It has been shown that DESK and GAF provide a little better coverage ratio with 99.99\% and 99.91\% against 99.1\% and 99.2\% produced by DiLCO-16 and DiLCO-32 for the lowest number of rounds. This is due to the fact that DiLCO protocol versions put in sleep mode redundant sensors using optimization (which lightly decreases the coverage ratio) while there are more nodes are active in the case of DESK and GAF.
-Moreover, when the number of rounds increases, coverage ratio produced by DESK and GAF protocols decreases. This is due to dead nodes. However, DiLCO-16 protocol and DiLCO-32 protocol maintain almost a good coverage. This is because they optimized the coverage and the lifetime in wireless sensor network by selecting the best representative sensor nodes to take the responsibility of coverage during the sensing phase and this will leads to continue for a larger number of rounds and prolonging the network lifetime; although some nodes are dead, sensor activity scheduling of our protocol chooses other nodes to ensure the coverage of the area of interest.
+Moreover, when the number of rounds increases, coverage ratio produced by DESK and GAF protocols decreases. This is due to dead nodes. However, DiLCO-16 protocol and DiLCO-32 protocol maintain almost a good coverage. This is because they optimized the coverage and the lifetime in wireless sensor network by selecting the best representative sensor nodes to take the responsibility of coverage during the sensing phase, and this will lead to continuing for a larger number of rounds and prolonging the network lifetime. Furthermore, although some nodes are dead, sensor activity scheduling of our protocol chooses other nodes to ensure the coverage of the area of interest.
\item {{\bf Active Sensors Ratio}}
%\subsubsection{Active Sensors Ratio}
\item {{\bf The percentage of stopped simulation runs}}
%\subsubsection{The percentage of stopped simulation runs}
-The results presented in this experiment, is to show the comparison of DiLCO-16 protocol and DiLCO-32 protocol with other two approaches from point of view of stopped simulation runs per round.
-Figure~\ref{Figures/ch4/R3/SR} illustrates the percentage of stopped simulation
-runs per round for 150 deployed nodes.
+The results presented in this experiment, are to show the comparison of DiLCO-16 protocol and DiLCO-32 protocol with other two approaches from the point of view of stopped simulation runs per round.
+Figure~\ref{Figures/ch4/R3/SR} illustrates the percentage of stopped simulation runs per round for 150 deployed nodes.
\begin{figure}[h!]
\centering
\includegraphics[scale=0.8]{Figures/ch4/R3/SR.pdf}
\caption{Percentage of stopped simulation runs for 150 deployed nodes }
\label{Figures/ch4/R3/SR}
\end{figure}
-It has been observed that DESK is the approach, which stops first because it consumes more energy for communication as well as it turn on a large number of redundant nodes during the sensing phase. On the other hand DiLCO-16 protocol and DiLCO-32 protocol have less stopped simulation runs in comparison with DESK and GAF because it distributed the optimization on several subregions in order to optimizes the coverage and the lifetime of the network by activating a less number of nodes during the sensing phase leading to extend the network lifetime and coverage preservation. The optimization effectively continues as long as a network in a subregion is still connected.
+It has been observed that DESK is the approach, which stops first because it consumes more energy for communication as well as it turns on a large number of redundant nodes during the sensing phase. On the other hand DiLCO-16 protocol and DiLCO-32 protocol have less stopped simulation runs in comparison with DESK and GAF because it distributed the optimization on several subregions in order to optimize the coverage and the lifetime of the network by activating a less number of nodes during the sensing phase leading to extending the network lifetime and coverage preservation. The optimization effectively continues as long as a network in a subregion is still connected.
\item {{\bf The Energy Consumption}}
\label{Figures/ch4/R3/EC50}
\end{figure}
-The results show that DiLCO-16 protocol and DiLCO-32 protocol are the most competitive from the energy consumption point of view. The other approaches have a high energy consumption due to activating a larger number of redundant nodes as well as the energy consumed during the different modes of sensor nodes. In fact, a distributed method on the subregions greatly reduces the number of communications and the time of listening so thanks to the partitioning of the initial network into several independent subnetworks.
+The results show that DiLCO-16 protocol and DiLCO-32 protocol are the most competitive from the energy consumption point of view. The other approaches have a high energy consumption due to activating a larger number of redundant nodes, as well as the energy consumed during the different modes of sensor nodes. In fact, a distributed method on the subregions greatly reduces the number of communications and the time of listening so thanks to the partitioning of the initial network into several independent subnetworks.
\item {{\bf The Network Lifetime}}
\section{Conclusion}
\label{ch4:sec:05}
-A crucial problem in WSN is to schedule the sensing activities of the different nodes in order to ensure both coverage of the area of interest and longer
-network lifetime. The inherent limitations of sensor nodes, in energy provision, communication and computing capacities, require protocols that optimize the use
-of the available resources to fulfill the sensing task. To address this problem, this chapter proposes a two-step approach. Firstly, the field of sensing
-is divided into smaller subregions using the concept of divide-and-conquer method. Secondly, a distributed protocol called Distributed Lifetime Coverage
-Optimization is applied in each subregion to optimize the coverage and lifetime performances. In a subregion, our protocol consists in electing a leader node
-which will then perform a sensor activity scheduling. The challenges include how to select the most efficient leader in each subregion and the best representative set of active nodes to ensure a high level of coverage. To assess the performance of our approach, we compared it with two other approaches using many performance metrics like coverage ratio or network lifetime. We have also studied the impact of the number of subregions chosen to subdivide the area of interest, considering different network sizes. The experiments show that increasing the number of subregions improves the lifetime. The more subregions there are, the more robust the network is against random disconnection resulting from dead nodes. However, for a given sensing field and network size there is an optimal number of subregions. Therefore, in case of our simulation context a subdivision in $16$~subregions seems to be the most relevant.
+A crucial problem in WSN is to schedule the sensing activities of the different nodes in order to ensure both of coverage of the area of interest and longer network lifetime. The inherent limitations of sensor nodes, in energy provision, communication and computing capacities, require protocols that optimize the use of the available resources to fulfill the sensing task. To address this problem, this chapter proposes a two-step approach. Firstly, the field of sensing
+is divided into smaller subregions using the concept of divide-and-conquer method. Secondly, a distributed protocol called Distributed Lifetime Coverage Optimization is applied in each subregion to optimize the coverage and lifetime performances. In a subregion, our protocol consists in electing a leader node, which will then perform a sensor activity scheduling. The challenges include how to select the most efficient leader in each subregion and the best representative set of active nodes to ensure a high level of coverage. To assess the performance of our approach, we compared it with two other approaches using many performance metrics like coverage ratio or network lifetime. We have also studied the impact of the number of subregions chosen to subdivide the area of interest, considering different network sizes. The experiments show that increasing the number of subregions improves the lifetime. The more subregions there are, the more robust the network is against random disconnection resulting from dead nodes. However, for a given sensing field and network size there is an optimal number of subregions. Therefore, in case of our simulation context a subdivision in $16$~subregions seems to be the most relevant.