In this chapter, we propose an approach called Perimeter-based Coverage Optimization
protocol (PeCO).
%The PeCO protocol merges between two energy efficient mechanisms, which are used the main advantages of the centralized and distributed approaches and avoids the most of their disadvantages. An energy-efficient activity scheduling mechanism based new optimization model is performed by each leader in the subregions.
-The framework is similar to the one described in section \ref{ch4:sec:02:03}. But in this approach, the optimization model is based on the perimeter coverage model in order to produce the optimal cover set of active sensors, which are taken the responsibility of sensing during the current period.
+The scheme is similar to the one described in section \ref{ch4:sec:02:03}. But in this approach, the optimization model is based on the perimeter coverage model in order to produce the optimal cover set of active sensors, which are taken the responsibility of sensing during the current period.
The rest of the chapter is organized as follows. The next section is devoted to the PeCO protocol description and section~\ref{ch6:sec:03} focuses on the coverage model formulation which is used to schedule the activation of sensor nodes. Section~\ref{ch6:sec:04} presents simulation results and discusses the comparison with other approaches. Finally, concluding remarks are drawn in section~\ref{ch6:sec:05}.
\subsection{Assumptions and Models}
\label{ch6:sec:02:01}
-The PeCO protocol uses the same assumptions and network model than both DiLCO and MuDiLCO protocols. All the hypotheses can be found in section \ref{ch4:sec:02:01}.
+The PeCO protocol uses the same assumptions and network model than both the DiLCO and the MuDiLCO protocols. All the hypotheses can be found in section \ref{ch4:sec:02:01}.
The PeCO protocol uses the same perimeter-coverage model as Huang and Tseng in~\cite{ref133}. It can be expressed as follows: a sensor is said to be a perimeter covered if all the points on its perimeter are covered by at least one sensor other than itself. They proved that a network area is
$k$-covered if and only if each sensor in the network is $k$-perimeter-covered (perimeter covered by at least $k$ sensors).
In order to assess and analyze the performance of our protocol we have implemented PeCO protocol in OMNeT++~\cite{ref158} simulator.
%Besides PeCO, three other protocols, described in the next paragraph, will be evaluated for comparison purposes.
%The simulations were run on a laptop DELL with an Intel Core~i3~2370~M (2.4~GHz) processor (2 cores) whose MIPS (Million Instructions Per Second) rate is equal to 35330. To be consistent with the use of a sensor node based on Atmels AVR ATmega103L microcontroller (6~MHz) having a MIPS rate equal to 6, the original execution time on the laptop is multiplied by 2944.2 $\left(\frac{35330}{2} \times \frac{1}{6} \right)$. The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is employed to generate the integer program instance in a standard format, which is then read and solved by the optimization solver GLPK (GNU linear Programming Kit available in the public domain) \cite{glpk} through a Branch-and-Bound method.
-PeCO protocol is compared with three other approaches. DESK \cite{DESK}, GAF~\cite{GAF}, and DiLCO~\cite{Idrees2} is an improved version of a research work we presented in~\cite{ref159}, where DiLCO protocol is described in chapter 4. Let us notice that PeCO and DiLCO protocols are based on the same framework. In particular, the choice for the simulations of a partitioning in 16~subregions was chosen because it corresponds to the configuration producing the better results for DiLCO. The protocols are distinguished from one another by the formulation of the integer program providing the set of sensors which have to be activated in each sensing phase. DiLCO protocol tries to satisfy the coverage of a set of primary points, whereas PeCO protocol objective is to reach a desired level of coverage for each sensor perimeter. In our experimentations, we chose a level of coverage equal to one ($l=1$).
+PeCO protocol is compared with three other approaches. DESK \cite{DESK}, GAF~\cite{GAF}, and DiLCO~\cite{Idrees2} is an improved version of a research work we presented in~\cite{ref159}, where DiLCO protocol is described in chapter 4. Let us notice that the PeCO and the DiLCO protocols are based on the same framework. In particular, the choice for the simulations of a partitioning in 16~subregions was chosen because it corresponds to the configuration producing the better results for DiLCO. The protocols are distinguished from one another by the formulation of the integer program providing the set of sensors which have to be activated in each sensing phase. DiLCO protocol tries to satisfy the coverage of a set of primary points, whereas PeCO protocol objective is to reach a desired level of coverage for each sensor perimeter. In our experimentations, we chose a level of coverage equal to one ($l=1$).
\label{ch6:sec:04:02:04}
We observe the superiority of PeCO and DiLCO protocols in comparison with the two other approaches in prolonging the network lifetime. In
-Figures~\ref{fig3LT}(a) and (b), $Lifetime95$ and $Lifetime50$ are shown for different network sizes. As highlighted by these figures, the lifetime increases with the size of the network, and it is clearly largest for DiLCO and PeCO protocols. For instance, for a network of 300~sensors and coverage ratio greater than 50\%, we can see on Figure~\ref{fig3LT}(b) that the lifetime is about twice longer with PeCO compared to DESK protocol. The performance difference is more obvious in Figure~\ref{fig3LT}(b) than in Figure~\ref{fig3LT}(a) because the gain induced by our protocols increases with time, and the lifetime with a coverage of 50\% is far longer than with
+Figures~\ref{fig3LT}(a) and (b), $Lifetime95$ and $Lifetime50$ are shown for different network sizes. As highlighted by these figures, the lifetime increases with the size of the network, and it is clearly largest for the DiLCO and the PeCO protocols. For instance, for a network of 300~sensors and coverage ratio greater than 50\%, we can see on Figure~\ref{fig3LT}(b) that the lifetime is about twice longer with the PeCO compared to the DESK protocol. The performance difference is more obvious in Figure~\ref{fig3LT}(b) than in Figure~\ref{fig3LT}(a) because the gain induced by our protocols increases with time, and the lifetime with a coverage of 50\% is far longer than with
95\%.
\begin{figure} [p]
different coverage ratios. We denote by Protocol/50, Protocol/80, Protocol/85,
Protocol/90, and Protocol/95 the amount of time during which the network can
satisfy an area coverage greater than $50\%$, $80\%$, $85\%$, $90\%$, and $95\%$
-respectively, where the term Protocol refers to DiLCO or PeCO. Indeed there are applications
-that do not require a 100\% coverage of the area to be monitored. PeCO might be
-an interesting method since it achieves a good balance between a high level
-coverage ratio and network lifetime. PeCO always outperforms DiLCO for the three
-lower coverage ratios, moreover the improvements grow with the network
-size. DiLCO is better for coverage ratios near 100\%, but in that case PeCO is
-not ineffective for the smallest network sizes.
+respectively, where the term Protocol refers to DiLCO or PeCO. Indeed there are applications that do not require a 100\% coverage of the area to be monitored. PeCO might be an interesting method since it achieves a good balance between a high level coverage ratio and network lifetime. PeCO always outperforms DiLCO for the three lower coverage ratios, moreover the improvements grow with the network size. DiLCO is better for coverage ratios near 100\%, but in that case PeCO is not ineffective for the smallest network sizes.
\begin{figure} [p]
\centering \includegraphics[scale=0.8]{Figures/ch6/R/LTa.eps}
\section{Conclusion}
\label{ch6:sec:05}
-In this chapter, we have studied the problem of Perimeter-based Coverage Optimization in
-WSNs. We have designed a new protocol, called Perimeter-based Coverage Optimization, which
-schedules nodes' activities (wake up and sleep stages) with the objective of
-maintaining a good coverage ratio while maximizing the network lifetime. This
-protocol is applied in a distributed way in regular subregions obtained after
-partitioning the area of interest in a preliminary step. It works in periods and
-is based on the resolution of an integer program to select the subset of sensors
-operating in active status for each period. Our work is original in so far as it
-proposes for the first time an integer program scheduling the activation of
-sensors based on their perimeter coverage level, instead of using a set of
-targets/points to be covered. We have carried out several simulations to evaluate the proposed protocol. The simulation results show that PeCO is more energy-efficient than other approaches, with respect to lifetime, coverage ratio, active sensors ratio, and
-energy consumption.
-
-We plan to extend our framework so that the schedules are planned for multiple
-sensing periods.
+In this chapter, we have studied the problem of Perimeter-based Coverage Optimization in WSNs. We have designed a new protocol, called Perimeter-based Coverage Optimization, which schedules nodes' activities (wake up and sleep stages) with the objective of maintaining a good coverage ratio while maximizing the network lifetime. This protocol is applied in a distributed way in regular subregions obtained after partitioning the area of interest in a preliminary step. It works in periods and
+is based on the resolution of an integer program to select the subset of sensors operating in active status for each period. Our work is original because it proposes for the first time an integer program scheduling the activation of sensors based on their perimeter coverage level, instead of using a set of targets/points to be covered. We have carried out several simulations to evaluate the proposed protocol. The simulation results show that PeCO is more energy-efficient than other approaches, with respect to lifetime, coverage ratio, active sensors ratio, and energy consumption.
+
+%We plan to extend our framework so that the schedules are planned for multiple sensing periods. We also want to improve our integer program to take into account heterogeneous sensors from both energy and node characteristics point of views. Finally, it would be interesting to implement our protocol using a sensor-testbed to evaluate it in real world applications.
+
+
%in order to compute all active sensor schedules in only one step for many periods;
-We also want to improve our integer program to take into account heterogeneous
-sensors from both energy and node characteristics point of views.
-%the third, we are investigating new optimization model based on the sensing range so as to maximize the lifetime coverage in WSN;
-Finally, it would be interesting to implement our protocol using a
-sensor-testbed to evaluate it in real world applications.
+%the third, we are investigating new optimization model based on the sensing range so as to maximize the lifetime coverage in WSN;
\ No newline at end of file