-The coverage problem has been considered an essential requirement for many applications in WSNs because the better coverage of an area of interest provides better sensing measurements of the physical phenomenon. Therefore, many extensive researches have been focused on that problem. These researches have aimed at designing mechanisms that efficiently manage or schedule the sensors after deployment, since sensor nodes have a limited battery life.
-Many coverage algorithms for maintaining the coverage and improving the network lifetime in WSNs were proposed. On one hand, the full centralized coverage algorithms provide optimal or near optimal solution with low computation power but they deplete the battery power due to the communication overhead, as well as they are not scalable for large size networks. On the other hand, the distributed coverage algorithms provide a lower quality solution in comparison with centralized approaches and consume more power for computation but they are reliable, scalable, and provide low communication overhead in WSNs. Whatever the case, this would result in a shorter lifetime coverage in WSNs As shown in table \ref{Table0:ch2}, each of the two coverage approaches has advantages and disadvantages. Therefore, each approach can be used based on the application requirements. We conclude from this chapter that it is desirable to introduce a hybrid approach that take into account the advantages of both centralized and distributed coverage approaches. This hybrid approaches can provide a good quality coverage and prolong the network lifetime.
+The coverage problem is considered as an essential requirement for many applications in WSNs because the better coverage of an area of interest provides better sensing measurements of the physical phenomenon. Therefore, many extensive researches have been focused on that problem. These researches aim at designing mechanisms that efficiently manage or schedule the sensors after deployment, since sensor nodes have a limited battery life.
+Many coverage algorithms for maintaining the coverage and improving the network lifetime in WSNs were proposed. On one hand, the full centralized coverage algorithms provide optimal or near optimal solution with low computation power but they deplete the battery power due to the communication overhead, as well as they are not scalable for large size networks. On the other hand, the distributed coverage algorithms provide a lower quality solution in comparison with centralized approaches and consume more power for computation but they are reliable, scalable, and provide low communication overhead in WSNs.
+%Whatever the case, this would result in a lower lifetime coverage in WSNs.
+As shown in table \ref{Table0:ch2}, each of the two coverage approaches has advantages and disadvantages. Therefore, each approach can be used based on the application requirements. We conclude from this chapter that it is desirable to introduce an hybrid approach that take into account the advantages of both centralized and distributed coverage approaches. This hybrid approaches can provide a good quality coverage and prolong the network lifetime.