]> AND Private Git Repository - ThesisAli.git/blob - SlidesAli/These.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
update by ali
[ThesisAli.git] / SlidesAli / These.tex
1 \documentclass{beamer}
2 %\usepackage[timeinterval=10]{tdclock}
3  
4
5
6 \usepackage{beamerthemefemto}
7
8 \usepackage[T1]{fontenc}
9 \usepackage{amsfonts,amsmath,amssymb,stmaryrd}
10 \usepackage[frenchb]{babel}
11 \usepackage{graphicx}
12 \usepackage[utf8]{inputenc}
13 %\usepackage[section]{algorithm}
14 %\usepackage{algorithmic}
15 \usepackage{moreverb}
16 \usepackage{verbatim}
17 \usepackage{spverbatim}
18 \usepackage{mdwlist}
19 \usepackage{multirow}
20  \usepackage{animate}
21 \usepackage{multido}
22  \usepackage{lmodern}
23  \usepackage{tikz}
24   \usepackage{booktabs}
25  \usepackage{pifont}
26   \usepackage{color}
27 \usepackage{algorithmic}
28 %\usepackage[ruled,english,boxed,linesnumbered]{algorithm2e}
29 %\usepackage[english]{algorithme}
30 \usepackage{subfigure}
31 \usepackage{listings}
32  
33 \usepackage{array}
34 \usepackage{picture}
35 \usepackage{float}
36
37
38 % \usepackage[font=Times,timeinterval=10, timeduration=2.0, timedeath=0, fillcolorwarningsecond=white!60!yellow, timewarningfirst=50,timewarningsecond=80,resetatpages=2]{tdclock}
39
40   \def\setgrouptext#1{\gdef\grouptext{#1}}
41 \newenvironment{groupeditems}{\begin{displaymath}\left.\vbox\bgroup\setgrouptext}{%
42   \egroup\right\rbrace\hbox{\grouptext}\end{displaymath}}
43
44 \newcommand*\rot{\rotatebox{90}}
45 \newcommand*\OK{\ding{51}}
46
47 \newcommand{\mcrot}[4]{\multicolumn{#1}{#2}{\rlap{\rotatebox{#3}{#4}~}}} 
48
49 \newcommand*{\twoelementtable}[3][l]%
50 {%  
51     \renewcommand{\arraystretch}{0.8}%
52     \begin{tabular}[t]{@{}#1@{}}%
53         #2\tabularnewline
54         #3%
55     \end{tabular}%
56 }
57
58
59 \DeclareGraphicsExtensions{.jpg, .png , .pdf, .bmp, .pdftex}
60
61 \setbeamertemplate{section in toc}[sections numbered] 
62 \setbeamertemplate{subsection in toc}[subsections numbered]
63 \pagenumbering{roman}
64 \AtBeginSection[]
65 {
66 \begin{frame}
67 \frametitle{Presentation outline}
68 \tableofcontents[currentsection]
69 \end{frame}
70 }
71
72  
73 \title{\textbf{Distributed Coverage Optimization Techniques for Improving Lifetime of Wireless Sensor Networks} \\\vspace{0.1cm}\hspace{2cm}\textbf{\textcolor{cyan}{\small PhD Dissertation Defense}}}
74 \author{\textbf{\textcolor{green}{Ali Kadhum IDREES}} \\\vspace{0.5cm} \small Under Supervision: \\\textcolor{cyan}{\small  Raphaël COUTURIER, Karine DESCHINKEL \& Michel SALOMON} \\\vspace{0.2cm} \textcolor{blue}{ University of Franche-Comté - FEMTO-ST - DISC Dept.  - AND Team} \\\vspace{0.2cm}~~~~~~~~~~~~~~~~\textbf{\textcolor{green}{1 October 2015 }}}
75
76 %\institute[FEMTO-ST, DISC]{\textit{FEMTO-ST - DISC Departement  - AND Team}}
77  
78 \date{ }
79
80
81
82
83 %  ____  _____ ____  _   _ _____ 
84 % |  _ \| ____| __ )| | | |_   _|
85 % | | | |  _| |  _ \| | | | | |  
86 % | |_| | |___| |_) | |_| | | |  
87 % |____/|_____|____/ \___/  |_|  
88
89
90 \begin{document}
91 %\initclock
92 %\tdclock
93 %%%%%%%%%%%%%%%%%%%%
94 %%    SLIDE 01    %%
95 %%%%%%%%%%%%%%%%%%%% 
96 \setbeamertemplate{background}{\titrefemto}
97 \begin{frame}[plain]
98 %\transduration{0.75}
99 \begin{center}
100 \titlepage
101 \end{center}
102 \end{frame}
103
104
105 \setbeamertemplate{background}{\pagefemto}
106
107
108 %%%%%%%%%%%%%%%%%%%%
109 %%    SLIDE 02    %%
110 %%%%%%%%%%%%%%%%%%%% 
111 \begin{frame} {Problem definition and solution}
112  \vspace{-3.5em}
113  
114  \begin{figure}
115    \includegraphics[width=0.495\textwidth]{Figures/6}
116    \hfill
117 %   \includegraphics[width=0.475\textwidth]{Figures/8}
118 %   \hfill
119    \includegraphics[width=0.495\textwidth]{Figures/10}
120 %   \hfill
121 %   \includegraphics[width=0.475\textwidth]{Figures/13}
122 \end{figure}
123
124  \begin{block}{\textcolor{white}{MAIN QUESTION}}
125                 \textcolor{black}{How to minimize the energy consumption and extend the network lifetime when covering the area of interest?}
126 \end{block}
127  \end{frame}
128
129
130 %%%%%%%%%%%%%%%%%%%%
131 %%    SLIDE 03    %%
132 %%%%%%%%%%%%%%%%%%%% 
133 \begin{frame}{Problem definition and solution}
134
135 \begin{block}{\textcolor{white}{OUR SOLUTION $\blacktriangleright$ Distributed optimization process}}
136 \begin{enumerate} [i)]
137 \item \bf \textcolor{black}{Division into subregions}
138 \item \bf \textcolor{black}{For each subregion}
139         
140 \end{enumerate}
141
142  \begin{itemize}
143          \item \bf \textcolor{magenta}{Leader election}
144          \item \bf \textcolor{magenta}{Activity Scheduling based optimization}
145          \end{itemize}
146                 
147                 \end{block}
148 \vspace{-1.5em}                         
149 \begin{figure}
150    \includegraphics[width=0.475\textwidth]{Figures/div2}
151    \hfill
152    \includegraphics[width=0.475\textwidth]{Figures/act2}
153 \end{figure}
154         
155 \end{frame}
156
157 %%%%%%%%%%%%%%%%%%%%
158 %%    SLIDE 03.1    %%
159 %%%%%%%%%%%%%%%%%%%% 
160 %\begin{frame}{Problem Definition, Solution, and Objectives}
161 %
162 %\begin{block}{\textcolor{white}{OUR SOLUTION}}
163 % \begin{itemize}
164 %         %\item Leader Election for each subregion.
165 %         \item \bf \textcolor{magenta}{Activity Scheduling based optimization is planned for each subregion.}
166 %  \end{itemize}
167 %               
168 % \end{block}   
169 %\begin{figure}
170 %   \includegraphics[width=0.775\textwidth]{Figures/act}
171 %   
172 %\end{figure}
173 %       
174 %\end{frame}
175
176 %%%%%%%%%%%%%%%%%%%%
177 %%    SLIDE 03.2    %%
178 %%%%%%%%%%%%%%%%%%%% 
179 %\begin{frame}{Problem Definition, Solution, and Objectives}
180 %
181 %\begin{block}{\bf \textcolor{white}{Dissertation Objectives}}
182 %\bf \textcolor{black}{Develop energy-efficient distributed optimization protocols that should be able to:}
183 % \begin{itemize}
184 %    \item \bf \textcolor{blue}{Schedule node activities by optimize both coverage and lifetime.}
185 %    \item \bf \textcolor{blue}{Combine two efficient techniques: leader election and sensor activity scheduling.}
186 %    \item \bf \textcolor{blue}{Perform a distributed optimization process.}
187 %  \end{itemize}
188 %               
189 % \end{block}   
190 %
191 %       
192 %\end{frame}
193
194
195 %%%%%%%%%%%%%%%%%%%%
196 %%    SLIDE 04    %%
197 %%%%%%%%%%%%%%%%%%%% 
198 \begin{frame}
199   \frametitle{Presentation outline}
200 \begin{small}
201   \tableofcontents[section,subsection]
202 \end{small}
203 \end{frame}
204
205
206 %%%%%%%%%%%%%%%%%%%%
207 %%    SLIDE 05    %%
208 %%%%%%%%%%%%%%%%%%%% 
209 \section{\small {State of the Art}}
210
211
212 %%%%%%%%%%%%%%%%%%%%
213 %%    SLIDE 06    %%
214 %%%%%%%%%%%%%%%%%%%% 
215 \begin{frame}{Wireless Sensor Networks (WSNs)}
216 \vspace{-3.5em}
217  \begin{columns}[c]
218   
219 \column{.58\textwidth}
220
221      \begin{figure}[!t]
222            \includegraphics[height = 3cm]{Figures/WSNT.jpg}
223     \end{figure}  
224
225         
226     
227     \begin{femtoBlock}  
228         {Sensor \\}
229                  \begin{itemize}
230                         \item Electronic low-cost tiny device
231                         \item Sense, process and transmit data
232                         \item Limited energy, memory and processing capabilities
233                 \end{itemize}
234         \end{femtoBlock}
235          
236         \column{.52\textwidth}
237          
238          \begin{figure}[!t]
239            \includegraphics[height = 4.5cm]{Figures/WSN.jpg}
240     \end{figure}  
241     \vspace{-3.5em}
242      \begin{figure}[!t]
243            \includegraphics[height = 2cm]{Figures/sn.jpg}
244      \end{figure}  
245    
246         
247 \end{columns}
248
249  
250  
251 \end{frame}
252
253
254 %%%%%%%%%%%%%%%%%%%%
255 %%    SLIDE 7    %%
256 %%%%%%%%%%%%%%%%%%%% 
257 \begin{frame}{Types of Wireless Sensor Networks}
258
259 \vspace{-1.5em}
260 % \begin{columns}[c]
261 %  
262 %\column{.52\textwidth}
263 %\begin{itemize}
264 %  \item  Terrestrial WSNs.
265 %  \item  Underground WSNs.
266 %  \item  Underwater WSNs.
267 %  \item  Multimedia WSNs.
268 %  \item  Mobile WSNs.
269 %  \item  Flying WSNs.
270 %\end{itemize}
271 %               
272 % \column{.58\textwidth}
273  \begin{figure}[!t]
274      \includegraphics[height = 7cm]{Figures/typesWSN.pdf}
275  \end{figure}  
276
277 %\end{columns}
278 \end{frame}
279
280
281 %%%%%%%%%%%%%%%%%%%%
282 %%    SLIDE 08    %%
283 %%%%%%%%%%%%%%%%%%%% 
284 \begin{frame}{Applications}
285 \vspace{-1.5em}
286   
287 \begin{figure}[!t]
288      \includegraphics[height = 7cm]{Figures/WSNAP.pdf}
289  \end{figure} 
290 \end{frame}
291
292
293 %%%%%%%%%%%%%%%%%%%%
294 %%    SLIDE 09    %%
295 %%%%%%%%%%%%%%%%%%%%
296 \begin{frame}{Energy-efficient mechanisms of a working WSN}
297 \vspace{-2.5em}
298   
299 \begin{figure}[!t]
300 \centering
301     % \includegraphics[height = 5cm]{Figures/WSN-M.pdf}
302      \includegraphics[height = 4.8cm]{Figures/EEM.eps}
303  \end{figure} 
304  \vspace{-1.0em}
305  %\bf \textcolor{blue} {Our approach includes cluster architecture and scheduling schemes}
306 \end{frame}
307
308 %\begin{frame}{Energy-Efficient Mechanisms of a working WSN}
309 %\vspace{-1.5em}
310 %  
311 %\begin{figure}[!t]
312 %     \includegraphics[height = 7cm]{Figures/WSN-S.pdf}
313 % \end{figure} 
314 %\end{frame}
315
316 %%%%%%%%%%%%%%%%%%%%
317 %%    SLIDE 10    %%
318 %%%%%%%%%%%%%%%%%%%%
319 \begin{frame}{Network lifetime}
320 \vspace{-1.5em}
321 \begin{femtoBlock}      
322         { Some definitions\\}
323      \begin{enumerate}[i)]
324 \item \textcolor{black} {Time spent until death of the first sensor (or cluster head)}
325 \item \textcolor{black} {Time spent until death of all wireless sensor nodes in WSN}
326 %\item  \textcolor{black} {Time spent by WSN in covering each target by at least one sensor}
327 \item  \textcolor{black} {Time spent in covering area of interest by at least k nodes}
328 \item \textcolor{black} {Elapsed time until losing the connectivity or the coverage}
329 \item \bf \textcolor{red} {Elapsed time until the coverage ratio becomes less than a predetermined threshold $\alpha$}
330 \end{enumerate}
331          
332         \end{femtoBlock}
333
334
335
336
337
338 \end{frame}
339
340 %%%%%%%%%%%%%%%%%%%%
341 %%    SLIDE 10.1   %%
342 %%%%%%%%%%%%%%%%%%%%
343 \begin{frame}{Coverage in Wireless Sensor Networks}
344  
345 \begin{block} <1-> {\textcolor{white} {Coverage definition}} 
346 \textcolor{blue} {Coverage} reflects how well a sensor field is monitored efficiently using as less energy as possible
347 \end{block}
348  
349
350  
351 %\begin{block} <2-> {\textcolor{white} {Coverage types}} 
352 \begin{block} {\bf \textcolor{white} {Coverage types}} 
353 \begin{enumerate}[i)]
354 \item \small \textcolor{red} {Area coverage $\blacktriangleright$ every point inside an area has to be monitored}
355 \item  \textcolor{blue} {Target coverage} $\blacktriangleright$ only a finite number of discrete points called targets has to be monitored
356
357 \item  \textcolor{blue} {Barrier coverage} $\blacktriangleright$ detection of targets as they cross a barrier such as in intrusion detection and border surveillance applications
358 \end{enumerate}
359 \end{block}
360  
361
362  
363 %\begin{block} <3-> {\textcolor{white} {Coverage type in this dissertation:}} 
364 %The work presented in this dissertation deals with \textcolor{red} {area coverage}.
365 %\end{block}
366  
367 \end{frame}
368
369 %%%%%%%%%%%%%%%%%%%%
370 %%    SLIDE 11    %%
371 %%%%%%%%%%%%%%%%%%%% 
372 \begin{frame}{Existing works}
373 \vspace{-0.3em}
374 \begin{block}  {\textcolor{white} {Coverage approaches}} 
375 %Most existing coverage approaches in literature classified into
376 \begin{enumerate}[i)]
377 \item \textcolor{blue} { Full centralized coverage algorithms}
378     \begin{itemize}
379     \item  Optimal or near optimal solution
380     \item  Low computation power for the sensors (except for base station)
381     \item  Higher energy consumption for communication in large WSN
382     \item  Not scalable for large WSNs
383     \end{itemize}
384 \item \textcolor{blue} {Full distributed coverage algorithms}
385    \begin{itemize}
386     \item  Lower quality solution
387     \item  Decision process is localized inside sensor and may requires a high computation power for dense WSNs
388     \item Less energy consumption for communication in large WSN
389     \item  Reliable and scalable for large WSNs
390    \end{itemize}
391    \item  \textcolor{red} {Hybrid approaches}
392    \begin{itemize}
393    \item \textcolor{red} {Globally distributed and locally centralized}
394    \end{itemize}
395    
396 \end{enumerate}
397
398 \end{block}
399  
400
401 %\begin{block} {\textcolor{white} {Coverage protocols in this dissertation:}} 
402 %The protocols presented in this dissertation combine between the two above approaches.
403 %\end{block}
404  
405
406 \end{frame}
407
408 \begin{frame}{Existing works $\blacktriangleright$ DESK algorithm (Vu et al.)}
409 \vspace{-2.0em}
410 \begin{figure}[!t]
411            \includegraphics[height = 5.0cm]{Figures/DESKp.eps}
412     \end{figure}  
413      \vspace{-2.5em}
414      
415      \begin{itemize}
416        \item Requires only one-hop neighbor information (fully distributed)
417        \item Each sensor decides its status (Active or Sleep) based on the perimeter coverage model, without optimization
418               
419 \end{itemize}
420
421
422 %\tiny \bf \textcolor{blue}{DESK is chosen for comparison because it works into rounds fashion similar to our approaches, as well as DESK is a full distributed coverage approach.}
423
424
425 \end{frame}
426
427 \begin{frame}{Existing works $\blacktriangleright$ GAF algorithm (Xu et al.)}
428
429 \vspace{-3.3em}
430  \begin{columns}[c]
431   
432 \column{.58\textwidth}
433
434      \begin{figure}[!t]
435            \includegraphics[height = 2.7cm]{Figures/GAF1.eps}
436     \end{figure}  
437     \vspace{-2.5em}
438     \begin{figure}[!t]
439            \includegraphics[height = 3.3cm]{Figures/GAF2.eps}
440     \end{figure}
441          
442         \column{.52\textwidth}
443          \vspace{1.2em}
444 \small
445         \begin{itemize}
446         \item Distributed energy-based scheduling approach
447         \item Uses geographic location information to divide the area into a fixed square grids
448         \item Nodes are in one of three sates $\blacktriangleright$ discovery, active, or sleep
449         \item  Only one node staying active in grid
450         \item  The fixed grid is square with r units on a side
451          \item  Nodes cooperate within each grid to choose the active node
452         \end{itemize}
453         
454            
455       
456 %     \begin{itemize}
457 %       \item \tiny enat: estimated node active time
458 %       \item enlt: estimated node lifetime
459 %       \item Td,Ta, Ts: discovery, active, and sleep timers
460 %       \item Ta = enlt/2 
461 %       \item Ts = [enat/2, enat]
462 %     \end{itemize}
463      
464
465         
466 \end{columns}
467
468 \vspace{1.0em}
469
470 %\tiny \bf \textcolor{blue}{GAF is chosen for comparison because it is famous and easy to implement, as well as many authors referred to it in many publications.}
471 \end{frame}
472
473 \section{\small {The main scheme for our protocols}}
474
475
476 \begin{frame}{Assumptions for our protocols}
477 \vspace{-0.1cm}
478
479 \begin{enumerate} [$\divideontimes$]
480                     \item  Static wireless sensor, homogeneous in terms of  
481              \begin{itemize}
482              \item Sensing
483              \item Communication
484              \item Processing capabilities
485              \end{itemize}
486                         \item  Heterogeneous initial energy
487                         \item  High density uniform deployment 
488                          \item $R_c\geq 2R_s$   
489                          \begin{itemize}
490                                 \item Complete coverage $\Rightarrow$ connectivity (proved by Zhang and Zhou)
491                                  \end{itemize}
492                          \item  Multi-hop communication
493                          
494                 \end{enumerate}         
495                 
496 \end{frame}
497
498
499 \begin{frame}{Assumptions for our protocols}
500 \vspace{-0.1cm}
501
502 \begin{enumerate} [$\divideontimes$]
503          \item  Known location by 
504     \begin{itemize}
505      \item Embedded GPS  
506      \item location discovery algorithm          
507     \end{itemize}
508     
509     \item Using two kinds of packets  
510         \begin{itemize}         
511            \item INFO packet
512            \item ActiveSleep packet
513         \end{itemize}
514         \item Five status for each node 
515         \begin{itemize}         
516            \item  LISTENING
517            \item ACTIVE
518            \item SLEEP
519            \item COMPUTATION
520            \item COMMUNICATION
521         \end{itemize}
522                 \end{enumerate}         
523                 
524 \end{frame}
525
526
527
528
529
530
531
532 \begin{frame}{Assumptions for our protocols}
533   \vspace{-0.5cm}
534 \begin{center}
535         \includegraphics[height = 7.0cm]{Figures/Pmodelsn.pdf}  
536 \end{center}
537
538 \end{frame}
539
540
541
542
543 \begin{frame}{General scheme}
544 \vspace{-0.2cm}
545 \begin{figure}[ht!]
546  \includegraphics[width=110mm]{Figures/GeneralModel.jpg}
547  \end{figure} 
548  
549 \begin{itemize}
550 \item DiLCO and PeCO  $\blacktriangleright$ one round sensing ($T=1$)
551 \item MuDiLCO $\blacktriangleright$ multiple rounds sensing ($t=1, \cdots, T$)
552 \end{itemize}
553
554 \end{frame}
555
556
557 \begin{frame}{General scheme}
558   \vspace{-0.2cm}
559 \begin{enumerate} [i)]
560 \item \textcolor{blue}{\textbf{INFORMATION EXCHANGE}} $\blacktriangleright$ Sensors exchange through multi-hop communication, their
561 \begin{itemize}
562 \item Position coordinates, current remaining energy, sensor node ID, and number of its one-hop live neighbors
563  
564 \end{itemize}
565
566
567 \item \textcolor{blue}{\textbf{LEADER ELECTION}} $\blacktriangleright$ The selection criteria are, in order 
568 \begin{itemize}
569 \item Larger number of neighbors
570 \item Larger remaining energy
571 \item Larger ID
572 \end{itemize}
573
574
575  
576 \item \textcolor{blue}{\textbf{DECISION}} $\blacktriangleright$ Leader solves an integer program to
577 \begin{itemize}
578 \item  Select which sensors will be activated in the sensing phase
579 \item Send Active-Sleep packet to each sensor in the subregion
580 \end{itemize}
581
582  
583 \item \textcolor{blue}{\textbf{SENSING}} $\blacktriangleright$ Based on Active-Sleep Packet Information
584 \begin{itemize}
585 \item Active sensors will execute their sensing task
586 \item Sleep sensors will wait a time equal to the period of sensing to wakeup
587
588 \end{itemize}
589 \end{enumerate}
590  
591 \end{frame}
592
593
594
595 %%%%%%%%%%%%%%%%%%%%
596 %%    SLIDE 12    %%
597 %%%%%%%%%%%%%%%%%%%% 
598 \section{\small {Distributed Lifetime Coverage Optimization Protocol (DiLCO)}}
599
600
601 %%%%%%%%%%%%%%%%%%%%
602 %%    SLIDE 15    %%
603 %%%%%%%%%%%%%%%%%%%% 
604 \begin{frame}{\small DiLCO protocol $\blacktriangleright$ Coverage problem formulation}
605 \vspace{0.2cm}
606 \centering
607 \includegraphics[height = 7.2cm]{Figures/modell1.pdf}
608
609 \end{frame}
610
611
612 %%%%%%%%%%%%%%%%%%%%
613 %%    SLIDE 16    %%
614 %%%%%%%%%%%%%%%%%%%% 
615 \begin{frame}{\small DiLCO protocol $\blacktriangleright$ DiLCO protocol algorithm}
616 %\begin{femtoBlock} {}
617 \centering
618 %\includegraphics[height = 7.2cm]{Figures/algo.jpeg}
619 \includegraphics[height = 7.2cm]{Figures/Algo1.png}
620 %\end{femtoBlock}
621
622 \end{frame}
623
624
625
626
627 %%%%%%%%%%%%%%%%%%%%
628 %%    SLIDE 18    %%
629 %%%%%%%%%%%%%%%%%%%% 
630 \begin{frame}{\small DiLCO protocol $\blacktriangleright$ Simulation framework}
631 \vspace{-0.8cm}
632 \small
633 \begin{table}[ht]
634 \caption{Relevant parameters for simulation}
635 \centering
636 \begin{tabular}{c|c}
637 \hline
638 Parameter & Value  \\ [0.5ex]
639 \hline
640 Sensing  Field  & $(50 \times 25)~m^2 $   \\
641 Nodes Number &  50, 100, 150, 200 and 250~nodes   \\
642 Initial Energy  & 500-700~joules  \\  
643 Sensing Period & 60 Minutes \\
644 $E_{th}$ & 36 Joules\\
645 $R_s$ & 5~m   \\     
646 $R_c$ & 10~m   \\
647 $w_{\Theta}$ & 1   \\
648 $w_{U}$ & $|P|^2$ \\
649 Modeling Language & A Mathematical Programming Language (AMPL) \\
650 Optimization Solver & GNU  linear Programming Kit (GLPK) \\
651 Network Simulator & Discrete Event Simulator OMNeT++ 
652 \end{tabular}
653 \label{tablech4}
654 \end{table}
655
656 \end{frame}
657
658
659 %%%%%%%%%%%%%%%%%%%%
660 %%    SLIDE 19    %%
661 %%%%%%%%%%%%%%%%%%%% 
662 \begin{frame}{\small DiLCO protocol $\blacktriangleright$ Energy model \& performance metrics }
663 %\vspace{-1.8cm}
664 \begin{femtoBlock} {Energy consumption model}
665 \vspace{-1.0cm}
666 \begin{table}[h]
667 %\centering
668 \small
669 %\caption{Power consumption values}
670 \label{tab:EC}
671 \begin{tabular}{|l||cccc|}
672   \hline
673   {\bf Sensor status} & MCU & Radio & Sensing & {\it Power (mW)} \\
674   \hline
675   LISTENING & On & On & On & 20.05 \\
676   ACTIVE & On & Off & On & 9.72 \\
677   SLEEP & Off & Off & Off & 0.02 \\
678   COMPUTATION & On & On & On & 26.83 \\
679   \hline
680   \multicolumn{4}{|l}{Energy needed to send or receive a 2-bit content message} & 0.515 \\
681   \hline
682 \end{tabular}
683 \end{table}
684
685 \end{femtoBlock}
686 \vspace{-0.5cm}
687 \begin{femtoBlock} {Performance metrics}
688 \small
689 \begin{enumerate}[$\blacktriangleright$]
690
691 \item {{\bf Coverage Ratio (CR)}}
692 \item {{\bf Active Sensors Ratio (ASR)}}
693 \item {{\bf Energy consumption $(Lifetime_{95}$, $Lifetime_{50})$}}
694 \item {{\bf Network lifetime $(Lifetime_{95}$, $Lifetime_{50})$}}
695 %\item {{\bf Execution Time}}
696 %\item {{\bf Stopped Simulation Runs}}
697
698 \end{enumerate}
699 \end{femtoBlock}
700 \end{frame}
701
702
703
704 %%%%%%%%%%%%%%%%%%%%
705 %%    SLIDE 20    %%
706 %%%%%%%%%%%%%%%%%%%% 
707 \begin{frame}{ \small DiLCO protocol $\blacktriangleright$ Performance comparison}
708
709 \vspace{-0.5cm}
710 \begin{figure}[h!]
711 \centering
712  \includegraphics[scale=0.5] {Figures/R3/CR.eps} 
713 \caption{Coverage ratio for 150 deployed nodes}
714 \label{Figures/ch4/R3/CR}
715 \end{figure}
716
717
718  
719 \end{frame}
720
721
722
723 %%%%%%%%%%%%%%%%%%%%
724 %%    SLIDE 20    %%
725 %%%%%%%%%%%%%%%%%%%% 
726 \begin{frame}{ \small DiLCO protocol $\blacktriangleright$ Performance comparison}
727 \vspace{-0.5cm}
728
729 \begin{figure}[h!]
730 \centering
731 \includegraphics[scale=0.5]{Figures/R3/ASR.eps}  
732 \caption{Active sensors ratio for 150 deployed nodes }
733 \label{Figures/ch4/R3/ASR}
734 \end{figure} 
735 \end{frame}
736
737
738 %%%%%%%%%%%%%%%%%%%%
739 %%    SLIDE 21    %%
740 %%%%%%%%%%%%%%%%%%%%
741 %\begin{frame}{ \small DiLCO Protocol $\blacktriangleright$ Performance Comparison}
742 %\vspace{-0.5cm}
743 %\begin{figure}[h!]
744 %\centering
745 %\includegraphics[scale=0.5]{Figures/R3/SR.eps} 
746 %\caption{Percentage of stopped simulation runs for 150 deployed nodes }
747 %\label{Figures/ch4/R3/SR}
748 %\end{figure}
749 %\end{frame}
750
751
752 %%%%%%%%%%%%%%%%%%%%
753 %%    SLIDE 22    %%
754 %%%%%%%%%%%%%%%%%%%%
755 \begin{frame}{ \small DiLCO protocol $\blacktriangleright$ Performance comparison}
756 \vspace{-0.5cm}
757 \begin{figure}%[h!]
758 \begin{columns}[c]
759         \column{.50\textwidth}
760 \includegraphics[scale=0.35]{Figures/R3/EC95.eps} 
761 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\      
762 \column{.50\textwidth}
763 \includegraphics[scale=0.35]{Figures/R3/EC50.eps} 
764 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b)        \\
765 \end{columns}
766 \caption{Energy consumption for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
767 \label{Figures/ch4/R3/EC}
768 \end{figure}
769
770  
771 \end{frame}
772
773
774 %%%%%%%%%%%%%%%%%%%%
775 %%    SLIDE 23    %%
776 %%%%%%%%%%%%%%%%%%%%
777 \begin{frame}{ \small DiLCO protocol $\blacktriangleright$ Performance comparison}
778 \vspace{-0.5cm}
779 \begin{figure}%[h!]
780 \begin{columns}[c]
781         \column{.50\textwidth}
782 \includegraphics[scale=0.35]{Figures/R3/LT95.eps} 
783 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\      
784 \column{.50\textwidth}
785 \includegraphics[scale=0.35]{Figures/R3/LT50.eps} 
786 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b)        \\
787 \end{columns}
788 \caption{Network lifetime for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
789   \label{Figures/ch4/R3/LT}
790 \end{figure}
791
792
793
794
795 \end{frame}
796
797
798
799
800
801
802 \section{\small{Multiround Distributed Lifetime Coverage Optimization Protocol (MuDiLCO)}}
803
804
805 %%%%%%%%%%%%%%%%%%%%
806 %%    SLIDE 28    %%
807 %%%%%%%%%%%%%%%%%%%% 
808 %\begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Main Idea}
809 %\vspace{-0.2cm}
810 %\begin{figure}[ht!]
811 % \includegraphics[width=110mm]{Figures/GeneralModel.jpg}
812 %\caption{MuDiLCO protocol.}
813 %\label{fig2}
814 %\end{figure} 
815 %\end{frame}
816
817
818 %%%%%%%%%%%%%%%%%%%%
819 %%    SLIDE 29    %%
820 %%%%%%%%%%%%%%%%%%%% 
821 \begin{frame}{\small MuDiLCO protocol $\blacktriangleright$  Multiround coverage problem formulation}
822 \vspace{0.2cm}
823
824 \centering
825 \includegraphics[height = 7.2cm]{Figures/modell2.pdf}
826
827 \end{frame}
828
829 %%%%%%%%%%%%%%%%%%%%
830 %%    SLIDE 30    %%
831 %%%%%%%%%%%%%%%%%%%% 
832 %\begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ MuDiLCO Protocol Algorithm}
833 %%\vspace{0.2cm}
834 %\begin{femtoBlock} {}
835 %\centering
836 %\includegraphics[height = 7.2cm]{Figures/Algo2.png}
837 %\end{femtoBlock}
838 %\end{frame}
839
840
841 %%%%%%%%%%%%%%%%%%%%
842 %%    SLIDE 31    %%
843 %%%%%%%%%%%%%%%%%%%% 
844 \begin{frame}{\small MuDiLCO protocol $\blacktriangleright$ Performance comparison}
845 \vspace{-0.5cm}
846 \begin{figure}[h!]
847 \centering
848  \includegraphics[scale=0.5] {Figures/R1/CR.pdf}   
849 \caption{Average coverage ratio for 150 deployed nodes}
850 \label{fig3}
851 \end{figure} 
852 \end{frame}
853
854
855 %%%%%%%%%%%%%%%%%%%%
856 %%    SLIDE 32    %%
857 %%%%%%%%%%%%%%%%%%%% 
858 \begin{frame}{\small MuDiLCO protocol $\blacktriangleright$ Performance comparison}
859 \vspace{-0.5cm}
860 \begin{figure}[h!]
861 \centering
862 \includegraphics[scale=0.5]{Figures/R1/ASR.pdf}  
863 \caption{Active sensors ratio for 150 deployed nodes}
864 \label{fig4}
865 \end{figure} 
866 \end{frame}
867
868
869 %%%%%%%%%%%%%%%%%%%%
870 %%    SLIDE 33    %%
871 %%%%%%%%%%%%%%%%%%%% 
872 %\begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
873 %\vspace{-0.5cm}
874 %\begin{figure}[t]
875 %\centering
876 %\includegraphics[scale=0.5]{Figures/R1/SR.pdf} 
877 %\caption{Cumulative percentage of stopped simulation runs for 150 deployed nodes }
878 %\label{fig6}
879 %\end{figure} 
880 %\end{frame}
881
882 %%%%%%%%%%%%%%%%%%%%
883 %%    SLIDE 34    %%
884 %%%%%%%%%%%%%%%%%%%% 
885 %\begin{frame}{\small MuDiLCO Protocol $\blacktriangleright$ Results Analysis and Comparison}
886 %\vspace{-0.5cm}
887 %\begin{figure}[h!]
888 %\centering
889 %\includegraphics[scale=0.5]{Figures/R1/T.pdf}  
890 %\caption{Execution Time (in seconds)}
891 %\label{fig77}
892 %\end{figure} 
893 %\end{frame}
894
895
896 %%%%%%%%%%%%%%%%%%%%
897 %%    SLIDE 35    %%
898 %%%%%%%%%%%%%%%%%%%% 
899 \begin{frame}{\small MuDiLCO protocol $\blacktriangleright$ Performance comparison}
900 \vspace{-0.5cm}
901 \begin{figure}%[h!]
902 \begin{columns}[c]
903         \column{.50\textwidth}
904 \includegraphics[scale=0.35]{Figures/R1/EC95.eps} 
905 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\      
906 \column{.50\textwidth}
907 \includegraphics[scale=0.35]{Figures/R1/EC50.eps} 
908 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b)        \\
909 \end{columns}
910 \caption{Energy consumption for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
911 \label{Figures/ch4t/R3/EC}
912 \end{figure}
913 \end{frame}
914
915
916 %%%%%%%%%%%%%%%%%%%%
917 %%    SLIDE 36    %%
918 %%%%%%%%%%%%%%%%%%%% 
919 \begin{frame}{\small MuDiLCO protocol $\blacktriangleright$ Performance comparison}
920 \vspace{-0.5cm}
921 \begin{figure}%[h!]
922 \begin{columns}[c]
923         \column{.50\textwidth}
924 \includegraphics[scale=0.35]{Figures/R1/LT95.eps} 
925 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\      
926 \column{.50\textwidth}
927 \includegraphics[scale=0.35]{Figures/R1/LT50.eps} 
928 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b)        \\
929 \end{columns}
930 \caption{Network lifetime for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
931 \label{Figures/ch4/Rh3/EC}
932 \end{figure}
933
934 \end{frame}
935
936
937
938
939 \section{\small {Perimeter-based Coverage Optimization (PeCO)}}
940
941
942 %%%%%%%%%%%%%%%%%%%%
943 %%    SLIDE 45    %%
944 %%%%%%%%%%%%%%%%%%%% 
945 \begin{frame}{\small PeCO protocol $\blacktriangleright$ Assumptions and models}
946
947 \vspace{-0.5cm}
948 \begin{figure}%[h!]
949 \begin{columns}[c]
950         \column{.50\textwidth}
951 \includegraphics[scale=0.40]{Figures/ch6/pcm.jpg} 
952 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\ 
953 \column{.50\textwidth}
954 $$\alpha =  \arccos \left(\dfrac{Dist(u,v)}{2R_s}
955 \right).$$ 
956 \includegraphics[scale=0.30]{Figures/ch6/twosensors.eps} 
957 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(b)   \\
958 \end{columns}
959 \caption{(a) Perimeter  coverage of sensor node  0 and (b) finding  the arc of
960     $u$'s perimeter covered by $v$.}
961   \label{pcm2sensors}
962 \end{figure}
963 \end{frame}
964
965
966 %%%%%%%%%%%%%%%%%%%%
967 %%    SLIDE 46    %%
968 %%%%%%%%%%%%%%%%%%%% 
969 \begin{frame}{\small PeCO protocol $\blacktriangleright$ Assumptions and models}
970
971 \vspace{-1.2cm}
972 \begin{figure}%[h!]
973 %\begin{columns}[c]
974 %       \column{.50\textwidth}
975 \includegraphics[scale=0.6]{Figures/ch6/expcm2.jpg}  
976 %\footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\        
977 %\column{.50\textwidth}
978 %\includegraphics[scale=0.38]{Figures/tbl.jpeg} 
979 %\footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~(b)  \\
980 %\end{columns}
981 %\caption{(a) Maximum coverage levels for perimeter of sensor node $0$. and (b) Coverage intervals and contributing sensors for sensor node 0.}
982 %  \label{pcm2sensors}
983 \end{figure}
984
985 \vspace{-0.9cm}
986 \textcolor {red} {Set of sensors involved in coverage interval of sensor 0 between 5L to 6L $\Rightarrow$ [0,2,5]\\
987 Maximum coverage level: 3 
988 }%$a^0_{i0}= 1$
989 %For example, the interval between 3R to 4R is covered by 4 sensors (0,1,2,4), it means the coverage level is 4
990
991 \end{frame}
992
993  
994
995 %%%%%%%%%%%%%%%%%%%%
996 %%    SLIDE 47    %%
997 %%%%%%%%%%%%%%%%%%%% 
998 \begin{frame}{\small PeCO protocol $\blacktriangleright$ PeCO protocol algorithm}
999 \vspace{-0.7cm}
1000 %\includegraphics[height = 7.2cm]{Figures/algo6.jpeg}
1001
1002 \begin{figure}[h!]
1003 \centering
1004  \includegraphics[height = 7.2cm]{Figures/ch6/Algo3n.pdf}
1005 \end{figure} 
1006 \end{frame}
1007
1008
1009 %%%%%%%%%%%%%%%%%%%%
1010 %%    SLIDE 48    %%
1011 %%%%%%%%%%%%%%%%%%%% 
1012 \begin{frame}{\small PeCO protocol $\blacktriangleright$ Perimeter-based coverage problem formulation}
1013 \vspace{-0.72cm}
1014
1015 \begin{figure}[h!]
1016 \centering
1017 \includegraphics[scale=0.5]{Figures/modell3.pdf}  
1018 \end{figure} 
1019
1020 \end{frame}
1021
1022
1023
1024 %%%%%%%%%%%%%%%%%%%%
1025 %%    SLIDE     %%
1026 %%%%%%%%%%%%%%%%%%%% 
1027 \begin{frame}{\small PeCO protocol $\blacktriangleright$ Performance comparison}
1028 \vspace{-0.5cm}
1029 \begin{figure}[h!]
1030 \centering
1031  \includegraphics[scale=0.5] {Figures/ch6/R/CR.eps} 
1032 \caption{Coverage ratio for 200 deployed nodes.}
1033 \label{fig333}
1034 \end{figure} 
1035
1036
1037 \end{frame}
1038
1039 %%%%%%%%%%%%%%%%%%%%
1040 %%    SLIDE     %%
1041 %%%%%%%%%%%%%%%%%%%% 
1042 \begin{frame}{\small PeCO protocol $\blacktriangleright$ Performance comparison}
1043 \vspace{-0.5cm}
1044 \begin{figure}[h!]
1045 \centering
1046 \includegraphics[scale=0.5]{Figures/ch6/R/ASR.eps}  
1047 \caption{Active sensors ratio for 200 deployed nodes.}
1048 \label{fig444}
1049 \end{figure} 
1050
1051 \end{frame}
1052
1053 %%%%%%%%%%%%%%%%%%%%
1054 %%    SLIDE     %%
1055 %%%%%%%%%%%%%%%%%%%% 
1056 \begin{frame}{\small PeCO protocol $\blacktriangleright$ Performance comparison}
1057 \vspace{-0.5cm}
1058 \begin{figure}%[h!]
1059 \begin{columns}[c]
1060         \column{.50\textwidth}
1061 \includegraphics[scale=0.35]{Figures/ch6/R/EC95.eps} 
1062 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\      
1063 \column{.50\textwidth}
1064 \includegraphics[scale=0.35]{Figures/ch6/R/EC50.eps} 
1065 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b)        \\
1066 \end{columns}
1067 \caption{Energy consumption per period for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
1068   \label{fig3EC}
1069 \end{figure}
1070
1071
1072 \end{frame}
1073
1074 %%%%%%%%%%%%%%%%%%%%
1075 %%    SLIDE     %%
1076 %%%%%%%%%%%%%%%%%%%% 
1077 \begin{frame}{\small PeCO protocol $\blacktriangleright$ Performance comparison}
1078 \vspace{-0.5cm}
1079 \begin{figure}%[h!]
1080 \begin{columns}[c]
1081         \column{.50\textwidth}
1082 \includegraphics[scale=0.35]{Figures/ch6/R/LT95.eps} 
1083 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(a)\\      
1084 \column{.50\textwidth}
1085 \includegraphics[scale=0.35]{Figures/ch6/R/LT50.eps} 
1086 \footnotesize \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(b)        \\
1087 \end{columns}
1088 \caption{Network lifetime for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
1089   \label{fig3LT}
1090 \end{figure}
1091
1092 \end{frame}
1093
1094 %%%%%%%%%%%%%%%%%%%%
1095 %%    SLIDE     %%
1096 %%%%%%%%%%%%%%%%%%%% 
1097 %\begin{frame}{\small PeCO Protocol $\blacktriangleright$ Performance Evaluation and Analysis}
1098 %\vspace{-0.5cm}
1099 %\begin{figure} [h!]
1100 %\centering \includegraphics[scale=0.5]{Figures/ch6/R/LTa.eps}
1101 %\caption{Network lifetime for different coverage ratios.}
1102 %\label{figLTALL}
1103 %\end{figure}
1104 %\end{frame}
1105
1106
1107
1108 %%%%%%%%%%%%%%%%%%%%
1109 %%    SLIDE     %%
1110 %%%%%%%%%%%%%%%%%%%% 
1111 \section{\small {Conclusion and perspectives}}
1112
1113
1114 %%%%%%%%%%%%%%%%%%%%
1115 %%    SLIDE 50    %%
1116 %%%%%%%%%%%%%%%%%%%% 
1117 \begin{frame}{Conclusion}
1118 \begin{enumerate} [$\blacktriangleright$]
1119
1120 \item  Two-step approaches are proposed to optimize both coverage and lifetime performances, where:
1121 \begin{itemize}
1122 \item Sensing field is divided into smaller subregions using divide-and-conquer method
1123 \item One of the proposed optimization protocols is applied in each subregion in a distributed parallel way
1124 \end{itemize}
1125 \item Our proposed protocols combine two efficient mechanisms 
1126 \begin{itemize}
1127 \item Network leader election, and
1128 \item Sensor activity scheduling based optimization
1129 \end{itemize}
1130 \item Our protocols are periodic where each period consists of 4 phases
1131 %\begin{itemize}
1132 %\item Information exchange
1133 %\item Network leader election
1134 %\item Decision based optimization 
1135 %\item Sensing.
1136 %\end{itemize}
1137 \end{enumerate}
1138
1139
1140
1141
1142 \end{frame}
1143
1144
1145 %%%%%%%%%%%%%%%%%%%%
1146 %%    SLIDE 51    %%
1147 %%%%%%%%%%%%%%%%%%%% 
1148 \begin{frame}{Conclusion}
1149 \begin{enumerate} [$\blacktriangleright$]
1150
1151 \item DiLCO and PeCO provide a schedule for one round per period
1152 \item MuDiLCO provides a schedule for multiple rounds per period
1153 \item Comparison results show that our protocols
1154 \begin{itemize}
1155  \item Maintain the coverage for a larger number of rounds
1156  \item Use less active nodes to save energy efficiently during sensing
1157  \item More powerful against network disconnections
1158 % \item Perform the optimization with suitable execution times
1159  \item Consume less energy
1160  \item Prolong the network lifetime
1161
1162 \end{itemize}
1163 \end{enumerate}
1164 \end{frame}
1165
1166 \begin{frame}{Publications}
1167 \tiny
1168 \begin{block}{\textcolor{white}{Journal Articles}}
1169 \begin{enumerate}[$\lbrack$1$\rbrack$]
1170 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el Couturier. Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks. \textit{\textcolor{red}{Engineering Optimization}, 2015, ($2^{nd}$ Revision Submitted)}.
1171
1172 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el Couturier. Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks. \textit{\textcolor{red}{Ad Hoc Networks}, 2015, ($1^{st}$ Revision Submitted)}. 
1173
1174 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el Couturier. Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks. \textit{\textcolor{red}{Journal of Supercomputing}, 2015, ($1^{st}$ Revision Submitted)}.
1175 \end{enumerate}
1176 \end{block}
1177
1178 \begin{block}{\textcolor{white}{Technical Reports}}
1179  
1180 \begin{enumerate}[$\lbrack$1$\rbrack$]
1181 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el
1182 Distributed lifetime coverage optimization protocol in wireless sensor networks. Technical Report DISC2014-X, University of Franche-Comte - FEMTO-ST Institute, DISC Research Department, Octobre 2014.
1183 \end{enumerate}
1184 \end{block}
1185
1186 \begin{block}{\textcolor{white}{Conference Articles}}
1187 \begin{enumerate}[$\lbrack$1$\rbrack$]
1188 \item Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Rapha\"el
1189 Coverage and lifetime optimization in heterogeneous energy wireless sensor networks. In ICN 2014, The Thirteenth International Conference on Networks, pages 49–54, 2014.
1190 \end{enumerate}
1191 \end{block}
1192
1193 \end{frame}
1194
1195 %%%%%%%%%%%%%%%%%%%%
1196 %%    SLIDE 52    %%
1197 %%%%%%%%%%%%%%%%%%%% 
1198 \begin{frame}{Perspectives}
1199 \begin{enumerate} [$\blacktriangleright$]
1200 \item Investigate the optimal number of subregions
1201 \item Design a heterogeneous integrated optimization protocol to integrate coverage, routing, and data aggregation protocols
1202 \item Extend PeCO protocol so that the schedules are planned for multiple rounds per period
1203 \item Consider particle swarm optimization or evolutionary algorithms to obtain quickly near optimal solutions
1204 \item Improve our mathematical models to take into account heterogeneous sensors from both energy and node characteristics point of views
1205 %\item The cluster head will be selected in a distributed way and based on local information.
1206 \end{enumerate}
1207
1208
1209 \end{frame}
1210
1211
1212 %%%%%%%%%%%%%%%%%%%%
1213 %%    SLIDE 53    %%
1214 %%%%%%%%%%%%%%%%%%%% 
1215 %\begin{frame}{Mes perspectives}
1216
1217 %\end{frame}
1218
1219 %%%%%%%%%%%%%%%%%%%%
1220 %%    SLIDE 54    %%
1221 %%%%%%%%%%%%%%%%%%%% 
1222 \begin{frame}{Fin}
1223 \begin{center}
1224 \huge
1225 \textcolor{BleuFemto}{Thank You for Your Attention!}\\\vspace{2cm}
1226 \textcolor{BleuFemto}{Questions?}\\
1227 \end{center}
1228 \end{frame}
1229 \end{document}
1230 %  _____ ___ _   _ 
1231 % |  ___|_ _| \ | |
1232 % | |_   | ||  \| |
1233 % |  _|  | || |\  | 
1234 % |_|   |___|_| \_|
1235 %
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260  
1261      
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278   
1279