-In DESK \cite{ref133}, the whole area is K-covered if and only if the perimeters of all sensors are K-covered. The coverage level of perimeter of a sensor $s_i$ is determined by calculating the angle corresponding to the arc that each of its neighbors covers its perimeter. Figure~\ref{figp}~(a) illuminates such arcs whilst figure~\ref{figp}~(b) shows the angles corresponding with those arcs, which were posted into the range [0,2$ \pi $]. According to figure~\ref{figp}~(b), the coverage level of sensor $s_i$ can be calculated via traversing the range from 0 to 2$ \pi $.
-
+In DESK \cite{ref133}, the whole area is K-covered if and only if the perimeters of all sensors are K-covered. The coverage level of a sensor $s_i$ is determined by calculating the angle corresponding to the arc that each of its neighbors covers its perimeter. Figure~\ref{figp}~(a) illuminates such arcs whilst figure~\ref{figp}~(b) shows the angles corresponding with those arcs in the range [0,2$ \pi $]. According to figure~\ref{figp}~(a) and (b), the coverage level of sensor $s_i$ can be calculated as follows.
+%via traversing the range from 0 to 2$ \pi $.
+For each sensor $s_j$ such that $d(s_i,s_j)$ $<$ $2R_s$, calculate the angle of $s_i$'s arc, denoted by [$\alpha_{j,L}$, $\alpha_{j,R}$], which is perimeter covered by $s_j$, where $\alpha= arccos(d(s_i, s_j)/2R_s)$ and $d(s_i,s_j)$ is the Euclidean distance between $s_i$ and $s_j$. After that, locate the points $\alpha_{j,L}$ and $\alpha_{j,R}$ of each neighboring sensor $s_j$ of $s_i$ on the line segment $[0, 2\pi]$. These points are sorted in ascending order into a list L. Traverse the line segment from 0 to $2\pi$ by visiting each element in the sorted list L from the left to the right and determine the perimeter coverage of $s_i$. Whenever an element $\alpha_{j,L}$ is traversed, the level of perimeter coverage should be increased by one. Whenever an element $\alpha_{j,R}$ is traversed, the level of perimeter coverage should be decreased by one.