]> AND Private Git Repository - ThesisAli.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update Today by Ali
authorali <ali@ali>
Sun, 26 Apr 2015 18:24:05 +0000 (20:24 +0200)
committerali <ali@ali>
Sun, 26 Apr 2015 18:24:05 +0000 (20:24 +0200)
Resume.tex [new file with mode: 0644]
Thesis.tex
Thesis.toc

diff --git a/Resume.tex b/Resume.tex
new file mode 100644 (file)
index 0000000..15fa445
--- /dev/null
@@ -0,0 +1,37 @@
+\chapter*{Résumé \markboth{Résumé}{Résumé}}
+\label{cha}
+\addcontentsline{toc}{chapter}{Résumé}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%                          %%
+%%       Résumé           %%
+%%                          %%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\emph{ \begin{center} \Large Techniques d'Optimisation Couverture Distribuée pour Améliorer la Durée des Réseaux de Capteurs sans Fil  \end{center}}   
+%\emph{ \begin{center} \large By \end{center}}  
+\emph{ \begin{center} \large Ali Kadhum Idrees \\ Université de Franche-Comt\'e, 2015 \end{center}} 
+%\emph{ \begin{center} \large The University of Franche-Comt\'e, 2015 \end{center}}  
+\emph{ \begin{center} \large Encadrants: Raphaël Couturier, Karine Deschinkel, and Michel Salomon \end{center}}  
+
+
+Réseaux de capteurs sans fil ont récemment reçu beaucoup d'attention de la recherche en raison de leur large gamme d'applications potentielles. Beaucoup de caractéristiques importantes sont fournis par les réseaux de capteurs qui les rendent différent des autres réseaux ad-hoc sans fil. Ces caractéristiques sont imposées beaucoup de limitations sur les réseaux de capteurs qui mèneraient à plusieurs défis dans le réseau. Ces défis pourraient inclure la couverture, contrôle de topologie, routage, la fusion de données, la sécurité, et bien d'autres. L'un des principaux défis de la recherche rencontrés dans les réseaux de capteurs sans fil est de préserver effectivement et en permanence la couverture d'une zone d'intérêt à surveiller, tout en empêchant simultanément autant que possible une défaillance du réseau en raison de nœuds de batterie appauvri.
+
+Dans cette thèse, nous nous concentrons fortement sur le problème de la zone de couverture, l'efficacité énergétique est également l'exigence avant tout. Nous avons examiné les protocoles d'optimisation distribués avec l'objectif ultime de prolonger la durée de vie du réseau. Les protocoles proposés distribués d'optimisation (y compris les algorithmes, les modèles, et la résolution des programmes entiers) doivent être protocoles économes en énergie. Adresser ce problème, cette thèse propose des approches en deux étapes. Tout d'abord, le champ de détection est divisée en plus petites sous-régions en utilisant le concept de la méthode de diviser pour régner. Deuxièmement, l'un de nos protocoles d'optimisation distribués proposées est distribuée et appliquée sur les nœuds de capteurs dans chaque sous-région afin d'optimiser la couverture et les performances de durée de vie. Dans cette thèse, trois protocoles d'optimisation de couverture sont proposés. Ces protocoles combinent deux techniques efficaces: élection du chef pour chaque sous-région, suivis par une planification fondée sur l'optimisation des décisions de planification d'activité du capteur pour chaque sous-région.
+
+Premièrement, nous proposons un protocole appelé Optimisation de couverture à vie (Distributed DILCO). Dans ce protocole, la durée de vie est divisée en périodes. Chaque période se compose de quatre phases: échange d'informations, leader électorales, de décision et de détection. Le processus de décision est
+effectuée par un nœud leader, qui résout un programme entier afin de fournir un seul ensemble de nœuds de capteurs actifs de couverture pour assurer une couverture pendant la phase de détection de la période actuelle.
+
+Ensuite, nous abordons le problème d'une optimisation des passages répétés problème de la couverture de la zone dans les réseaux de capteurs. Le passages répétés Optimisation de couverture à vie (Distributed MuDiLCO) protocole est suggéré afin d'étudier la possibilité de fournir de multiples ensembles de couverture des capteurs pour la phase de détection. Protocole MuDiLCO travaille également en périodes pendant lesquelles ensembles de nœuds de capteurs sont programmés pour rester actif pour un certain nombre de tours pendant la phase de détection, pour assurer une couverture de manière à maximiser la durée de vie de réseaux de capteur sans fil. Le processus de décision est toujours effectuée par un nœud leader, qui résout un programme entier pour produire le meilleur représentant établit à être utilisé pendant les tours de la phase de détection.
+
+
+
+Enfin et surtout,, nous proposons une couverture Optimization (Peco) protocole basé périmètre qui est également réparti entre les nœuds de capteurs dans chaque nouveauté subregion.The de notre approche réside essentiellement dans la formulation d'un nouveau modèle d'optimisation mathématique basée sur le niveau de couverture de périmètre pour planifier les activités de capteurs. Un nouveau modèle de couverture du programme entier est résolu par le leader pendant la phase de décision de façon à fournir un seul ensemble de capteurs de couverture pour la phase de détection.
+
+
+Simulations approfondies sont menées en utilisant la simulation à événements discrets OMNeT++ pour valider l'efficacité de chacun de nos protocoles proposés. Nous nous référons à la características capteur de méduse II de la consommation d'énergie et le temps de calcul. En comparaison avec deux autres méthodes existantes, nos protocoles sont fiables pour augmenter la couverture à vie de réseaux de capteur sans fil et améliorent les performances.
+
+
+\textbf{MOTS-CLÉS:} Réseaux sans fil, les réseaux de capteurs, Zone de couverture, Durée de vie du réseau, optimisation, la planification, algorithmes distribués, Algorithmes centralisée, Robustesse, connectivité, l'efficacité énergétique, l'énergie réseau hétérogène, homogène réseau.
+
index e3e3839111be3b863ef71ae31011068fdbb2e4ea..94c4f1f8641b6a86e985e576580e5f72c24a2499 100644 (file)
@@ -13,7 +13,8 @@
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\include{Abstruct}
+\include{Abstruct}  
+\include{Resume}
 %% Sommaire
 \tableofcontents
 \addcontentsline{toc}{chapter}{Table of Contents}
index 4e3ad0acb8c8a6b2960112680098a9396c689925..2add09575eb233f09a9945b1821f66cd57e4a419 100644 (file)
 \select@language {english}
 \contentsline {chapter}{Abstract}{1}{chapter*.1}
-\contentsline {chapter}{Table of Contents}{6}{chapter*.2}
-\contentsline {chapter}{List of Figures}{8}{chapter*.3}
-\contentsline {chapter}{List of Tables}{9}{chapter*.4}
-\contentsline {chapter}{List of Algorithms}{11}{chapter*.5}
-\contentsline {chapter}{List of Abbreviations}{13}{chapter*.6}
-\contentsline {chapter}{Introduction }{17}{chapter*.7}
-\contentsline {section}{1. General Introduction }{17}{section*.8}
-\contentsline {section}{2. Motivation of the Dissertation }{18}{section*.9}
-\contentsline {section}{3. The Objective of this Dissertation}{18}{section*.10}
-\contentsline {section}{4. Main Contributions of this Dissertation}{18}{section*.11}
-\contentsline {section}{5. Dissertation Outline}{20}{section*.12}
-\contentsline {part}{I\hspace {1em}Scientific Background}{21}{part.1}
-\contentsline {chapter}{\numberline {1}Wireless Sensor Networks}{23}{chapter.1}
-\contentsline {section}{\numberline {1.1}Introduction}{23}{section.1.1}
-\contentsline {section}{\numberline {1.2}Architecture}{24}{section.1.2}
-\contentsline {section}{\numberline {1.3}Types of Wireless Sensor Networks}{26}{section.1.3}
-\contentsline {section}{\numberline {1.4}Applications}{28}{section.1.4}
-\contentsline {section}{\numberline {1.5}The Main Challenges}{31}{section.1.5}
-\contentsline {section}{\numberline {1.6}Energy-Efficient Mechanisms of a working WSN}{33}{section.1.6}
-\contentsline {subsection}{\numberline {1.6.1}Energy-Efficient Routing}{33}{subsection.1.6.1}
-\contentsline {subsubsection}{\numberline {1.6.1.1}Routing Metric based on Residual Energy}{33}{subsubsection.1.6.1.1}
-\contentsline {subsubsection}{\numberline {1.6.1.2}Multipath Routing}{33}{subsubsection.1.6.1.2}
-\contentsline {subsection}{\numberline {1.6.2}Cluster Architecture}{34}{subsection.1.6.2}
-\contentsline {subsection}{\numberline {1.6.3}Scheduling Schemes}{34}{subsection.1.6.3}
-\contentsline {subsubsection}{\numberline {1.6.3.1}Wake up Scheduling Schemes}{34}{subsubsection.1.6.3.1}
-\contentsline {subsubsection}{\numberline {1.6.3.2}Topology Control Schemes}{37}{subsubsection.1.6.3.2}
-\contentsline {subsection}{\numberline {1.6.4}Data-Driven Schemes}{37}{subsection.1.6.4}
-\contentsline {subsubsection}{\numberline {1.6.4.1}Data Reduction Schemes}{38}{subsubsection.1.6.4.1}
-\contentsline {subsubsection}{\numberline {1.6.4.2}Energy Efficient Data Acquisition Schemes}{38}{subsubsection.1.6.4.2}
-\contentsline {subsection}{\numberline {1.6.5}Battery Repletion}{38}{subsection.1.6.5}
-\contentsline {subsection}{\numberline {1.6.6}Radio Optimization}{38}{subsection.1.6.6}
-\contentsline {subsection}{\numberline {1.6.7}Relay nodes and Sink Mobility}{39}{subsection.1.6.7}
-\contentsline {subsubsection}{\numberline {1.6.7.1}Relay node placement}{39}{subsubsection.1.6.7.1}
-\contentsline {subsubsection}{\numberline {1.6.7.2}Sink Mobility}{39}{subsubsection.1.6.7.2}
-\contentsline {section}{\numberline {1.7}Network Lifetime}{39}{section.1.7}
-\contentsline {section}{\numberline {1.8}Coverage in Wireless Sensor Networks }{40}{section.1.8}
-\contentsline {section}{\numberline {1.9}Design Issues for Coverage Problems}{42}{section.1.9}
-\contentsline {section}{\numberline {1.10}Energy Consumption Model}{43}{section.1.10}
-\contentsline {section}{\numberline {1.11}Conclusion}{44}{section.1.11}
-\contentsline {chapter}{\numberline {2}Related Works on Coverage Problems}{45}{chapter.2}
-\contentsline {section}{\numberline {2.1}Introduction}{45}{section.2.1}
-\contentsline {section}{\numberline {2.2}Centralized Algorithms}{48}{section.2.2}
-\contentsline {section}{\numberline {2.3}Distributed Algorithms}{51}{section.2.3}
-\contentsline {subsection}{\numberline {2.3.1}Geographical Adaptive Fidelity (GAF)}{52}{subsection.2.3.1}
-\contentsline {subsection}{\numberline {2.3.2}Distributed Energy-efficient Scheduling for K-coverage (DESK)}{54}{subsection.2.3.2}
-\contentsline {section}{\numberline {2.4}Conclusion}{57}{section.2.4}
-\contentsline {chapter}{\numberline {3}Evaluation Tools and Optimization Solvers}{59}{chapter.3}
-\contentsline {section}{\numberline {3.1}Introduction}{59}{section.3.1}
-\contentsline {section}{\numberline {3.2}Evaluation Tools}{59}{section.3.2}
-\contentsline {subsection}{\numberline {3.2.1}Testbed Tools}{60}{subsection.3.2.1}
-\contentsline {subsection}{\numberline {3.2.2}Simulation Tools}{61}{subsection.3.2.2}
-\contentsline {section}{\numberline {3.3}Optimization Solvers}{66}{section.3.3}
-\contentsline {section}{\numberline {3.4}Conclusion}{69}{section.3.4}
-\contentsline {part}{II\hspace {1em}Contributions}{71}{part.2}
-\contentsline {chapter}{\numberline {4}Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}{73}{chapter.4}
-\contentsline {section}{\numberline {4.1}Introduction}{73}{section.4.1}
-\contentsline {section}{\numberline {4.2}Description of the DiLCO Protocol}{74}{section.4.2}
-\contentsline {subsection}{\numberline {4.2.1}Assumptions and Network Model}{74}{subsection.4.2.1}
-\contentsline {subsection}{\numberline {4.2.2}Primary Point Coverage Model}{75}{subsection.4.2.2}
-\contentsline {subsection}{\numberline {4.2.3}Main Idea}{76}{subsection.4.2.3}
-\contentsline {subsubsection}{\numberline {4.2.3.1}Information Exchange Phase}{77}{subsubsection.4.2.3.1}
-\contentsline {subsubsection}{\numberline {4.2.3.2}Leader Election Phase}{77}{subsubsection.4.2.3.2}
-\contentsline {subsubsection}{\numberline {4.2.3.3}Decision phase}{77}{subsubsection.4.2.3.3}
-\contentsline {subsubsection}{\numberline {4.2.3.4}Sensing phase}{77}{subsubsection.4.2.3.4}
-\contentsline {section}{\numberline {4.3}Primary Points based Coverage Problem Formulation}{78}{section.4.3}
-\contentsline {section}{\numberline {4.4}Simulation Results and Analysis}{80}{section.4.4}
-\contentsline {subsection}{\numberline {4.4.1}Simulation Framework}{80}{subsection.4.4.1}
-\contentsline {subsection}{\numberline {4.4.2}Modeling Language and Optimization Solver}{80}{subsection.4.4.2}
-\contentsline {subsection}{\numberline {4.4.3}Energy Consumption Model}{80}{subsection.4.4.3}
-\contentsline {subsection}{\numberline {4.4.4}Performance Metrics}{81}{subsection.4.4.4}
-\contentsline {subsection}{\numberline {4.4.5}Performance Analysis for Different Subregions}{82}{subsection.4.4.5}
-\contentsline {subsection}{\numberline {4.4.6}Performance Analysis for Primary Point Models}{88}{subsection.4.4.6}
-\contentsline {subsection}{\numberline {4.4.7}Performance Comparison with other Approaches}{93}{subsection.4.4.7}
-\contentsline {section}{\numberline {4.5}Conclusion}{99}{section.4.5}
-\contentsline {chapter}{\numberline {5}Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}{101}{chapter.5}
-\contentsline {section}{\numberline {5.1}Introduction}{101}{section.5.1}
-\contentsline {section}{\numberline {5.2}MuDiLCO Protocol Description}{102}{section.5.2}
-\contentsline {subsection}{\numberline {5.2.1}Background Idea and Algorithm}{102}{subsection.5.2.1}
-\contentsline {section}{\numberline {5.3}Primary Points based Multiround Coverage Problem Formulation}{103}{section.5.3}
-\contentsline {section}{\numberline {5.4}Experimental Study and Analysis}{105}{section.5.4}
-\contentsline {subsection}{\numberline {5.4.1}Simulation Setup}{105}{subsection.5.4.1}
-\contentsline {subsection}{\numberline {5.4.2}Metrics}{106}{subsection.5.4.2}
-\contentsline {subsection}{\numberline {5.4.3}Results Analysis and Comparison }{107}{subsection.5.4.3}
-\contentsline {section}{\numberline {5.5}Conclusion}{112}{section.5.5}
-\contentsline {chapter}{\numberline {6}Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}{115}{chapter.6}
-\contentsline {section}{\numberline {6.1}Introduction}{115}{section.6.1}
-\contentsline {section}{\numberline {6.2}The PeCO Protocol Description}{116}{section.6.2}
-\contentsline {subsection}{\numberline {6.2.1}Assumptions and Models}{116}{subsection.6.2.1}
-\contentsline {subsection}{\numberline {6.2.2}The Main Idea}{119}{subsection.6.2.2}
-\contentsline {subsection}{\numberline {6.2.3}PeCO Protocol Algorithm}{119}{subsection.6.2.3}
-\contentsline {section}{\numberline {6.3}Perimeter-based Coverage Problem Formulation}{120}{section.6.3}
-\contentsline {section}{\numberline {6.4}Performance Evaluation and Analysis}{122}{section.6.4}
-\contentsline {subsection}{\numberline {6.4.1}Simulation Settings}{122}{subsection.6.4.1}
-\contentsline {subsection}{\numberline {6.4.2}Simulation Results}{123}{subsection.6.4.2}
-\contentsline {subsubsection}{\numberline {6.4.2.1}Coverage Ratio}{124}{subsubsection.6.4.2.1}
-\contentsline {subsubsection}{\numberline {6.4.2.2}Active Sensors Ratio}{124}{subsubsection.6.4.2.2}
-\contentsline {subsubsection}{\numberline {6.4.2.3}The Energy Consumption}{125}{subsubsection.6.4.2.3}
-\contentsline {subsubsection}{\numberline {6.4.2.4}The Network Lifetime}{125}{subsubsection.6.4.2.4}
-\contentsline {section}{\numberline {6.5}Conclusion}{128}{section.6.5}
-\contentsline {part}{III\hspace {1em}Conclusion and Perspectives}{129}{part.3}
-\contentsline {chapter}{\numberline {7}Conclusion and Perspectives}{131}{chapter.7}
-\contentsline {section}{\numberline {7.1}Conclusion}{131}{section.7.1}
-\contentsline {section}{\numberline {7.2}Perspectives}{132}{section.7.2}
-\contentsline {part}{Bibliographie}{148}{chapter*.13}
+\contentsline {chapter}{R\IeC {\'e}sum\IeC {\'e}}{3}{chapter*.2}
+\contentsline {chapter}{Table of Contents}{8}{chapter*.3}
+\contentsline {chapter}{List of Figures}{10}{chapter*.4}
+\contentsline {chapter}{List of Tables}{11}{chapter*.5}
+\contentsline {chapter}{List of Algorithms}{13}{chapter*.6}
+\contentsline {chapter}{List of Abbreviations}{15}{chapter*.7}
+\contentsline {chapter}{Introduction }{19}{chapter*.8}
+\contentsline {section}{1. General Introduction }{19}{section*.9}
+\contentsline {section}{2. Motivation of the Dissertation }{20}{section*.10}
+\contentsline {section}{3. The Objective of this Dissertation}{20}{section*.11}
+\contentsline {section}{4. Main Contributions of this Dissertation}{20}{section*.12}
+\contentsline {section}{5. Dissertation Outline}{22}{section*.13}
+\contentsline {part}{I\hspace {1em}Scientific Background}{23}{part.1}
+\contentsline {chapter}{\numberline {1}Wireless Sensor Networks}{25}{chapter.1}
+\contentsline {section}{\numberline {1.1}Introduction}{25}{section.1.1}
+\contentsline {section}{\numberline {1.2}Architecture}{26}{section.1.2}
+\contentsline {section}{\numberline {1.3}Types of Wireless Sensor Networks}{28}{section.1.3}
+\contentsline {section}{\numberline {1.4}Applications}{30}{section.1.4}
+\contentsline {section}{\numberline {1.5}The Main Challenges}{33}{section.1.5}
+\contentsline {section}{\numberline {1.6}Energy-Efficient Mechanisms of a working WSN}{35}{section.1.6}
+\contentsline {subsection}{\numberline {1.6.1}Energy-Efficient Routing}{35}{subsection.1.6.1}
+\contentsline {subsubsection}{\numberline {1.6.1.1}Routing Metric based on Residual Energy}{35}{subsubsection.1.6.1.1}
+\contentsline {subsubsection}{\numberline {1.6.1.2}Multipath Routing}{35}{subsubsection.1.6.1.2}
+\contentsline {subsection}{\numberline {1.6.2}Cluster Architecture}{36}{subsection.1.6.2}
+\contentsline {subsection}{\numberline {1.6.3}Scheduling Schemes}{36}{subsection.1.6.3}
+\contentsline {subsubsection}{\numberline {1.6.3.1}Wake up Scheduling Schemes}{36}{subsubsection.1.6.3.1}
+\contentsline {subsubsection}{\numberline {1.6.3.2}Topology Control Schemes}{39}{subsubsection.1.6.3.2}
+\contentsline {subsection}{\numberline {1.6.4}Data-Driven Schemes}{39}{subsection.1.6.4}
+\contentsline {subsubsection}{\numberline {1.6.4.1}Data Reduction Schemes}{40}{subsubsection.1.6.4.1}
+\contentsline {subsubsection}{\numberline {1.6.4.2}Energy Efficient Data Acquisition Schemes}{40}{subsubsection.1.6.4.2}
+\contentsline {subsection}{\numberline {1.6.5}Battery Repletion}{40}{subsection.1.6.5}
+\contentsline {subsection}{\numberline {1.6.6}Radio Optimization}{40}{subsection.1.6.6}
+\contentsline {subsection}{\numberline {1.6.7}Relay nodes and Sink Mobility}{41}{subsection.1.6.7}
+\contentsline {subsubsection}{\numberline {1.6.7.1}Relay node placement}{41}{subsubsection.1.6.7.1}
+\contentsline {subsubsection}{\numberline {1.6.7.2}Sink Mobility}{41}{subsubsection.1.6.7.2}
+\contentsline {section}{\numberline {1.7}Network Lifetime}{41}{section.1.7}
+\contentsline {section}{\numberline {1.8}Coverage in Wireless Sensor Networks }{42}{section.1.8}
+\contentsline {section}{\numberline {1.9}Design Issues for Coverage Problems}{44}{section.1.9}
+\contentsline {section}{\numberline {1.10}Energy Consumption Model}{45}{section.1.10}
+\contentsline {section}{\numberline {1.11}Conclusion}{46}{section.1.11}
+\contentsline {chapter}{\numberline {2}Related Works on Coverage Problems}{47}{chapter.2}
+\contentsline {section}{\numberline {2.1}Introduction}{47}{section.2.1}
+\contentsline {section}{\numberline {2.2}Centralized Algorithms}{50}{section.2.2}
+\contentsline {section}{\numberline {2.3}Distributed Algorithms}{53}{section.2.3}
+\contentsline {subsection}{\numberline {2.3.1}Geographical Adaptive Fidelity (GAF)}{54}{subsection.2.3.1}
+\contentsline {subsection}{\numberline {2.3.2}Distributed Energy-efficient Scheduling for K-coverage (DESK)}{56}{subsection.2.3.2}
+\contentsline {section}{\numberline {2.4}Conclusion}{59}{section.2.4}
+\contentsline {chapter}{\numberline {3}Evaluation Tools and Optimization Solvers}{61}{chapter.3}
+\contentsline {section}{\numberline {3.1}Introduction}{61}{section.3.1}
+\contentsline {section}{\numberline {3.2}Evaluation Tools}{61}{section.3.2}
+\contentsline {subsection}{\numberline {3.2.1}Testbed Tools}{62}{subsection.3.2.1}
+\contentsline {subsection}{\numberline {3.2.2}Simulation Tools}{63}{subsection.3.2.2}
+\contentsline {section}{\numberline {3.3}Optimization Solvers}{68}{section.3.3}
+\contentsline {section}{\numberline {3.4}Conclusion}{71}{section.3.4}
+\contentsline {part}{II\hspace {1em}Contributions}{73}{part.2}
+\contentsline {chapter}{\numberline {4}Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}{75}{chapter.4}
+\contentsline {section}{\numberline {4.1}Introduction}{75}{section.4.1}
+\contentsline {section}{\numberline {4.2}Description of the DiLCO Protocol}{76}{section.4.2}
+\contentsline {subsection}{\numberline {4.2.1}Assumptions and Network Model}{76}{subsection.4.2.1}
+\contentsline {subsection}{\numberline {4.2.2}Primary Point Coverage Model}{77}{subsection.4.2.2}
+\contentsline {subsection}{\numberline {4.2.3}Main Idea}{78}{subsection.4.2.3}
+\contentsline {subsubsection}{\numberline {4.2.3.1}Information Exchange Phase}{79}{subsubsection.4.2.3.1}
+\contentsline {subsubsection}{\numberline {4.2.3.2}Leader Election Phase}{79}{subsubsection.4.2.3.2}
+\contentsline {subsubsection}{\numberline {4.2.3.3}Decision phase}{79}{subsubsection.4.2.3.3}
+\contentsline {subsubsection}{\numberline {4.2.3.4}Sensing phase}{79}{subsubsection.4.2.3.4}
+\contentsline {section}{\numberline {4.3}Primary Points based Coverage Problem Formulation}{80}{section.4.3}
+\contentsline {section}{\numberline {4.4}Simulation Results and Analysis}{82}{section.4.4}
+\contentsline {subsection}{\numberline {4.4.1}Simulation Framework}{82}{subsection.4.4.1}
+\contentsline {subsection}{\numberline {4.4.2}Modeling Language and Optimization Solver}{82}{subsection.4.4.2}
+\contentsline {subsection}{\numberline {4.4.3}Energy Consumption Model}{82}{subsection.4.4.3}
+\contentsline {subsection}{\numberline {4.4.4}Performance Metrics}{83}{subsection.4.4.4}
+\contentsline {subsection}{\numberline {4.4.5}Performance Analysis for Different Subregions}{84}{subsection.4.4.5}
+\contentsline {subsection}{\numberline {4.4.6}Performance Analysis for Primary Point Models}{90}{subsection.4.4.6}
+\contentsline {subsection}{\numberline {4.4.7}Performance Comparison with other Approaches}{95}{subsection.4.4.7}
+\contentsline {section}{\numberline {4.5}Conclusion}{101}{section.4.5}
+\contentsline {chapter}{\numberline {5}Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}{103}{chapter.5}
+\contentsline {section}{\numberline {5.1}Introduction}{103}{section.5.1}
+\contentsline {section}{\numberline {5.2}MuDiLCO Protocol Description}{104}{section.5.2}
+\contentsline {subsection}{\numberline {5.2.1}Background Idea and Algorithm}{104}{subsection.5.2.1}
+\contentsline {section}{\numberline {5.3}Primary Points based Multiround Coverage Problem Formulation}{105}{section.5.3}
+\contentsline {section}{\numberline {5.4}Experimental Study and Analysis}{107}{section.5.4}
+\contentsline {subsection}{\numberline {5.4.1}Simulation Setup}{107}{subsection.5.4.1}
+\contentsline {subsection}{\numberline {5.4.2}Metrics}{108}{subsection.5.4.2}
+\contentsline {subsection}{\numberline {5.4.3}Results Analysis and Comparison }{109}{subsection.5.4.3}
+\contentsline {section}{\numberline {5.5}Conclusion}{114}{section.5.5}
+\contentsline {chapter}{\numberline {6}Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}{117}{chapter.6}
+\contentsline {section}{\numberline {6.1}Introduction}{117}{section.6.1}
+\contentsline {section}{\numberline {6.2}The PeCO Protocol Description}{118}{section.6.2}
+\contentsline {subsection}{\numberline {6.2.1}Assumptions and Models}{118}{subsection.6.2.1}
+\contentsline {subsection}{\numberline {6.2.2}The Main Idea}{121}{subsection.6.2.2}
+\contentsline {subsection}{\numberline {6.2.3}PeCO Protocol Algorithm}{121}{subsection.6.2.3}
+\contentsline {section}{\numberline {6.3}Perimeter-based Coverage Problem Formulation}{122}{section.6.3}
+\contentsline {section}{\numberline {6.4}Performance Evaluation and Analysis}{124}{section.6.4}
+\contentsline {subsection}{\numberline {6.4.1}Simulation Settings}{124}{subsection.6.4.1}
+\contentsline {subsection}{\numberline {6.4.2}Simulation Results}{125}{subsection.6.4.2}
+\contentsline {subsubsection}{\numberline {6.4.2.1}Coverage Ratio}{126}{subsubsection.6.4.2.1}
+\contentsline {subsubsection}{\numberline {6.4.2.2}Active Sensors Ratio}{126}{subsubsection.6.4.2.2}
+\contentsline {subsubsection}{\numberline {6.4.2.3}The Energy Consumption}{127}{subsubsection.6.4.2.3}
+\contentsline {subsubsection}{\numberline {6.4.2.4}The Network Lifetime}{127}{subsubsection.6.4.2.4}
+\contentsline {section}{\numberline {6.5}Conclusion}{130}{section.6.5}
+\contentsline {part}{III\hspace {1em}Conclusion and Perspectives}{131}{part.3}
+\contentsline {chapter}{\numberline {7}Conclusion and Perspectives}{133}{chapter.7}
+\contentsline {section}{\numberline {7.1}Conclusion}{133}{section.7.1}
+\contentsline {section}{\numberline {7.2}Perspectives}{134}{section.7.2}
+\contentsline {part}{Bibliographie}{150}{chapter*.14}