]> AND Private Git Repository - ThesisAli.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by Ali
authorali <ali@ali>
Fri, 15 May 2015 09:40:46 +0000 (11:40 +0200)
committerali <ali@ali>
Fri, 15 May 2015 09:40:46 +0000 (11:40 +0200)
CHAPITRE_06.tex
Thesis.toc
entete.tex

index f72a7baabe468d5865b7c428d58d74426b125707..f4e8bb04696358a5430ae6dd426c49e1bee49cec 100644 (file)
@@ -190,47 +190,47 @@ protocol applied by a sensor node $s_j$ where $j$ is the node index in the WSN.
   %\emph{Initialize the sensor node and determine it's position and subregion} \; 
   
   \If{ $RE_k \geq E_{th}$ }{
   %\emph{Initialize the sensor node and determine it's position and subregion} \; 
   
   \If{ $RE_k \geq E_{th}$ }{
-      \emph{$s_k.status$ = COMMUNICATION}\;
+      \emph{$s_j.status$ = COMMUNICATION}\;
       \emph{Send $INFO()$ packet to other nodes in subregion}\;
       \emph{Wait $INFO()$ packet from other nodes in subregion}\; 
       \emph{Update A.CurrentSize}\;
       \emph{LeaderID = Leader election}\;
       \emph{Send $INFO()$ packet to other nodes in subregion}\;
       \emph{Wait $INFO()$ packet from other nodes in subregion}\; 
       \emph{Update A.CurrentSize}\;
       \emph{LeaderID = Leader election}\;
-      \If{$ s_k.ID = LeaderID $}{
-         \emph{$s_k.status$ = COMPUTATION}\;
+      \If{$ s_j.ID = LeaderID $}{
+         \emph{$s_j.status$ = COMPUTATION}\;
          
          
-      \If{$ s_k.ID $ is Not previously selected as a Leader }{
+      \If{$ s_j.ID $ is Not previously selected as a Leader }{
           \emph{ Execute the perimeter coverage model}\;
          % \emph{ Determine the segment points using perimeter coverage model}\;
       }
       
           \emph{ Execute the perimeter coverage model}\;
          % \emph{ Determine the segment points using perimeter coverage model}\;
       }
       
-      \If{$ (s_k.ID $ is the same Previous Leader) And (A.CurrentSize = A.PreviousSize)}{
+      \If{$ (s_j.ID $ is the same Previous Leader) And (A.CurrentSize = A.PreviousSize)}{
       
         \emph{ Use the same previous cover set for current sensing stage}\;
       }
       \Else{
             \emph{Update $a^j_{ik}$; prepare data for IP~Algorithm}\;
       
         \emph{ Use the same previous cover set for current sensing stage}\;
       }
       \Else{
             \emph{Update $a^j_{ik}$; prepare data for IP~Algorithm}\;
-            \emph{$\left\{\left(X_{1},\dots,X_{l},\dots,X_{A}\right)\right\}$ = Execute Integer Program Algorithm($A$)}\;
+            \emph{$\left\{\left(X_{1},\dots,X_{k},\dots,X_{A}\right)\right\}$ = Execute Integer Program Algorithm($A$)}\;
             \emph{A.PreviousSize = A.CurrentSize}\;
            }
       
             \emph{A.PreviousSize = A.CurrentSize}\;
            }
       
-        \emph{$s_k.status$ = COMMUNICATION}\;
-        \emph{Send $ActiveSleep()$ to each node $l$ in subregion}\;
-        \emph{Update $RE_k $}\;
+        \emph{$s_j.status$ = COMMUNICATION}\;
+        \emph{Send $ActiveSleep()$ to each node $k$ in subregion}\;
+        \emph{Update $RE_j $}\;
       }          
       \Else{
       }          
       \Else{
-        \emph{$s_k.status$ = LISTENING}\;
+        \emph{$s_j.status$ = LISTENING}\;
         \emph{Wait $ActiveSleep()$ packet from the Leader}\;
         \emph{Wait $ActiveSleep()$ packet from the Leader}\;
-        \emph{Update $RE_k $}\;
+        \emph{Update $RE_j $}\;
       }  
   }
       }  
   }
-  \Else { Exclude $s_k$ from entering in the current sensing stage}
-\caption{PeCO($s_k$)}
+  \Else { Exclude $s_j$ from entering in the current sensing stage}
+\caption{PeCO($s_j$)}
 \label{alg:PeCO}
 \end{algorithm}
 
 In this  algorithm, A.CurrentSize and A.PreviousSize  respectively represent the
 current number and  the previous number of living nodes in  the subnetwork of the
 \label{alg:PeCO}
 \end{algorithm}
 
 In this  algorithm, A.CurrentSize and A.PreviousSize  respectively represent the
 current number and  the previous number of living nodes in  the subnetwork of the
-subregion.  Initially, the sensor node checks its remaining energy $RE_k$, which
+subregion.  Initially, the sensor node checks its remaining energy $RE_j$, which
 must be greater than a threshold $E_{th}$ in order to participate in the current
 period.  Each  sensor node  determines its position  and its subregion  using an
 embedded  GPS or a  location discovery  algorithm. After  that, all  the sensors
 must be greater than a threshold $E_{th}$ in order to participate in the current
 period.  Each  sensor node  determines its position  and its subregion  using an
 embedded  GPS or a  location discovery  algorithm. After  that, all  the sensors
@@ -485,9 +485,9 @@ is about twice longer with  PeCO compared to DESK protocol.  The performance
 difference    is    more    obvious   in    Figure~\ref{fig3LT}(b)    than    in
 Figure~\ref{fig3LT}(a) because the gain induced  by our protocols increases with
  time, and the lifetime with a coverage  of 50\% is far  longer than with
 difference    is    more    obvious   in    Figure~\ref{fig3LT}(b)    than    in
 Figure~\ref{fig3LT}(a) because the gain induced  by our protocols increases with
  time, and the lifetime with a coverage  of 50\% is far  longer than with
-95\%.
+95\%. 
 
 
-\begin{figure}[h!]
+\begin{figure} [p]
   \centering
   \begin{tabular}{@{}cr@{}}
     \includegraphics[scale=0.8]{Figures/ch6/R/LT95.eps} & \raisebox{4cm}{(a)} \\  
   \centering
   \begin{tabular}{@{}cr@{}}
     \includegraphics[scale=0.8]{Figures/ch6/R/LT95.eps} & \raisebox{4cm}{(a)} \\  
@@ -509,15 +509,15 @@ lower  coverage  ratios,  moreover  the   improvements  grow  with  the  network
 size. DiLCO is better  for coverage ratios near 100\%, but in  that case PeCO is
 not ineffective for the smallest network sizes.
 
 size. DiLCO is better  for coverage ratios near 100\%, but in  that case PeCO is
 not ineffective for the smallest network sizes.
 
-\begin{figure}[h!]
+\begin{figure} [p]
 \centering \includegraphics[scale=0.8]{Figures/ch6/R/LTa.eps}
 \caption{Network lifetime for different coverage ratios.}
 \label{figLTALL}
 \centering \includegraphics[scale=0.8]{Figures/ch6/R/LTa.eps}
 \caption{Network lifetime for different coverage ratios.}
 \label{figLTALL}
-\end{figure} 
-
+\end{figure}
 
 
 
 
-\section{Conclusion}
+ %\FloatBarrier
+\section{Conclusion} 
 \label{ch6:sec:05}
 
 In this chapter, we have studied the problem of  Perimeter-based Coverage Optimization in
 \label{ch6:sec:05}
 
 In this chapter, we have studied the problem of  Perimeter-based Coverage Optimization in
index 5e7efc9723ef889423c40f0d1fada3806ab0a69f..60e32f182da912983b84bda017bc368a0802f0ad 100644 (file)
@@ -64,7 +64,7 @@
 \contentsline {subsubsection}{\numberline {4.2.3.2}Leader Election Phase}{79}{subsubsection.4.2.3.2}
 \contentsline {subsubsection}{\numberline {4.2.3.3}Decision phase}{80}{subsubsection.4.2.3.3}
 \contentsline {subsubsection}{\numberline {4.2.3.4}Sensing phase}{80}{subsubsection.4.2.3.4}
 \contentsline {subsubsection}{\numberline {4.2.3.2}Leader Election Phase}{79}{subsubsection.4.2.3.2}
 \contentsline {subsubsection}{\numberline {4.2.3.3}Decision phase}{80}{subsubsection.4.2.3.3}
 \contentsline {subsubsection}{\numberline {4.2.3.4}Sensing phase}{80}{subsubsection.4.2.3.4}
-\contentsline {section}{\numberline {4.3}Primary Points based Coverage Problem Formulation}{80}{section.4.3}
+\contentsline {section}{\numberline {4.3}Primary Points based Coverage Problem Formulation}{81}{section.4.3}
 \contentsline {section}{\numberline {4.4}Simulation Results and Analysis}{82}{section.4.4}
 \contentsline {subsection}{\numberline {4.4.1}Simulation Framework}{82}{subsection.4.4.1}
 \contentsline {subsection}{\numberline {4.4.2}Modeling Language and Optimization Solver}{83}{subsection.4.4.2}
 \contentsline {section}{\numberline {4.4}Simulation Results and Analysis}{82}{section.4.4}
 \contentsline {subsection}{\numberline {4.4.1}Simulation Framework}{82}{subsection.4.4.1}
 \contentsline {subsection}{\numberline {4.4.2}Modeling Language and Optimization Solver}{83}{subsection.4.4.2}
@@ -72,8 +72,8 @@
 \contentsline {subsection}{\numberline {4.4.4}Performance Metrics}{84}{subsection.4.4.4}
 \contentsline {subsection}{\numberline {4.4.5}Performance Analysis for Different Number of Subregions}{85}{subsection.4.4.5}
 \contentsline {subsection}{\numberline {4.4.6}Performance Analysis for Different Number of Primary Points}{90}{subsection.4.4.6}
 \contentsline {subsection}{\numberline {4.4.4}Performance Metrics}{84}{subsection.4.4.4}
 \contentsline {subsection}{\numberline {4.4.5}Performance Analysis for Different Number of Subregions}{85}{subsection.4.4.5}
 \contentsline {subsection}{\numberline {4.4.6}Performance Analysis for Different Number of Primary Points}{90}{subsection.4.4.6}
-\contentsline {subsection}{\numberline {4.4.7}Performance Comparison with other Approaches}{95}{subsection.4.4.7}
-\contentsline {section}{\numberline {4.5}Conclusion}{101}{section.4.5}
+\contentsline {subsection}{\numberline {4.4.7}Performance Comparison with other Approaches}{97}{subsection.4.4.7}
+\contentsline {section}{\numberline {4.5}Conclusion}{102}{section.4.5}
 \contentsline {chapter}{\numberline {5}Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}{103}{chapter.5}
 \contentsline {section}{\numberline {5.1}Introduction}{103}{section.5.1}
 \contentsline {section}{\numberline {5.2}MuDiLCO Protocol Description}{103}{section.5.2}
 \contentsline {chapter}{\numberline {5}Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}{103}{chapter.5}
 \contentsline {section}{\numberline {5.1}Introduction}{103}{section.5.1}
 \contentsline {section}{\numberline {5.2}MuDiLCO Protocol Description}{103}{section.5.2}
 \contentsline {subsection}{\numberline {5.4.1}Simulation Setup}{107}{subsection.5.4.1}
 \contentsline {subsection}{\numberline {5.4.2}Metrics}{107}{subsection.5.4.2}
 \contentsline {subsection}{\numberline {5.4.3}Results Analysis and Comparison }{108}{subsection.5.4.3}
 \contentsline {subsection}{\numberline {5.4.1}Simulation Setup}{107}{subsection.5.4.1}
 \contentsline {subsection}{\numberline {5.4.2}Metrics}{107}{subsection.5.4.2}
 \contentsline {subsection}{\numberline {5.4.3}Results Analysis and Comparison }{108}{subsection.5.4.3}
-\contentsline {section}{\numberline {5.5}Conclusion}{113}{section.5.5}
-\contentsline {chapter}{\numberline {6} Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}{115}{chapter.6}
-\contentsline {section}{\numberline {6.1}Introduction}{115}{section.6.1}
-\contentsline {section}{\numberline {6.2}The PeCO Protocol Description}{115}{section.6.2}
-\contentsline {subsection}{\numberline {6.2.1}Assumptions and Models}{115}{subsection.6.2.1}
-\contentsline {subsection}{\numberline {6.2.2}PeCO Protocol Algorithm}{118}{subsection.6.2.2}
-\contentsline {section}{\numberline {6.3}Perimeter-based Coverage Problem Formulation}{120}{section.6.3}
-\contentsline {section}{\numberline {6.4}Performance Evaluation and Analysis}{121}{section.6.4}
-\contentsline {subsection}{\numberline {6.4.1}Simulation Settings}{121}{subsection.6.4.1}
-\contentsline {subsection}{\numberline {6.4.2}Simulation Results}{122}{subsection.6.4.2}
-\contentsline {subsubsection}{\numberline {6.4.2.1}Coverage Ratio}{122}{subsubsection.6.4.2.1}
-\contentsline {subsubsection}{\numberline {6.4.2.2}Active Sensors Ratio}{122}{subsubsection.6.4.2.2}
-\contentsline {subsubsection}{\numberline {6.4.2.3}The Energy Consumption}{122}{subsubsection.6.4.2.3}
-\contentsline {subsubsection}{\numberline {6.4.2.4}The Network Lifetime}{125}{subsubsection.6.4.2.4}
-\contentsline {section}{\numberline {6.5}Conclusion}{125}{section.6.5}
-\contentsline {part}{III\hspace {1em}Conclusion and Perspectives}{129}{part.3}
-\contentsline {chapter}{\numberline {7}Conclusion and Perspectives}{131}{chapter.7}
-\contentsline {section}{\numberline {7.1}Conclusion}{131}{section.7.1}
-\contentsline {section}{\numberline {7.2}Perspectives}{132}{section.7.2}
-\contentsline {part}{Bibliographie}{148}{chapter*.13}
+\contentsline {section}{\numberline {5.5}Conclusion}{115}{section.5.5}
+\contentsline {chapter}{\numberline {6} Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}{117}{chapter.6}
+\contentsline {section}{\numberline {6.1}Introduction}{117}{section.6.1}
+\contentsline {section}{\numberline {6.2}The PeCO Protocol Description}{117}{section.6.2}
+\contentsline {subsection}{\numberline {6.2.1}Assumptions and Models}{117}{subsection.6.2.1}
+\contentsline {subsection}{\numberline {6.2.2}PeCO Protocol Algorithm}{120}{subsection.6.2.2}
+\contentsline {section}{\numberline {6.3}Perimeter-based Coverage Problem Formulation}{122}{section.6.3}
+\contentsline {section}{\numberline {6.4}Performance Evaluation and Analysis}{123}{section.6.4}
+\contentsline {subsection}{\numberline {6.4.1}Simulation Settings}{123}{subsection.6.4.1}
+\contentsline {subsection}{\numberline {6.4.2}Simulation Results}{124}{subsection.6.4.2}
+\contentsline {subsubsection}{\numberline {6.4.2.1}Coverage Ratio}{124}{subsubsection.6.4.2.1}
+\contentsline {subsubsection}{\numberline {6.4.2.2}Active Sensors Ratio}{124}{subsubsection.6.4.2.2}
+\contentsline {subsubsection}{\numberline {6.4.2.3}The Energy Consumption}{124}{subsubsection.6.4.2.3}
+\contentsline {subsubsection}{\numberline {6.4.2.4}The Network Lifetime}{127}{subsubsection.6.4.2.4}
+\contentsline {section}{\numberline {6.5}Conclusion}{130}{section.6.5}
+\contentsline {part}{III\hspace {1em}Conclusion and Perspectives}{131}{part.3}
+\contentsline {chapter}{\numberline {7}Conclusion and Perspectives}{133}{chapter.7}
+\contentsline {section}{\numberline {7.1}Conclusion}{133}{section.7.1}
+\contentsline {section}{\numberline {7.2}Perspectives}{134}{section.7.2}
+\contentsline {part}{Bibliographie}{150}{chapter*.13}
index 68e02561720b1b14172c819c6d1ccb2270063bef..61f2137214843bbc506a4c19fe013aec2fbe2be7 100644 (file)
 \usepackage{multirow}
 \usepackage{array}
 
 \usepackage{multirow}
 \usepackage{array}
 
+\usepackage[section]{placeins}
+\usepackage{float}
+
+
 \newcommand*\rot{\rotatebox{90}}
 \newcommand*\OK{\ding{51}}
 
 \newcommand*\rot{\rotatebox{90}}
 \newcommand*\OK{\ding{51}}