-\begin{frame}{\small DiLCO Protocol $\blacktriangleright$ Coverage Problem Formulation}
-\vspace{-0.3cm}
-\begin{equation*} \label{eq:ip2r}
-\left \{
-\begin{array}{ll}
-\min \sum_{p \in P} (w_{\theta} \Theta_{p} + w_{U} U_{p})&\\
-\textrm{subject to :}&\\
-\sum_{j \in J} \alpha_{jp} X_{j} - \Theta_{p}+ U_{p} =1, &\forall p \in P\\
-%\label{c1}
-%\sum_{t \in T} X_{j,t} \leq \frac{RE_j}{e_t} &\forall j \in J \\
-%\label{c2}
-\Theta_{p}\in \mathbb{N}, &\forall p \in P\\
-U_{p} \in \{0,1\}, &\forall p \in P \\
-X_{j} \in \{0,1\}, &\forall j \in J
-\end{array}
-\right.
-\end{equation*}
-\vspace{-0.3cm}
-\begin{itemize}
-\item \small $P$: the set of primary points.
-\item $J$: the set of sensors.
-\item $X_{j}$: indicates whether or not the sensor $j$ is actively sensing (1
- if yes and 0 if not).
-\item $\Theta_{p}$: {\it overcoverage}, the number of sensors minus one that
- are covering the primary point $p$.
-\item $U_{p}$: {\it undercoverage}, indicates whether or not the primary point
- $p$ is being covered (1 if not covered and 0 if covered).
- \item $\alpha_{jp}$: denotes the indicator function of whether the primary point p is covered.
-\end{itemize}