate} then Rauber energy model.
494          %\end{itemize}      
495          
496         %\end{femtoBlock}
497 %\end{frame}
498
499
500 %%%%%%%%%%%%%%%%%%%%
501 %%    SLIDE 22    %%
502 %%%%%%%%%%%%%%%%%%%% 
503
504
505 \begin{frame}{Contribution}
506
507 \section{\small {Energy optimization of heterogeneous platform}}
508 \begin{center}
509
510
511 \bf  \Large \textcolor{blue}{Energy optimization of a parallel application with iterations running over a Heterogeneous platform}
512 \end{center}
513  \end{frame}
514  
515
516
517 %%%%%%%%%%%%%%%%%%%%
518 %%    SLIDE 23    %%
519 %%%%%%%%%%%%%%%%%%%% 
520  
521 \begin{frame}{Objectives}
522         \begin{femtoBlock}{} \vspace{-12 mm}
523                 \begin{itemize} \small
524                   \item   Proposing  \textcolor{blue}{new energy and performance models} for message passing  applications with iterations running  
525                           over a heterogeneous platform (cluster and Grid). \medskip
526                    \item  Studying the effect of the scaling factor $S$ on both the \textcolor{blue}{energy consumption  and the performance} of
527                           message passing iterative applications.    \medskip                      
528                    
529                    \item  Computing  the vector of scaling factors ($S_1, S_2, ..., S_n$)  producing \textcolor{blue} {the optimal trade-off} between
530                           the energy consumption and the performance. 
531                 \end{itemize}
532                  
533           \vspace{-10 mm}
534         \end{femtoBlock}      
535 \end{frame}
536
537
538 %%%%%%%%%%%%%%%%%%%%
539 %%    SLIDE 24    %%
540 %%%%%%%%%%%%%%%%%%%%
541 \begin{frame}{The execution time model}    
542       \vspace{-8 mm}
543      \begin{figure}[!t]
544        \centering
545        \includegraphics[scale=0.5]{c2/commtasks}
546        \label{fig:heter}
547      \end{figure}     
548        \vspace{-12 mm}
549        \medskip
550        
551     \begin{block}{\small The execution time prediction model}
552     \begin{equation}
553      \label{eq:perf}
554      \small\textcolor{red}{ T_{new}} = \textcolor{blue}{\max_{i=1,2,\dots,N} ({TcpOld_i} \cdot S_{i}) + \min_{i=1,2,\dots,N} (Tcm_i)}
555     \end{equation}
556     \end{block}   
557  \small  Where: $ \textcolor{red}{Tcm} = \textcolor{blue}{communication~times + slack~times}$
558   
559 \end{frame}
560  
561  %%%%%%%%%%%%%%%%%%%%
562 %%    SLIDE 25    %%
563 %%%%%%%%%%%%%%%%%%%%
564  \begin{frame}{The energy consumption model} 
565     The overall energy consumption of a message passing synchronous  application executed over
566      a heterogeneous platform can be computed as  follows:
567     \begin{multline}
568      \label{eq:energy}
569      \textcolor{red}{E} = \textcolor{blue}{\sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)}} + {} \\
570      \textcolor{blue}{\sum_{i=1}^{N} (Ps_i \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) + {\min_{i=1,2,\dots,N} (Tcm_i))}}   
571       \hspace{10 mm}
572     \end{multline}
573     \underline{where}:\\
574     \textcolor{blue}{N} : is the number of nodes.
575 \end{frame}
576  
577  
578 %%%%%%%%%%%%%%%%%%%%
579 %%    SLIDE 26    %%
580 %%%%%%%%%%%%%%%%%%%%
581   \begin{frame}{The  energy  model example for heter. cluster}
582   \vspace{-0.5cm}
583  \begin{figure}
584   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{heter-model/a-}{0}{272}
585   %\includegraphics[width=0.6\textwidth]{heter-model/a-272}
586   \end{figure}
587  \end{frame}
588  
589  
590  
591  
592 %%%%%%%%%%%%%%%%%%%%
593 %%    SLIDE 27    %%
594 %%%%%%%%%%%%%%%%%%%%
595 %\begin{frame}{The trade-off between energy  and performance}
596    % \vspace{-7 mm}
597     %\begin{figure}
598    %  \centering{ \includegraphics[width=.4\textwidth]{c2/heter}}
599    % \end{figure}
600    % \vspace{-7 mm}
601    % \textcolor{red}{\underline{Step1}}: computing the normalized energy \textcolor{blue}%{$E_{norm} = \frac{E_{reduced}} 
602     %{E_{Max}}$}. \\
603     % \textcolor{red}{\underline{Step2}}: computing the normalized performance \textcolor{blue}{$P_{norm} = \frac{T_{Max}}{T_{new}}$}.
604    
605    %  \begin{block}{\small The tradeoff model}
606     % \begin{equation}
607     %  \label{eq:max}
608     %  \textcolor{red}{MaxDist} =
609      % \mathop {\max_{i=1,\dots F}}_{j=1,\dots,N}
610       % (\overbrace{P_{norm}(S_{ij})}^{\text{\textcolor{blue}{Maximize}}} -
611       % \overbrace{E_{norm}(S_{ij})}^{\text{\textcolor{blue}{Minimize}}} )
612       %\end{equation}
613     % \end{block}  
614 %\end{frame}
615    
616  
617 %%%%%%%%%%%%%%%%%%%%
618 %%    SLIDE 28    %%
619 %%%%%%%%%%%%%%%%%%%%
620  \begin{frame}{The scaling algorithm for heter. cluster}
621
622  \centering
623    \includegraphics[width=.52\textwidth]{algo-heter}
624  \end{frame}
625  
626  
627  %%%%%%%%%%%%%%%%%%%%
628 %%    SLIDE 29    %%
629 %%%%%%%%%%%%%%%%%%%%
630  \begin{frame}{The scaling algorithm example}
631  \vspace{-0.5cm}
632  \centering
633  
634   \begin{figure}
635   \animategraphics[autopause,controls,scale=0.28,buttonsize=0.2cm]{10}{dvfs-heter/a-}{0}{650}
636  % \includegraphics[width=0.6\textwidth]{dvfs-heter/a-650}
637   \end{figure}
638 \end{frame}
639
640
641
642
643 %%%%%%%%%%%%%%%%%%%%
644 %%    SLIDE 30    %%
645 %%%%%%%%%%%%%%%%%%%%
646 \begin{frame}{Experiments over a heterogeneous cluster  }   
647         \begin{itemize}
648          \small
649            \item The experiments executed on the simulator SimGrid/SMPI v3.10.\medskip
650            \item The scaling algorithm was applied to the NAS parallel benchmarks class C.\medskip
651            \item Four types of processors with different computing powers were used.\medskip
652            \item We ran the benchmarks on different number of nodes ranging from 4 to 144 nodes.\medskip
653            \item The total power consumption of the chosen CPUs  assumed to be composed of $80\%$ for the dynamic power and $20\%$ for the static power.
654                   \medskip
655          
656         \end{itemize}
657
658 \end{frame}  
659
660
661 %%%%%%%%%%%%%%%%%%%%
662 %%    SLIDE 31    %%
663 %%%%%%%%%%%%%%%%%%%%
664 \begin{frame}{The experimental results}
665    \vspace{-5 mm}
666    \begin{figure}[!t]
667    \centering
668     \includegraphics[width=0.8\textwidth]{c2/energy_saving.pdf}
669     
670     \textcolor{blue}{On average, it reduces the energy consumption by \textcolor{red}{29\%} 
671      for the class C of the NAS Benchmarks executed over 8 nodes}
672     
673    \end{figure}
674 \end{frame} 
675  
676  
677  
678 %%%%%%%%%%%%%%%%%%%%
679 %%    SLIDE 32    %%
680 %%%%%%%%%%%%%%%%%%%%
681 \begin{frame}{The experimental results}
682    \vspace{-5 mm}
683    \begin{figure}[!t]
684    \centering
685     
686     \includegraphics[width=.8\textwidth]{c2/perf_degra.pdf}
687    
688    \textcolor{blue}{On average, it degrades  by \textcolor{red}{3.8\%} the performance
689      of NAS Benchmarks class C executed over 8 nodes}
690      \end{figure}
691 \end{frame} 
692  
693  
694  
695 %%%%%%%%%%%%%%%%%%%%
696 %%    SLIDE 33    %%
697 %%%%%%%%%%%%%%%%%%%%
698 \begin{frame}{The results of the three power scenarios}
699    \vspace{-5 mm}
700    \begin{figure}[!t]
701    \centering
702    \includegraphics[width=.55\textwidth]{c2/three_power.pdf}
703    \vspace{10 mm}
704    \includegraphics[width=.55\textwidth]{c2/three_scenarios.pdf}
705    \end{figure}
706 \end{frame}  
707
708
709
710 %%%%%%%%%%%%%%%%%%%%
711 %%    SLIDE 34    %%
712 %%%%%%%%%%%%%%%%%%%%
713 \begin{frame}{Comparing the objective function to EDP}
714      
715      EDP is the products between the energy consumption and the delay.
716     \vspace{-5 mm}
717     \begin{figure}[!t]
718     \centering
719     \includegraphics[width=.55\textwidth]{c2/avg_compare.pdf}
720     
721     \includegraphics[width=.55\textwidth]{c2/compare_with_EDP.pdf}
722     \end{figure}
723 \end{frame} 
724
725
726
727
728 %%%%%%%%%%%%%%%%%%%%
729 %%    SLIDE 35    %%
730 %%%%%%%%%%%%%%%%%%%%
731 %\begin{frame}{Energy optimization of grid platform} 
732   % \begin{figure}[!t]
733    % \centering
734          %    \includegraphics[width=.6\textwidth]{c2/grid5000.pdf}
735              
736         %   \small  10 sites distributed over France and Luxembourg
737         %\end{figure}
738 %\end{frame} 
739
740
741 %%%%%%%%%%%%%%%%%%%%
742 %%    SLIDE 36    %%
743 %%%%%%%%%%%%%%%%%%%%
744 \begin{frame}{The grid architecture}
745 \begin{center}
746 \includegraphics[width=.8\textwidth]{c2/init_freq.pdf}
747 \end{center}
748
749  %\begin{frame}{Performance, Energy and trade-off models} \small
750   %\begin{block}{\small The performance model of grid}
751    % \begin{equation}
752   %\label{eq:perf}
753   %\Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
754  % +\mathop{\min_{j=1,\dots,M_h}}  (\Tcm[hj])
755 %\end{equation}
756     %\end{block}   
757  
758  
759  %\begin{block}{\small The energy model of grid}\small
760   %  \begin{equation}
761   %\label{eq:energy}
762  %E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
763 % \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \Tnew)
764 %\end{equation}
765    % \end{block}  
766
767 %\begin{block}{\small The trade-off model of grid}
768 %\small
769     %\begin{equation}
770    %\label{eq:max}
771   %\MaxDist =
772   %\mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}}_{k=1,\dots,F_j}
773    %   (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
774     %   \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
775 %\end{equation}
776    % \end{block}  
777      
778      
779  \end{frame}
780   
781   
782   
783 %%%%%%%%%%%%%%%%%%%%
784 %%    SLIDE 37    %%
785 %%%%%%%%%%%%%%%%%%%%
786  \begin{frame}{Experiments over Grid'5000}
787   \centering
788
789           \includegraphics[width=.5\textwidth]{c2/grid5000-2.pdf}
790           
791           \vspace{-3 mm}
792           \textcolor{blue}{Two experiments were conducted: over one site and two sites 
793           each one with three clusters }
794           
795               \vspace{1mm}
796
797           \includegraphics[width=.5\textwidth]{c2/power_consumption.pdf}
798           
799         \textcolor{blue}{Grid'5000 power measurement tools were used} 
800 \end{frame}   
801
802
803
804
805 %%%%%%%%%%%%%%%%%%%%
806 %%    SLIDE 38    %%
807 %%%%%%%%%%%%%%%%%%%%
808 \begin{frame}{Experiments over Grid'5000}
809
810    \begin{minipage}{0.4\textwidth}
811        %\textcolor{blue}{Execution the NAS class D on 16 nodes saves the energy by  
812         %\textcolor{red}{30\%}}
813         \textcolor{blue}{The energy saving =  \textcolor{red}{30\%}}
814    \end{minipage}  
815      \begin{minipage}{0.55\textwidth}
816         \begin{figure}[h!]
817           \includegraphics[width=0.83 \textwidth]{c2/eng_s.eps}
818      \end{figure}
819 \end{minipage}
820
821          \begin{minipage}{0.4\textwidth}
822            %\textcolor{blue}{Execution the NAS class D on 16 nodes degrades the 
823                 %performance by \textcolor{red}{3.2\%}}
824               \textcolor{blue}{The performance degradation  =  \textcolor{red}{3.2\%}}  
825         \end{minipage}
826        \begin{minipage}{0.55\textwidth}
827          \begin{figure}[h!] 
828            \includegraphics[width=.83\textwidth]{c2/per_d.eps}
829          \end{figure}  
830           \end{minipage}
831  \end{frame}
832
833
834
835 %%%%%%%%%%%%%%%%%%%%
836 %%    SLIDE 39    %%
837 %%%%%%%%%%%%%%%%%%%%
838 \begin{frame}{Experiments over Grid'5000}
839    \textcolor{blue}{One core  and Multi-cores per node results:}
840    
841   \begin{figure}[h!] 
842   \includegraphics[width=.48\textwidth]{c2/eng_s_mc.eps}
843   \hspace{0.3cm}
844   \includegraphics[width=.48\textwidth]{c2/per_d_mc.eps}
845   \end{figure} 
846   
847   \centering \small \textcolor{blue}{Using multi-cores per node scenario decreases the computations to communications ratio}.
848 \end{frame}
849
850
851
852 %\begin{frame}{Summary}
853 %\begin{itemize}
854      % \small
855         % \item  Two scaling algorithm were applies to \textcolor{blue}{heterogeneous %cluster} and \textcolor{blue}{grid}.
856         % \item  A new \textcolor{blue}{energy} and \textcolor{blue}{performance} models were proposed.
857       %   \item  The experimental results ere conducted over \textcolor{blue}{SimGrid}  simulators and real 
858           %test-bed \textcolor{blue}{Grid'5000}.
859          
860          %\item The algorithm saves the energy by \textcolor{blue}{29\%} and only
861         %  degrades the performance by \textcolor{blue}{3.8\%} for simulated  heterogeneous
862       %    clusters.
863          
864          %\item The algorithm saves the energy by \textcolor{blue}{30\%} and only
865         % degrades the performance by \textcolor{blue}{3.2\%} for  Grid'5000 results.
866          
867        %  \item  The proposed method \textcolor{blue}{outperforms the EDP method} in terms of  energy-performance ratio.
868      %    \end{itemize}   
869 %\end{frame}
870
871
872 %%%%%%%%%%%%%%%%%%%%
873 %%    SLIDE 40    %%
874 %%%%%%%%%%%%%%%%%%%%
875 \begin{frame}{Contribution}
876 \section{\small {Energy optimization of asynchronous applications}}
877 \begin{center}
878 \bf  \Large \textcolor{blue}{Energy optimization of asynchronous iterative message passing  applications}
879 \end{center}
880  \end{frame}
881
882
883
884 %%%%%%%%%%%%%%%%%%%%
885 %%    SLIDE 41   %%
886 %%%%%%%%%%%%%%%%%%%%
887 \begin{frame}{Problem definition}\vspace{0.8 mm}
888 \textcolor{blue}{The execution of a synchronous parallel iterative application over a grid }
889 \vspace{-8 mm}
890 \begin{figure}
891  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{syn/a-}{0}{503}
892  %\includegraphics[width=0.6\textwidth]{syn/a-503}
893   \end{figure}
894 \end{frame}
895
896
897
898 %%%%%%%%%%%%%%%%%%%%
899 %%    SLIDE 42   %%
900 %%%%%%%%%%%%%%%%%%%%
901 \begin{frame}{Problem definition}\vspace{0.8 mm}
902 \textcolor{blue}{The execution of an asynchronous parallel iterative application over a grid }
903 \vspace{-8 mm}
904 \begin{figure}
905  \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn/a-}{0}{440}
906  %\includegraphics[width=0.6\textwidth]{asyn/a-440}
907   \end{figure}
908 \end{frame}
909
910
911
912 %%%%%%%%%%%%%%%%%%%%
913 %%    SLIDE 43   %%
914 %%%%%%%%%%%%%%%%%%%%
915 \begin{frame}{Solution}\vspace{0.8mm}
916 \textcolor{blue}{Using asynchronous communications with DVFS }
917 \vspace{-8 mm}
918 \begin{figure}
919   \animategraphics[autopause,controls,scale=0.25,buttonsize=0.2cm]{10}{asyn+dvfs/a-}{0}{314}
920   %\includegraphics[width=0.6\textwidth]{asyn+dvfs/a-314}
921   \end{figure}
922 \end{frame}
923
924
925
926
927 %%%%%%%%%%%%%%%%%%%%
928 %%    SLIDE 44   %%
929 %%%%%%%%%%%%%%%%%%%%
930 %\begin{frame}{The performance models}
931
932 %\begin{block}{\small The performance model of Asynch. Applications}\small
933 %\begin{equation}
934   %\label{eq:asyn_time}
935  %\Tnew =  \frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i}({\TcpOld[ij]} \cdot S_{ij})} {N  \cdot M_i }
936 %\end{equation}
937 %\end{block}
938
939
940 %\begin{block}{\small The performance model of Hybrid Applications}\small
941 %\begin{equation}
942   %\label{eq:asyn_perf}
943   %\Tnew =  \frac{\sum_{i=1}^{N} (\max_{j=1,\dots, M_i} ({\TcpOld[ij]} \cdot S_{ij}) +  
944    %\min_{j=1,\dots,M_i} ({\Ltcm[ij]}))}{N}
945 %\end{equation}
946 %\end{block}
947
948
949 %\end{frame}
950
951
952
953 %%%%%%%%%%%%%%%%%%%%
954 %%    SLIDE 45   %%
955 %%%%%%%%%%%%%%%%%%%%
956 %\begin{frame}{The energy consumption models}
957
958 %\begin{block}{\small The energy model of Asynch. Applications}\small
959 %\begin{equation}
960   %\label{eq:asyn_energy1}
961 % E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot  \Tcp[ij] \cdot (\Pd[ij]+\Ps[ij]) )} 
962 %\end{equation} 
963 %\end{block}
964
965
966 %\begin{block}{\small The energy model of Hybrid Applications}\small
967 %\begin{multline}
968   %\label{eq:asyn_energy}
969  %E = \sum_{i=1}^{N} \sum_{j=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot \\
970 % ( \mathop{\max_{j=1,\dots,M_i}} ({\Tcp[ij]} \cdot S_{ij}) + \mathop{\min_{j=1,\dots,M_i}} ({\Ltcm[ij]}))) 
971 %\end{multline}
972 %\end{block}
973 %\end{frame}
974
975
976
977 %%%%%%%%%%%%%%%%%%%%
978 %%    SLIDE 44   %%
979 %%%%%%%%%%%%%%%%%%%%
980 \begin{frame}{The performance and the energy models }
981
982 \centering
983 \includegraphics[width=0.9\textwidth]{syn-vs-asyn.pdf}
984 \end{frame}
985
986
987
988
989
990 %%%%%%%%%%%%%%%%%%%%
991 %%    SLIDE 46   %%
992 %%%%%%%%%%%%%%%%%%%%
993 \begin{frame}{The scaling algorithm for Asynch.  applications}
994 \vspace{-0.1 mm}
995 \centering
996 \includegraphics[width=0.55\textwidth]{algo-hybrid.pdf}
997 \end{frame}
998
999
1000
1001 %%%%%%%%%%%%%%%%%%%%
1002 %%    SLIDE 47   %%
1003 %%%%%%%%%%%%%%%%%%%%
1004 \begin{frame}{The experiments}
1005    \vspace{-5 mm}
1006    \begin{figure}[!t]
1007    \begin{itemize}
1008       \small
1009         \item The architecture of the grid:
1010    \end{itemize}
1011     \includegraphics[width=0.5\textwidth]{c3/hybrid-model.pdf} 
1012    \end{figure}
1013    \begin{itemize}
1014       \small
1015         \item Applying the proposed algorithm to the asynchronous iterative message passing multi-splitting method.
1016         \item Evaluating the application over the simulator and Grid'5000.
1017    \end{itemize}
1018 \end{frame} 
1019
1020
1021
1022 %%%%%%%%%%%%%%%%%%%%
1023 %%    SLIDE 48   %%
1024 %%%%%%%%%%%%%%%%%%%%
1025 \begin{frame}{The simulation results}
1026 \centering \small \textcolor{blue}{The best scenario in terms of energy and performance  is the Async. MS with Sync. DVFS}
1027
1028 \centering
1029     \includegraphics[scale=0.42]{c3/energy_saving.eps}
1030
1031  \centering  The average of energy saving  = \textcolor{red}{22\%}
1032 \end{frame} 
1033
1034
1035
1036 %%%%%%%%%%%%%%%%%%%%
1037 %%    SLIDE 49   %%
1038 %%%%%%%%%%%%%%%%%%%%
1039 \begin{frame}{The simulation results}
1040 \centering
1041    
1042      \includegraphics[scale=0.42]{c3/perf_degra.eps}
1043      
1044  \centering    The average speed-up  = \textcolor{red}{5.72\%}
1045 \end{frame} 
1046
1047
1048
1049 %%%%%%%%%%%%%%%%%%%%
1050 %%    SLIDE 50   %%
1051 %%%%%%%%%%%%%%%%%%%%
1052  \begin{frame}{The Grid'5000 results}
1053    \vspace{-20 mm}
1054    \begin{figure}[!t]
1055    \centering
1056    \hspace{-8 mm}
1057     \includegraphics[width=0.53\textwidth]{c3/energy-s-compare.eps}                    
1058     \includegraphics[width=0.53\textwidth]{c3/perf-deg-compare.eps}
1059    \end{figure}
1060     \vspace{-5 mm}
1061      \centering
1062 The energy saving = \textcolor{red}{26.93\%}, the average speed-up =  \textcolor{red}{21.48\%}
1063 \end{frame} 
1064
1065
1066 %%%%%%%%%%%%%%%%%%%%
1067 %%    SLIDE 51   %%
1068 %%%%%%%%%%%%%%%%%%%%
1069 \begin{frame}{The comparison results}
1070  \centering
1071     \includegraphics[width=.5\textwidth]{c3/compare.eps}
1072     
1073     \includegraphics[width=.5\textwidth]{c3/compare_scales.eps}
1074 \end{frame} 
1075
1076
1077
1078
1079 %%%%%%%%%%%%%%%%%%%%
1080 %%    SLIDE 52  %%
1081 %%%%%%%%%%%%%%%%%%%%
1082 \begin{frame}{Conclusions}
1083 \section{Conclusions and Perspectives}
1084 \begin{itemize}
1085
1086 \small  \barrow  Three \textcolor{blue}{ new energy consumption and performance} models were proposed for synchronous and asynchronous parallel applications with iterations running over 
1087 \textcolor{blue}{homogeneous and  heterogeneous clusters and grids}.  
1088       
1089
1090
1091 \small \barrow \textcolor{blue}{A new objective function} to optimize both the energy consumption and the performance was proposed.
1092
1093 \small \barrow \textcolor{blue}{New online frequency selecting algorithms} for clusters and grids were developed.
1094
1095 \small \barrow The proposed algorithms were applied to the \textcolor{blue}{NAS parallel benchmarks} and \textcolor{blue}{the
1096 Multi-splitting} method.
1097
1098 \small \barrow The proposed algorithms were evaluated over the \textcolor{blue}{SimGrid simulator} and over  \textcolor{blue}{Grid'5000 testbed}.
1099
1100 \small  \barrow All the proposed methods were compared to either \textcolor{blue}{Rauber and Rünger's  method} or  \textcolor{blue}{the EDP objective function}.
1101
1102
1103 \end{itemize}
1104 \end{frame}
1105
1106
1107
1108 %%%%%%%%%%%%%%%%%%%%
1109 %%    SLIDE 53   %%
1110 %%%%%%%%%%%%%%%%%%%%
1111 \begin{frame}{Publications}
1112
1113 \begin{block}{\small Journal Articles }\scriptsize
1114 \begin{enumerate}[$\lbrack$1$\rbrack$]
1115
1116 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. Optimizing the energy consumption of message passing applications with iterations executed over grids. \textit{Journal of Computational 
1117       Science}, 2016.
1118
1119 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. Energy Consumption Reduction for     
1120       Asynchronous Message Passing Applications.  \textit{Journal of Supercomputing}, 2016, (Submitted)
1121  
1122 \end{enumerate}
1123 \end{block}
1124
1125
1126 \begin{block}{\small Conference Articles }\scriptsize
1127
1128 \begin{enumerate}[$\lbrack$1$\rbrack$]
1129
1130 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Dynamic Frequency Scaling for
1131       Energy Consumption Reduction in Distributed MPI Programs. \textit{ISPA 2014}, pp.
1132       225-230. IEEE Computer Society, Milan, Italy (2014).
1133
1134 \item Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh, Arnaud Giersch. Energy Consumption Reduction
1135       with DVFS for Message Passing Iterative Applications on Heterogeneous Architectures.
1136       \textit{The $16^{th}$ PDSEC}. pp. 922-931. IEEE Computer Society, INDIA (2015).
1137
1138 \item Ahmed Fanfakh, Jean-Claude Charr, Raphaël Couturier,  Arnaud Giersch. CPUs Energy Consumption
1139       Reduction for Asynchronous Parallel Methods Running over Grids. \textit{The $19^{th}$ CSE conference}. IEEE Computer Society, 
1140       Paris (2016).  
1141
1142 \end{enumerate}
1143
1144 \end{block}
1145 \end{frame}
1146
1147
1148 %%%%%%%%%%%%%%%%%%%%
1149 %%    SLIDE 54   %%
1150 %%%%%%%%%%%%%%%%%%%%
1151 \begin{frame}{Perspectives}
1152
1153 \begin{itemize}
1154
1155 \small  \barrow The proposed algorithms should  take into consideration the
1156 \textcolor{blue}{variability between some iterations}.
1157
1158 \small  \barrow The proposed algorithms should be applied to \textcolor{blue}{other message passing methods with iterations} in order to see how they adapt to the characteristics of these methods.
1159
1160 \small \barrow The proposed algorithms for heterogeneous platforms should be applied to heterogeneous platforms composed of \textcolor{blue}{CPUs and GPUs}.
1161
1162 \small \barrow Comparing the results returned by the energy models to the values given by  \textcolor{blue}{real instruments that measure the energy consumptions} of CPUs during the execution time.
1163 \end{itemize}
1164
1165 \end{frame}
1166
1167 %%%%%%%%%%%%%%%%%%%%
1168 %%    SLIDE 55  %%
1169 %%%%%%%%%%%%%%%%%%%%
1170 \begin{frame}{Fin} \vspace{-10 mm}
1171
1172             \centering \Large \textcolor{blue}{Thank you for your listening}
1173             
1174             \vspace{2cm}
1175             \centering \textcolor{blue}{ {\Large Questions?}}
1176         
1177 \end{frame}
1178 \end{document}
1179 %  _____ ___ _   _ 
1180 % |  ___|_ _| \ | |
1181 % | |_   | ||  \| |
1182 % |  _|  | || |\  |
1183 % |_|   |___|_| \_|
1184 %