]> AND Private Git Repository - ThesisAli.git/blob - Resume.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by Ali
[ThesisAli.git] / Resume.tex
1 \chapter*{Résumé \markboth{Résumé}{Résumé}}
2 \label{cha}
3 \addcontentsline{toc}{chapter}{Résumé}
4
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 %%                          %%
7 %%       Résumé           %%% n\oe ud
8 %%                          %%
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10
11
12 \emph{ \begin{center} \Large Techniques d'Optimisation Distribuées de la Couverture pour Améliorer la Durée de Vie des Réseaux de Capteurs sans Fil   \end{center}}   
13 %\emph{ \begin{center} \large By \end{center}}  
14 \emph{ \begin{center} \large Ali Kadhum Idrees \\ Université de Franche-Comt\'e, 2015 \end{center}} 
15 %\emph{ \begin{center} \large The University of Franche-Comt\'e, 2015 \end{center}}  
16 \emph{ \begin{center} \large Encadrants: Raphaël Couturier, Karine Deschinkel et Michel Salomon \end{center}}  
17
18
19 Les réseaux de capteurs sans fil ont suscité beaucoup de travaux de recherche au cours des dernières années en raison de leur large gamme d'applications potentielles. Les caractéristiques des n\oe uds capteurs imposent des contraints enterme de consommation d'énergie et de capacité de traitement qui rendent caduque les protocoles des réseaux ad-hoc sans fil, avec de nombreux défis à résoudre. Parmi ces défis, on peut noter la préservation de la couverture, le contrôle de la topologie, le routage, la fusion de données, la sécurité, etc. La préservation de la couverture d'une région à surveiller, de manière permanente et efficace, tout en empêchant autant que possible un dysfonctionnement du réseau en raison du déchargement de la batterie de certains n\oe uds, est une des problématique de recherche majeures.   
20
21
22 Dans cette thèse, nous nous sommes intéressés au problème de la préservation de la couverture, ainsi qu'à l'efficatité qui est une exigence essentielle dans un réseau de capteurs sans fil. Nous avons étudiés les protocoles d'optimisation distribués avec l'objectif ultime de prolonger la durée de vie opérationnelle du réseau. Les protocoles proposés doivent être efficaces en terme de consommation énergétique induite par les calculs et les communications. Pour résoudre le problème, nous avons proposé des nouvelles approches en deux étapes. Dans un premier temps, la  région à  surveiller est divisée en petites sous-régions en utilisant le concept de la méthode diviser pour mieux régner. Dans un second temps, un de nos protocoles est exécuté par chacun des n\oe uds capteurs dans chaque sous-région, afin d'optimiser la couverture et la durée de vie du réseau. Nous proposons trois protocoles distribués qui combinent, chacun, deux techniques efficaces: l'élection d'un n\oe ud leader dans chaque sous-région, suivie par la mise en oeuvre par celui-ci d'un processus de décision via l'optimisation de l'ordonnancement d'activité des n\oe uds capteurs de sa sous-région. 
23
24 Le premier protocole proposé est appelé DiLCO, pour Distributed Lifetime Coverage Optimization. Dans ce protocole, la durée de vie est divisée en périodes, avec chaque période qui est composée de 4 phases: échange d'informations entre les n\oe uds d'une sous-région, élection d'un n\oe ud leader, décision et surveillance. Le processus de décision est mis en oeuvre par le n\oe ud leader en résolvant un programme linéaire en nombres entiers qui permet de définir un seul ensemble de n\oe uds de capteurs devant être actifs pour assurer la couverture durant la période courante. 
25
26
27 Dans le second protocole, qui est une évolution de DiLCO, nous cherchons à construire simultanément plusieurs ensembles de n\oe uds de capteurs de couverture pour la phase de surveillance. Cette  dernière est ainsi diviseé en "rondes" de surveillance, d'où le nom Multiround DiLCO ou MuDiLCO donné à ce protocole. Le processus de décision est toujours effectué par un n\oe ud leader, qui détermine les ensembles de n\oe uds capteurs à activer successivement via la résolution d'un nouveau programme linéaire en nombres entiers.
28
29
30
31
32 %Ensuite, nous avons étudié le problème de l'optimisation multi-ronde de la zone de couverture dans un réseau de capteurs sans fil. Nous avons proposé le protocole d'optimisation multi-ronde distribué de la durée de vie de couverture (MuDiLCO) pour étudier la possibilité de fournir plusieurs ensembles de n\oe uds de capteurs de couverture pour la phase de surveillance. Ce protocole travaille également en périodes pendant lesquelles les ensembles de capteurs sont programmés pour rester actifs pour un certain nombre de rondes durant la phase de surveillance, pour assurer la couverture et maximiser la durée de vie du réseau. Le processus de décision est toujours effectué par le n\oe ud leader qui résout un programme entier pour définir un meilleur ensemble de capteurs à être utilisé pendant les rondes de la phase de surveillance.
33
34 Enfin, nous avons proposé un protocole d'optimisation de la couverture basé sur le périmètre des n\oe uds de capteurs (PeCO), qui est aussi un protocole distribué sur les n\oe uds de capteurs dans chaque sous-région. Notre contribution dans ce protocole consiste essentiellement dans la proposition d'un nouveau modèle mathématique de l'optimisation basé sur le périmètre de couverture pour l'ordonnancement de l'activité des capteurs. Un nouveau programme entier du modèle de couverture est résolu par le leader durant la phase de décision pour définir un ensemble de capteurs de couverture pour la phase de surveillance.
35
36 Nous avons effectué plusieurs simulations en utilisant le simulateur à évènements discrets OMNeT++ pour valider l'efficacité de nos protocoles proposés. Nous avons pris en considération les caractéristiques d'un capteur Medusa II pour la consommation d'énergie et le temps de calcul. En comparaison avec deux autres méthodes existantes, nos protocoles ont la capacité d'augmenter la durée de vie du réseau de capteurs et d'améliorer les performances de couverture.
37
38 \textbf{MOTS-CLÉS:} Réseaux de capteurs sans fil, Zone de couverture, Durée de vie du réseau, Optimisation Distribué, Ordonnancement.
39
40 %Algorithmes distribués, Algorithmes centralisés, Robustesse, Connectivité, Efficacité énergétique, \'Energie des réseaux hétérogènes, Réseaux homogènes, Simulation des Réseaux, Evaluation de Performance, Les Communications sans Fil Ecologiques et le Réseautage