-
-
-
-
-
-In the case of non-disjoint algorithms~\cite{ref117}, sensors may participate in more than one cover set. In some cases, this may prolong the lifetime of the network in comparison to the disjoint cover set algorithms, but designing algorithms for non-disjoint cover sets generally induces a higher order of complexity. Moreover, in case of a sensor's failure, non-disjoint scheduling policies are less resilient and reliable because a sensor may be involved in more than one cover sets.
+In the case of non-disjoint algorithms~\cite{ref117}, sensors may participate in more than one cover set. In some cases, this may prolong the lifetime of the network in comparison to the disjoint cover set algorithms, but designing algorithms for non-disjoint cover sets generally induces a higher order of complexity. Moreover, in case of a sensor's failure, non-disjoint scheduling policies are less resilient and reliable because a sensor may be involved in more than one cover sets. For instance, Cardei et al.~\cite{ref167}
+present a linear programming (LP) solution and a greedy approach to
+extend the sensor network lifetime by organizing the sensors into a
+maximal number of non-disjoint cover sets. Simulation results show
+that by allowing sensors to participate in multiple sets, the network
+lifetime increases compared with related work~\cite{ref115}.