]> AND Private Git Repository - book_gpu.git/blob - BookGPU/Chapters/chapter12/ch12.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[book_gpu.git] / BookGPU / Chapters / chapter12 / ch12.tex
1 1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%                          %%
3 %%       CHAPTER 12         %%
4 %%                          %%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6  
7 %\chapterauthor{}{}
8 \chapterauthor{Lilia Ziane Khodja}{Femto-ST Institute, University of Franche-Comte, France}
9 \chapterauthor{Raphaël Couturier}{Femto-ST Institute, University of Franche-Comte, France}
10 \chapterauthor{Jacques Bahi}{Femto-ST Institute, University of Franche-Comte, France}
11
12 \chapter{Solving sparse linear systems with GMRES and CG methods on GPU clusters}
13 \label{ch12}
14
15 %%--------------------------%%
16 %%       SECTION 1          %%
17 %%--------------------------%%
18 \section{Introduction}
19 \label{ch12:sec:01}
20 Sparse linear systems are used to model many scientific and industrial problems,
21 such as the environmental simulations or the industrial processing of the complex or
22 non-Newtonian fluids. Moreover, the resolution of these problems often involves the
23 solving of such linear systems which are considered as the most expensive process in
24 terms of execution time and memory space. Therefore, solving sparse linear systems
25 must be as efficient as possible in order to deal with problems of ever increasing
26 size.
27
28 There are, in the jargon of numerical analysis, different methods of solving sparse
29 linear systems that can be classified in two classes: the direct and iterative methods.
30 However, the iterative methods are often more suitable than their counterpart, direct
31 methods, to  solve these systems. Indeed, they are less memory consuming and easier
32 to parallelize on parallel computers than direct methods. Different computing platforms,
33 sequential and parallel computers, are used to solve sparse linear systems with iterative
34 solutions. Nowadays, graphics processing units (GPUs) have become attractive to solve
35 these systems, due to their computing power and their ability to compute faster than
36 traditional CPUs.
37
38 In Section~\ref{ch12:sec:02}, we describe the general principle of two well-known iterative
39 methods: the conjugate gradient method and the generalized minimal residual method. In Section~\ref{ch12:sec:03},
40 we give the main key points of the parallel implementation of both methods on a cluster of
41 GPUs. Finally, in Section~\ref{ch12:sec:04}, we present the experimental results obtained on a
42 CPU cluster and on a GPU cluster, to solve large sparse linear systems.    
43
44
45 %%--------------------------%%
46 %%       SECTION 2          %%
47 %%--------------------------%%
48 \section{Krylov iterative methods}
49 \label{ch12:sec:02}
50 Let us consider the following system of $n$ linear equations\index{Sparse~linear~system}
51 in $\mathbb{R}$: 
52 \begin{equation}
53 Ax=b,
54 \label{ch12:eq:01}
55 \end{equation}
56 where $A\in\mathbb{R}^{n\times n}$ is a sparse nonsingular square matrix, $x\in\mathbb{R}^{n}$
57 is the solution vector, $b\in\mathbb{R}^{n}$ is the right-hand side and $n\in\mathbb{N}$ is a
58 large integer number. 
59
60 The iterative methods\index{Iterative~method} for solving the large sparse linear system~(\ref{ch12:eq:01})
61 proceed by successive iterations of a same block of elementary operations, during which an
62 infinite number of approximate solutions $\{x_k\}_{k\geq 0}$ are computed. Indeed, from an
63 initial guess $x_0$, an iterative method determines at each iteration $k>0$ an approximate
64 solution $x_k$ which, gradually, converges to the exact solution $x^{*}$ as follows:
65 \begin{equation}
66 x^{*}=\lim\limits_{k\to\infty}x_{k}=A^{-1}b.
67 \label{ch12:eq:02}
68 \end{equation}
69 The number of iterations necessary to reach the exact solution $x^{*}$ is not known beforehand
70 and can be infinite. In practice, an iterative method often finds an approximate solution $\tilde{x}$
71 after a fixed number of iterations and/or when a given convergence criterion\index{Convergence}
72 is satisfied as follows:   
73 \begin{equation}
74 \|b-A\tilde{x}\| < \varepsilon,
75 \label{ch12:eq:03}
76 \end{equation}
77 where $\varepsilon<1$ is the required convergence tolerance threshold\index{Convergence!Tolerance~threshold}. 
78
79 Some of the most iterative methods that have proven their efficiency for solving large sparse
80 linear systems are those called \textit{Krylov subspace methods}~\cite{ch12:ref1}\index{Iterative~method!Krylov~subspace}.
81 In the present chapter, we describe two Krylov methods which are widely used: the conjugate
82 gradient method (CG) and the generalized minimal residual method (GMRES). In practice, the
83 Krylov subspace methods are usually used with preconditioners that allow to improve their
84 convergence. So, in what follows, the CG and GMRES methods are used to solve the left-preconditioned\index{Sparse~linear~system!Preconditioned}
85 sparse linear system:
86 \begin{equation}
87 M^{-1}Ax=M^{-1}b,
88 \label{ch12:eq:11}
89 \end{equation}
90 where $M$ is the preconditioning matrix.
91
92
93 %%****************%%
94 %%****************%%
95 \subsection{CG method}
96 \label{ch12:sec:02.01}
97 The conjugate gradient method was initially developed by Hestenes and Stiefel in 1952~\cite{ch12:ref2}.
98 It is one of the well known iterative method to solve large sparse linear systems. In addition, it
99 can be adapted to solve nonlinear equations and optimization problems. However, it can only be applied
100 to problems with positive definite symmetric matrices.
101
102 The main idea of the CG method\index{Iterative~method!CG} is the computation of a sequence of approximate
103 solutions $\{x_k\}_{k\geq 0}$ in a Krylov subspace\index{Iterative~method!Krylov~subspace} of order $k$ as
104 follows: 
105 \begin{equation}
106 x_k \in x_0 + \mathcal{K}_k(A,r_0),
107 \label{ch12:eq:04}
108 \end{equation}
109 such that the Galerkin condition\index{Galerkin~condition} must be satisfied:
110 \begin{equation}
111 r_k \bot \mathcal{K}_k(A,r_0),
112 \label{ch12:eq:05}
113 \end{equation}
114 where $x_0$ is the initial guess, $r_k=b-Ax_k$ is the residual of the computed solution $x_k$ and $\mathcal{K}_k$
115 the Krylov subspace of order $k$: \[\mathcal{K}_k(A,r_0) \equiv\text{span}\{r_0, Ar_0, A^2r_0,\ldots, A^{k-1}r_0\}.\]
116 In fact, CG is based on the construction of a sequence $\{p_k\}_{k\in\mathbb{N}}$ of direction vectors in $\mathcal{K}_k$
117 which are pairwise $A$-conjugate ($A$-orthogonal):
118 \begin{equation}
119 \begin{array}{ll}
120 p_i^T A p_j = 0, & i\neq j. 
121 \end{array} 
122 \label{ch12:eq:06}
123 \end{equation}
124 At each iteration $k$, an approximate solution $x_k$ is computed by recurrence as follows:  
125 \begin{equation}
126 \begin{array}{ll}
127 x_k = x_{k-1} + \alpha_k p_k, & \alpha_k\in\mathbb{R}.
128 \end{array} 
129 \label{ch12:eq:07}
130 \end{equation}
131 Consequently, the residuals $r_k$ are computed in the same way:
132 \begin{equation}
133 r_k = r_{k-1} - \alpha_k A p_k. 
134 \label{ch12:eq:08}
135 \end{equation}
136 In the case where all residuals are nonzero, the direction vectors $p_k$ can be determined so that
137 the following recurrence holds:
138 \begin{equation}
139 \begin{array}{lll}
140 p_0=r_0, & p_k=r_k+\beta_k p_{k-1}, & \beta_k\in\mathbb{R}.
141 \end{array} 
142 \label{ch12:eq:09}
143 \end{equation}
144 Moreover, the scalars $\{\alpha_k\}_{k>0}$ are chosen so as to minimize the $A$-norm error $\|x^{*}-x_k\|_A$
145 over the Krylov subspace $\mathcal{K}_{k}$ and the scalars $\{\beta_k\}_{k>0}$ are chosen so as to ensure
146 that the direction vectors are pairwise $A$-conjugate. So, the assumption that matrix $A$ is symmetric and
147 the recurrences~(\ref{ch12:eq:08}) and~(\ref{ch12:eq:09}) allow to deduce that:
148 \begin{equation}
149 \begin{array}{ll}
150 \alpha_{k}=\frac{r^{T}_{k-1}r_{k-1}}{p_{k}^{T}Ap_{k}}, & \beta_{k}=\frac{r_{k}^{T}r_{k}}{r_{k-1}^{T}r_{k-1}}.
151 \end{array}
152 \label{ch12:eq:10}
153 \end{equation}
154
155 \begin{algorithm}[!t]
156   Choose an initial guess $x_0$\;
157   $r_{0} = b - A x_{0}$\;
158   $convergence$ = false\;
159   $k = 1$\;
160   \Repeat{convergence}{
161     $z_{k} = M^{-1} r_{k-1}$\;
162     $\rho_{k} = (r_{k-1},z_{k})$\;
163     \eIf{$k = 1$}{
164       $p_{k} = z_{k}$\;
165     }{
166       $\beta_{k} = \rho_{k} / \rho_{k-1}$\;
167       $p_{k} = z_{k} + \beta_{k} \times p_{k-1}$\;
168     }
169     $q_{k} = A \times p_{k}$\;
170     $\alpha_{k} = \rho_{k} / (p_{k},q_{k})$\;
171     $x_{k} = x_{k-1} + \alpha_{k} \times p_{k}$\;
172     $r_{k} = r_{k-1} - \alpha_{k} \times q_{k}$\;
173     \eIf{$(\rho_{k} < \varepsilon)$ {\bf or} $(k \geq maxiter)$}{
174       $convergence$ = true\;
175     }{
176       $k = k + 1$\;
177     }
178   }
179 \caption{Left-preconditioned CG method}
180 \label{ch12:alg:01}
181 \end{algorithm}
182
183 Algorithm~\ref{ch12:alg:01} shows the main key points of the preconditioned CG method. It allows
184 to solve the left-preconditioned\index{Sparse~linear~system!Preconditioned} sparse linear system~(\ref{ch12:eq:11}).
185 In this algorithm, $\varepsilon$ is the convergence tolerance threshold, $maxiter$ is the maximum
186 number of iterations and $(\cdot,\cdot)$ defines the dot product between two vectors in $\mathbb{R}^{n}$.
187 At every iteration, a direction vector $p_k$ is determined, so that it is orthogonal to the preconditioned
188 residual $z_k$ and to the direction vectors $\{p_i\}_{i<k}$ previously determined (from line~$8$ to
189 line~$13$). Then, at lines~$16$ and~$17$, the iterate $x_k$ and the residual $r_k$ are computed using
190 formulas~(\ref{ch12:eq:07}) and~(\ref{ch12:eq:08}), respectively. The CG method converges after, at
191 most, $n$ iterations. In practice, the CG algorithm stops when the tolerance threshold\index{Convergence!Tolerance~threshold}
192 $\varepsilon$ and/or the maximum number of iterations\index{Convergence!Maximum~number~of~iterations}
193 $maxiter$ are reached.
194
195
196 %%****************%%
197 %%****************%%
198 \subsection{GMRES method} 
199 \label{ch12:sec:02.02}
200 The iterative GMRES method was developed by Saad and Schultz in 1986~\cite{ch12:ref3} as a generalization
201 of the minimum residual method MINRES~\cite{ch12:ref4}\index{Iterative~method!MINRES}. Indeed, GMRES can
202 be applied for solving symmetric or nonsymmetric linear systems. 
203
204 The main principle of the GMRES method\index{Iterative~method!GMRES} is to find an approximation minimizing
205 at best the residual norm. In fact, GMRES computes a sequence of approximate solutions $\{x_k\}_{k>0}$ in
206 a Krylov subspace\index{Iterative~method!Krylov~subspace} $\mathcal{K}_k$ as follows:
207 \begin{equation}
208 \begin{array}{ll}
209 x_k \in x_0 + \mathcal{K}_k(A, v_1),& v_1=\frac{r_0}{\|r_0\|_2},
210 \end{array}
211 \label{ch12:eq:12}
212 \end{equation} 
213 so that the Petrov-Galerkin condition\index{Petrov-Galerkin~condition} is satisfied:
214 \begin{equation}
215 \begin{array}{ll}
216 r_k \bot A \mathcal{K}_k(A, v_1).
217 \end{array}
218 \label{ch12:eq:13}
219 \end{equation}
220 GMRES uses the Arnoldi process~\cite{ch12:ref5}\index{Iterative~method!Arnoldi~process} to construct an
221 orthonormal basis $V_k$ for the Krylov subspace $\mathcal{K}_k$ and an upper Hessenberg matrix\index{Hessenberg~matrix}
222 $\bar{H}_k$ of order $(k+1)\times k$:
223 \begin{equation}
224 \begin{array}{ll}
225 V_k = \{v_1, v_2,\ldots,v_k\}, & \forall k>1, v_k=A^{k-1}v_1,
226 \end{array}
227 \label{ch12:eq:14}
228 \end{equation}
229 and
230 \begin{equation}
231 A V_k = V_{k+1} \bar{H}_k.
232 \label{ch12:eq:15}
233 \end{equation}
234
235 Then, at each iteration $k$, an approximate solution $x_k$ is computed in the Krylov subspace $\mathcal{K}_k$
236 spanned by $V_k$ as follows:
237 \begin{equation}
238 \begin{array}{ll}
239 x_k = x_0 + V_k y, & y\in\mathbb{R}^{k}.
240 \end{array}
241 \label{ch12:eq:16}
242 \end{equation}
243 From both formulas~(\ref{ch12:eq:15}) and~(\ref{ch12:eq:16}) and $r_k=b-Ax_k$, we can deduce that:
244 \begin{equation}
245 \begin{array}{lll}
246   r_{k} & = & b - A (x_{0} + V_{k}y) \\
247         & = & r_{0} - AV_{k}y \\
248         & = & \beta v_{1} - V_{k+1}\bar{H}_{k}y \\
249         & = & V_{k+1}(\beta e_{1} - \bar{H}_{k}y),
250 \end{array}
251 \label{ch12:eq:17}
252 \end{equation}
253 such that $\beta=\|r_0\|_2$ and $e_1=(1,0,\cdots,0)$ is the first vector of the canonical basis of
254 $\mathbb{R}^k$. So, the vector $y$ is chosen in $\mathbb{R}^k$ so as to minimize at best the Euclidean
255 norm of the residual $r_k$. Consequently, a linear least-squares problem of size $k$ is solved:
256 \begin{equation}
257 \underset{y\in\mathbb{R}^{k}}{min}\|r_{k}\|_{2}=\underset{y\in\mathbb{R}^{k}}{min}\|\beta e_{1}-\bar{H}_{k}y\|_{2}.
258 \label{ch12:eq:18}
259 \end{equation}
260 The QR factorization of matrix $\bar{H}_k$ is used to compute the solution of this problem by using
261 Givens rotations~\cite{ch12:ref1,ch12:ref3}, such that:
262 \begin{equation}
263 \begin{array}{lll}
264 \bar{H}_{k}=Q_{k}R_{k}, & Q_{k}\in\mathbb{R}^{(k+1)\times (k+1)}, & R_{k}\in\mathbb{R}^{(k+1)\times k},
265 \end{array}
266 \label{ch12:eq:19}
267 \end{equation}
268 where $Q_kQ_k^T=I_k$ and $R_k$ is an upper triangular matrix.
269
270 The GMRES method computes an approximate solution with a sufficient precision after, at most, $n$
271 iterations ($n$ is the size of the sparse linear system to be solved). However, the GMRES algorithm
272 must construct and store in the memory an orthonormal basis $V_k$ whose size is proportional to the
273 number of iterations required to achieve the convergence. Then, to avoid a huge memory storage, the
274 GMRES method must be restarted at each $m$ iterations, such that $m$ is very small ($m\ll n$), and
275 with $x_m$ as the initial guess to the next iteration. This allows to limit the size of the basis
276 $V$ to $m$ orthogonal vectors.
277
278 \begin{algorithm}[!t]
279   Choose an initial guess $x_0$\;
280   $convergence$ = false\;
281   $k = 1$\;
282   $r_{0} = M^{-1}(b-Ax_{0})$\;
283   $\beta = \|r_{0}\|_{2}$\;
284   \While{$\neg convergence$}{
285     $v_{1} = r_{0}/\beta$\;
286     \For{$j=1$ \KwTo $m$}{ 
287       $w_{j} = M^{-1}Av_{j}$\;
288       \For{$i=1$ \KwTo $j$}{
289         $h_{i,j} = (w_{j},v_{i})$\;
290         $w_{j} = w_{j}-h_{i,j}v_{i}$\;
291       }
292       $h_{j+1,j} = \|w_{j}\|_{2}$\;
293       $v_{j+1} = w_{j}/h_{j+1,j}$\;
294     }
295     Set $V_{m}=\{v_{j}\}_{1\leq j \leq m}$ and $\bar{H}_{m}=(h_{i,j})$ a $(m+1)\times m$ upper Hessenberg matrix\;
296     Solve a least-squares problem of size $m$: $min_{y\in\mathrm{I\!R}^{m}}\|\beta e_{1}-\bar{H}_{m}y\|_{2}$\;
297     $x_{m} = x_{0}+V_{m}y_{m}$\;
298     $r_{m} = M^{-1}(b-Ax_{m})$\;
299     $\beta = \|r_{m}\|_{2}$\;   
300     \eIf{ $(\beta<\varepsilon)$ {\bf or} $(k\geq maxiter)$}{
301       $convergence$ = true\;
302     }{
303       $x_{0} = x_{m}$\;
304       $r_{0} = r_{m}$\;
305       $k = k + 1$\;
306     }
307   }
308 \caption{Left-preconditioned GMRES method with restarts}
309 \label{ch12:alg:02}
310 \end{algorithm}
311
312 Algorithm~\ref{ch12:alg:02} shows the key points of the GMRES method with restarts.
313 It solves the left-preconditioned\index{Sparse~linear~system!Preconditioned} sparse linear
314 system~(\ref{ch12:eq:11}), such that $M$ is the preconditioning matrix. At each iteration
315 $k$, GMRES uses the Arnoldi process\index{Iterative~method!Arnoldi~process} (defined from
316 line~$7$ to line~$17$) to construct a basis $V_m$ of $m$ orthogonal vectors and an upper
317 Hessenberg matrix\index{Hessenberg~matrix} $\bar{H}_m$ of size $(m+1)\times m$. Then, it
318 solves the linear least-squares problem of size $m$ to find the vector $y\in\mathbb{R}^{m}$
319 which minimizes at best the residual norm (line~$18$). Finally, it computes an approximate
320 solution $x_m$ in the Krylov subspace spanned by $V_m$ (line~$19$). The GMRES algorithm is
321 stopped when the residual norm is sufficiently small ($\|r_m\|_2<\varepsilon$) and/or the
322 maximum number of iterations\index{Convergence!Maximum~number~of~iterations} ($maxiter$)
323 is reached.
324
325
326 %%--------------------------%%
327 %%       SECTION 3          %%
328 %%--------------------------%%
329 \section{Parallel implementation on a GPU cluster}
330 \label{ch12:sec:03}
331 In this section, we present the parallel algorithms of both iterative CG\index{Iterative~method!CG}
332 and GMRES\index{Iterative~method!GMRES} methods for GPU clusters. The implementation is performed on
333 a GPU cluster composed of different computing nodes, such that each node is a CPU core managed by a
334 MPI process and equipped with a GPU card. The parallelization of these algorithms is carried out by
335 using the MPI communication routines between the GPU computing nodes\index{Computing~node} and the
336 CUDA programming environment inside each node. In what follows, the algorithms of the iterative methods
337 are called iterative solvers.
338
339
340 %%****************%%
341 %%****************%%
342 \subsection{Data partitioning}
343 \label{ch12:sec:03.01}
344 The parallel solving of the large sparse linear system~(\ref{ch12:eq:11}) requires a data partitioning
345 between the computing nodes of the GPU cluster. Let $p$ denotes the number of the computing nodes on the
346 GPU cluster. The partitioning operation consists in the decomposition of the vectors and matrices, involved
347 in the iterative solver, in $p$ portions. Indeed, this operation allows to assign to each computing node
348 $i$:
349 \begin{itemize}
350 \item a portion of size $\frac{n}{p}$ elements of each vector,
351 \item a sparse rectangular sub-matrix $A_i$ of size $(\frac{n}{p},n)$ and,
352 \item a square preconditioning sub-matrix $M_i$ of size $(\frac{n}{p},\frac{n}{p})$, 
353 \end{itemize} 
354 where $n$ is the size of the sparse linear system to be solved. In the first instance, we perform a naive
355 row-wise partitioning (row-by-row decomposition) on the data of the sparse linear systems to be solved.
356 Figure~\ref{ch12:fig:01} shows an example of a row-wise data partitioning between four computing nodes
357 of a sparse linear system (sparse matrix $A$, solution vector $x$ and right-hand side $b$) of size $16$
358 unknown values. 
359
360 \begin{figure}
361 \centerline{\includegraphics[scale=0.35]{Chapters/chapter12/figures/partition}}
362 \caption{A data partitioning of the sparse matrix $A$, the solution vector $x$ and the right-hand side $b$ into four portions.}
363 \label{ch12:fig:01}
364 \end{figure}
365
366
367 %%****************%%
368 %%****************%%
369 \subsection{GPU computing}
370 \label{ch12:sec:03.02}
371 After the partitioning operation, all the data involved from this operation must be
372 transferred from the CPU memories to the GPU memories, in order to be processed by
373 GPUs. We use two functions of the CUBLAS\index{CUBLAS} library (CUDA Basic Linear
374 Algebra Subroutines), developed by Nvidia~\cite{ch12:ref6}: \verb+cublasAlloc()+
375 for the memory allocations on GPUs and \verb+cublasSetVector()+ for the memory
376 copies from the CPUs to the GPUs.
377
378 An efficient implementation of CG and GMRES solvers on a GPU cluster requires to
379 determine all parts of their codes that can be executed in parallel and, thus, take
380 advantage of the GPU acceleration. As many Krylov subspace methods, the CG and GMRES
381 methods are mainly based on arithmetic operations dealing with vectors or matrices:
382 sparse matrix-vector multiplications, scalar-vector multiplications, dot products,
383 Euclidean norms, AXPY operations ($y\leftarrow ax+y$ where $x$ and $y$ are vectors
384 and $a$ is a scalar) and so on. These vector operations are often easy to parallelize
385 and they are more efficient on parallel computers when they work on large vectors.
386 Therefore, all the vector operations used in CG and GMRES solvers must be executed
387 by the GPUs as kernels.
388
389 We use the kernels of the CUBLAS library to compute some vector operations of CG and
390 GMRES solvers. The following kernels of CUBLAS (dealing with double floating point)
391 are used: \verb+cublasDdot()+ for the dot products, \verb+cublasDnrm2()+ for the
392 Euclidean norms and \verb+cublasDaxpy()+ for the AXPY operations. For the rest of
393 the data-parallel operations, we code their kernels in CUDA. In the CG solver, we
394 develop a kernel for the XPAY operation ($y\leftarrow x+ay$) used  line~$12$ in
395 Algorithm~\ref{ch12:alg:01}. In the GMRES solver, we program a kernel for the scalar-vector
396 multiplication (lines~$7$ and~$15$ in Algorithm~\ref{ch12:alg:02}), a kernel to
397 solve the least-squares problem and a kernel to update the elements  of the solution
398 vector $x$.
399
400 The least-squares problem in the GMRES method is solved by performing a QR factorization
401 on the Hessenberg matrix\index{Hessenberg~matrix} $\bar{H}_m$ with plane rotations and,
402 then, solving the triangular system by backward substitutions to compute $y$. Consequently,
403 solving the least-squares problem on the GPU is not interesting. Indeed, the triangular
404 solves are not easy to parallelize and inefficient on GPUs. However, the least-squares
405 problem to solve in the GMRES method with restarts has, generally, a very small size $m$.
406 Therefore, we develop an inexpensive kernel which must be executed in sequential by a
407 single CUDA thread. 
408
409 The most important operation in CG\index{Iterative~method!CG} and GMRES\index{Iterative~method!GMRES}
410 methods is the sparse matrix-vector multiplication (SpMV)\index{SpMV~multiplication},
411 because it is often an expensive operation in terms of execution time and memory space.
412 Moreover, it requires to take care of the storage format of the sparse matrix in the
413 memory. Indeed, the naive storage, row-by-row or column-by-column, of a sparse matrix
414 can cause a significant waste of memory space and execution time. In addition, the sparse
415 nature of the matrix often leads to irregular memory accesses to read the matrix nonzero
416 values. So, the computation of the SpMV multiplication on GPUs can involve non coalesced
417 accesses to the global memory, which slows down its performances even more. One of the
418 most efficient compressed storage formats\index{Compressed~storage~format} of sparse
419 matrices on GPUs is the HYB\index{Compressed~storage~format!HYB} format~\cite{ch12:ref7}.
420 It is a combination of ELLpack (ELL) and Coordinate (COO) formats. Indeed, it stores
421 a typical number of nonzero values per row in ELL\index{Compressed~storage~format!ELL}
422 format and remaining entries of exceptional rows in COO format. It combines the efficiency
423 of ELL due to the regularity of its memory accesses and the flexibility of COO\index{Compressed~storage~format!COO}
424 which is insensitive to the matrix structure. Consequently, we use the HYB kernel~\cite{ch12:ref8}
425 developed by Nvidia to implement the SpMV multiplication of CG and GMRES methods on GPUs.
426 Moreover, to avoid the non coalesced accesses to the high-latency global memory, we fill
427 the elements of the iterate vector $x$ in the cached texture memory.
428
429
430 %%****************%%
431 %%****************%%
432 \subsection{Data communications}
433 \label{ch12:sec:03.03}
434 All the computing nodes of the GPU cluster execute in parallel the same iterative solver
435 (Algorithm~\ref{ch12:alg:01} or Algorithm~\ref{ch12:alg:02}) adapted to GPUs, but on their
436 own portions of the sparse linear system\index{Sparse~linear~system}: $M^{-1}_iA_ix_i=M^{-1}_ib_i$,
437 $0\leq i<p$. However, in order to solve the complete sparse linear system~(\ref{ch12:eq:11}),
438 synchronizations must be performed between the local computations of the computing nodes over
439 the cluster. In what follows, two computing nodes sharing data are called neighboring nodes\index{Neighboring~node}.
440
441 As already mentioned, the most important operation of CG and GMRES methods is the SpMV multiplication.
442 In the parallel implementation of the iterative methods, each computing node $i$ performs the
443 SpMV multiplication on its own sparse rectangular sub-matrix $A_i$. Locally, it has only sub-vectors
444 of size $\frac{n}{p}$ corresponding to rows of its sub-matrix $A_i$. However, it also requires
445 the vector elements of its neighbors, corresponding to the column indices on which its sub-matrix
446 has nonzero values (see Figure~\ref{ch12:fig:01}). So, in addition to the local vectors, each
447 node must also manage vector elements shared with neighbors and required to compute the SpMV
448 multiplication. Therefore, the iterate vector $x$ managed by each computing node is composed
449 of a local sub-vector $x^{local}$ of size $\frac{n}{p}$ and a sub-vector of shared elements $x^{shared}$.
450 In the same way, the vector used to construct the orthonormal basis of the Krylov subspace (vectors
451 $p$ and $v$ in CG and GMRES methods, respectively) is composed of a local sub-vector and a shared
452 sub-vector. 
453
454 Therefore, before computing the SpMV multiplication\index{SpMV~multiplication}, the neighboring
455 nodes\index{Neighboring~node} over the GPU cluster must exchange between them the shared vector
456 elements necessary to compute this multiplication. First, each computing node determines, in its
457 local sub-vector, the vector elements needed by other nodes. Then, the neighboring nodes exchange
458 between them these shared vector elements. The data exchanges are implemented by using the MPI
459 point-to-point communication routines: blocking\index{MPI~subroutines!Blocking} sends with \verb+MPI_Send()+
460 and nonblocking\index{MPI~subroutines!Nonblocking} receives with \verb+MPI_Irecv()+. Figure~\ref{ch12:fig:02}
461 shows an example of data exchanges between \textit{Node 1} and its neighbors \textit{Node 0}, \textit{Node 2}
462 and \textit{Node 3}. In this example, the iterate matrix $A$ split between these four computing
463 nodes is that presented in Figure~\ref{ch12:fig:01}.
464
465 \begin{figure}
466 \centerline{\includegraphics[scale=0.30]{Chapters/chapter12/figures/compress}}
467 \caption{Data exchanges between \textit{Node 1} and its neighbors \textit{Node 0}, \textit{Node 2} and \textit{Node 3}.}
468 \label{ch12:fig:02}
469 \end{figure}
470
471 After the synchronization operation, the computing nodes receive, from their respective neighbors,
472 the shared elements in a sub-vector stored in a compressed format. However, in order to compute the
473 SpMV multiplication, the computing nodes operate on sparse global vectors (see Figure~\ref{ch12:fig:02}).
474 In this case, the received vector elements must be copied to the corresponding indices in the global
475 vector. So as not to need to perform this at each iteration, we propose to reorder the columns of
476 each sub-matrix $\{A_i\}_{0\leq i<p}$, so that the shared sub-vectors could be used in their compressed
477 storage formats. Figure~\ref{ch12:fig:03} shows a reordering of a sparse sub-matrix (sub-matrix of
478 \textit{Node 1}). 
479
480 \begin{figure}
481 \centerline{\includegraphics[scale=0.35]{Chapters/chapter12/figures/reorder}}
482 \caption{Columns reordering of a sparse sub-matrix.}
483 \label{ch12:fig:03}
484 \end{figure}
485
486 A GPU cluster\index{GPU~cluster} is a parallel platform with a distributed memory. So, the synchronizations
487 and communication data between GPU nodes are carried out by passing messages. However, GPUs can not communicate
488 between them in a direct way. Then, CPUs via MPI processes are in charge of the synchronizations within the GPU
489 cluster. Consequently, the vector elements to be exchanged must be copied from the GPU memory to the CPU memory
490 and vice-versa before and after the synchronization operation between CPUs. We have used the CUBLAS\index{CUBLAS}
491 communication subroutines to perform the data transfers between a CPU core and its GPU: \verb+cublasGetVector()+
492 and \verb+cublasSetVector()+. Finally, in addition to the data exchanges, GPU nodes perform reduction operations
493 to compute in parallel the dot products and Euclidean norms. This is implemented by using the MPI global communication\index{MPI~subroutines!Global}
494 \verb+MPI_Allreduce()+.
495
496
497
498 %%--------------------------%%
499 %%       SECTION 4          %%
500 %%--------------------------%%
501 \section{Experimental results}
502 \label{ch12:sec:04}
503 In this section, we present the performances of the parallel CG and GMRES linear solvers obtained
504 on a cluster of $12$ GPUs. Indeed, this GPU cluster of tests is composed of six machines connected
505 by $20$Gbps InfiniBand network. Each machine is a Quad-Core Xeon E5530 CPU running at $2.4$GHz and
506 providing $12$GB of RAM with a memory bandwidth of $25.6$GB/s. In addition, two Tesla C1060 GPUs are
507 connected to each machine via a PCI-Express 16x Gen 2.0 interface with a throughput of $8$GB/s. A
508 Tesla C1060 GPU contains $240$ cores running at $1.3$GHz and providing a global memory of $4$GB with
509 a memory bandwidth of $102$GB/s. Figure~\ref{ch12:fig:04} shows the general scheme of the GPU cluster\index{GPU~cluster}
510 that we used in the experimental tests.
511
512 Linux cluster version 2.6.39 OS is installed on CPUs. C programming language is used to code
513 the parallel algorithms of both methods on the GPU cluster. CUDA version 4.0~\cite{ch12:ref9}
514 is used to program GPUs, using CUBLAS library~\cite{ch12:ref6} to deal with vector operations
515 in GPUs and, finally, MPI routines of OpenMPI 1.3.3 are used to carry out the communications between
516 CPU cores. Indeed, the experiments are done on a cluster of $12$ computing nodes, where each node
517 is managed by a MPI process and it is composed of one CPU core and one GPU card.
518
519 \begin{figure}[!h]
520 \centerline{\includegraphics[scale=0.25]{Chapters/chapter12/figures/cluster}}
521 \caption{General scheme of the GPU cluster of tests composed of six machines, each with two GPUs.}
522 \label{ch12:fig:04}
523 \end{figure}
524
525 All tests are made on double-precision floating point operations. The parameters of both linear
526 solvers are initialized as follows: the residual tolerance threshold $\varepsilon=10^{-12}$, the
527 maximum number of iterations $maxiter=500$, the right-hand side $b$ is filled with $1.0$ and the
528 initial guess $x_0$ is filled with $0.0$. In addition, we limited the Arnoldi process\index{Iterative~method!Arnoldi~process}
529 used in the GMRES method to $16$ iterations ($m=16$). For the sake of simplicity, we have chosen
530 the preconditioner $M$ as the main diagonal of the sparse matrix $A$. Indeed, it allows to easily
531 compute the required inverse matrix $M^{-1}$ and it provides a relatively good preconditioning for
532 not too ill-conditioned matrices. In the GPU computing, the size of thread blocks is fixed to $512$
533 threads. Finally, the performance results, presented hereafter, are obtained from the mean value
534 over $10$ executions of the same parallel linear solver and for the same input data.
535
536 \begin{figure}
537 \centerline{\includegraphics[scale=0.30]{Chapters/chapter12/figures/matrices}}
538 \caption{Sketches of sparse matrices chosen from the Davis collection.}
539 \label{ch12:fig:05}
540 \end{figure}
541
542 \begin{table}
543 \centering
544 \begin{tabular}{|c|c|c|c|c|}
545 \hline
546 {\bf Matrix type}             & {\bf Matrix name} & {\bf \# rows} & {\bf \# nnz} & {\bf Bandwidth} \\ \hline \hline
547
548 \multirow{6}{*}{Symmetric}    & 2cubes\_sphere    & $101,492$     & $1,647,264$  & $100,464$ \\
549
550                               & ecology2          & $999,999$     & $4,995,991$  & $2,001$   \\ 
551
552                               & finan512          & $74,752$      & $596,992$    & $74,725$  \\ 
553
554                               & G3\_circuit       & $1,585,478$   & $7,660,826$  & $1,219,059$ \\
555             
556                               & shallow\_water2   & $81,920$      & $327,680$    & $58,710$ \\
557
558                               & thermal2          & $1,228,045$   & $8,580,313$  & $1,226,629$ \\ \hline \hline
559             
560 \multirow{6}{*}{Nonsymmetric} & cage13            & $445,315$     & $7,479,343$  & $318,788$\\
561
562                               & crashbasis        & $160,000$     & $1,750,416$  & $120,202$ \\
563
564                               & FEM\_3D\_thermal2 & $147,900$     & $3,489.300$  & $117,827$ \\
565
566                               & language          & $399,130$     & $1,216,334$  & $398,622$\\
567  
568                               & poli\_large       & $15,575$      & $33,074$     & $15,575$ \\
569
570                               & torso3            & $259,156$     & $4,429,042$  & $216,854$  \\ \hline
571 \end{tabular}
572 \caption{Main characteristics of sparse matrices chosen from the Davis collection.}
573 \label{ch12:tab:01}
574 \end{table}
575
576 To get more realistic results, we have tested the CG and GMRES algorithms on sparse matrices of the Davis
577 collection~\cite{ch12:ref10}, that arise in a wide spectrum of real-world applications. We have chosen six
578 symmetric sparse matrices and six nonsymmetric ones from this collection. In Figure~\ref{ch12:fig:05},
579 we show the structures of these matrices and in Table~\ref{ch12:tab:01} we present their main characteristics
580 which are the number of rows, the total number of nonzero values (nnz) and the maximal bandwidth. In
581 the present chapter, the bandwidth of a sparse matrix is defined as the number of matrix columns separating
582 the first and the last nonzero value on a matrix row.
583
584 \begin{table}
585 \begin{center}
586 \begin{tabular}{|c|c|c|c|c|c|c|} 
587 \hline
588 {\bf Matrix}     & $\mathbf{Time_{cpu}}$ & $\mathbf{Time_{gpu}}$ & $\mathbf{\tau}$  & $\mathbf{\# iter.}$ & $\mathbf{prec.}$     & $\mathbf{\Delta}$   \\ \hline \hline
589
590 2cubes\_sphere    & $0.132s$           & $0.069s$            & $1.93$        & $12$           & $1.14e$-$09$     & $3.47e$-$18$ \\
591
592 ecology2          & $0.026s$           & $0.017s$            & $1.52$        & $13$           & $5.06e$-$09$     & $8.33e$-$17$ \\
593
594 finan512          & $0.053s$           & $0.036s$            & $1.49$        & $12$           & $3.52e$-$09$     & $1.66e$-$16$ \\
595
596 G3\_circuit       & $0.704s$           & $0.466s$            & $1.51$        & $16$           & $4.16e$-$10$     & $4.44e$-$16$ \\
597
598 shallow\_water2   & $0.017s$           & $0.010s$            & $1.68$        & $5$            & $2.24e$-$14$     & $3.88e$-$26$ \\
599
600 thermal2          & $1.172s$           & $0.622s$            & $1.88$        & $15$           & $5.11e$-$09$     & $3.33e$-$16$ \\ \hline   
601 \end{tabular}
602 \caption{Performances of the parallel CG method on a cluster of 24 CPU cores vs. on a cluster of 12 GPUs.}
603 \label{ch12:tab:02}
604 \end{center}
605 \end{table}
606
607 \begin{table}
608 \begin{center}
609 \begin{tabular}{|c|c|c|c|c|c|c|} 
610 \hline
611 {\bf Matrix}     & $\mathbf{Time_{cpu}}$ & $\mathbf{Time_{gpu}}$ & $\mathbf{\tau}$  & $\mathbf{\# iter.}$ & $\mathbf{prec.}$     & $\mathbf{\Delta}$   \\ \hline \hline
612
613 2cubes\_sphere    & $0.234s$           & $0.124s$            & $1.88$        & $21$           & $2.10e$-$14$     & $3.47e$-$18$ \\
614
615 ecology2          & $0.076s$           & $0.035s$            & $2.15$        & $21$           & $4.30e$-$13$     & $4.38e$-$15$ \\
616
617 finan512          & $0.073s$           & $0.052s$            & $1.40$        & $17$           & $3.21e$-$12$     & $5.00e$-$16$ \\
618
619 G3\_circuit       & $1.016s$           & $0.649s$            & $1.56$        & $22$           & $1.04e$-$12$     & $2.00e$-$15$ \\
620
621 shallow\_water2   & $0.061s$           & $0.044s$            & $1.38$        & $17$           & $5.42e$-$22$     & $2.71e$-$25$ \\
622
623 thermal2          & $1.666s$           & $0.880s$            & $1.89$        & $21$           & $6.58e$-$12$     & $2.77e$-$16$ \\ \hline \hline
624
625 cage13            & $0.721s$           & $0.338s$            & $2.13$        & $26$           & $3.37e$-$11$     & $2.66e$-$15$ \\
626
627 crashbasis        & $1.349s$           & $0.830s$            & $1.62$        & $121$          & $9.10e$-$12$     & $6.90e$-$12$ \\
628
629 FEM\_3D\_thermal2 & $0.797s$           & $0.419s$            & $1.90$        & $64$           & $3.87e$-$09$     & $9.09e$-$13$ \\
630
631 language          & $2.252s$           & $1.204s$            & $1.87$        & $90$           & $1.18e$-$10$     & $8.00e$-$11$ \\
632
633 poli\_large       & $0.097s$           & $0.095s$            & $1.02$        & $69$           & $4.98e$-$11$     & $1.14e$-$12$ \\
634
635 torso3            & $4.242s$           & $2.030s$            & $2.09$        & $175$          & $2.69e$-$10$     & $1.78e$-$14$ \\ \hline
636 \end{tabular}
637 \caption{Performances of the parallel GMRES method on a cluster 24 CPU cores vs. on cluster of 12 GPUs.}
638 \label{ch12:tab:03}
639 \end{center}
640 \end{table}
641
642 Tables~\ref{ch12:tab:02} and~\ref{ch12:tab:03} show the performances of the parallel
643 CG and GMRES solvers, respectively, for solving linear systems associated to the sparse
644 matrices presented in Tables~\ref{ch12:tab:01}. They allow to compare the performances
645 obtained on a cluster of $24$ CPU cores and on a cluster of $12$ GPUs. However, Table~\ref{ch12:tab:02}
646 only shows the performances of solving symmetric sparse linear systems, due to the inability
647 of the CG method to solve the nonsymmetric systems. In both tables, the second and third
648 columns give, respectively, the execution times in seconds obtained on $24$ CPU cores
649 ($Time_{gpu}$) and that obtained on $12$ GPUs ($Time_{gpu}$). Moreover, we take into account
650 the relative gains $\tau$ of a solver implemented on the GPU cluster compared to the same
651 solver implemented on the CPU cluster. The relative gains\index{Relative~gain}, presented
652 in the fourth column, are computed as a ratio of the CPU execution time over the GPU
653 execution time:
654 \begin{equation}
655 \tau = \frac{Time_{cpu}}{Time_{gpu}}.
656 \label{ch12:eq:20}
657 \end{equation}
658 In addition, Tables~\ref{ch12:tab:02} and~\ref{ch12:tab:03} give the number of iterations
659 ($iter$), the precision $prec$ of the solution computed on the GPU cluster and the difference
660 $\Delta$ between the solution computed on the CPU cluster and that computed on the GPU cluster.
661 Both parameters $prec$ and $\Delta$ allow to validate and verify the accuracy of the solution
662 computed on the GPU cluster. We have computed them as follows:
663 \begin{eqnarray}
664 \Delta = max|x^{cpu}-x^{gpu}|,\\
665 prec = max|M^{-1}r^{gpu}|,
666 \end{eqnarray}
667 where $\Delta$ is the maximum vector element, in absolute value, of the difference between
668 the two solutions $x^{cpu}$ and $x^{gpu}$ computed, respectively, on CPU and GPU clusters and
669 $prec$ is the maximum element, in absolute value, of the residual vector $r^{gpu}\in\mathbb{R}^{n}$
670 of the solution $x^{gpu}$. Thus, we can see that the solutions obtained on the GPU cluster
671 were computed with a sufficient accuracy (about $10^{-10}$) and they are, more or less, equivalent
672 to those computed on the CPU cluster with a small difference ranging from $10^{-10}$ to $10^{-26}$.
673 However, we can notice from the relative gains $\tau$ that it is not interesting to use multiple
674 GPUs for solving small sparse linear systems. In fact, a small sparse matrix does not allow to
675 maximize utilization of GPU cores. In addition, the communications required to synchronize the
676 computations over the cluster increase the idle times of GPUs and slow down  the parallel
677 computations further.
678
679 Consequently, in order to test the performances of the parallel solvers, we developed in C programming
680 language a generator of large sparse matrices. This generator takes a matrix from the Davis collection~\cite{ch12:ref10}
681 as an initial matrix to build large sparse matrices exceeding ten million of rows. It must be executed
682 in parallel by the MPI processes of the computing nodes, so that each process could build its sparse
683 sub-matrix. In the first experimental tests, we focused on sparse matrices having a banded structure,
684 because they are those arising the most in the majority of numerical problems. So to generate the global sparse matrix,
685 each MPI process constructs its sub-matrix by performing several copies of an initial sparse matrix chosen
686 from the Davis collection. Then, it puts all these copies on the main diagonal of the global matrix
687 (see Figure~\ref{ch12:fig:06}). Moreover, the empty spaces between two successive copies in the main
688 diagonal are filled with sub-copies (left-copy and right-copy in Figure~\ref{ch12:fig:06}) of the same
689 initial matrix.
690
691 \begin{figure}
692 \centerline{\includegraphics[scale=0.30]{Chapters/chapter12/figures/generation}}
693 \caption{Parallel generation of a large sparse matrix by four computing nodes.}
694 \label{ch12:fig:06}
695 \end{figure}
696
697 \begin{table}[!h]
698 \centering
699 \begin{tabular}{|c|c|c|c|}
700 \hline
701 {\bf Matrix type}             & {\bf Matrix name} & {\bf \# nnz} & {\bf Bandwidth} \\ \hline \hline
702
703 \multirow{6}{*}{Symmetric}    & 2cubes\_sphere    & $413,703,602$ & $198,836$     \\
704
705                               & ecology2          & $124,948,019$ & $2,002$          \\ 
706
707                               & finan512          & $278,175,945$ & $123,900$        \\ 
708
709                               & G3\_circuit       & $125,262,292$ & $1,891,887$      \\
710             
711                               & shallow\_water2   & $100,235,292$ & $62,806$      \\
712
713                               & thermal2          & $175,300,284$ & $2,421,285$ \\ \hline \hline
714             
715 \multirow{6}{*}{Nonsymmetric} & cage13            & $435,770,480$ & $352,566$        \\
716
717                               & crashbasis        & $409,291,236$ & $200,203$        \\
718
719                               & FEM\_3D\_thermal2 & $595,266,787$ & $206,029$ \\
720
721                               & language          & $76,912,824$  & $398,626$ \\
722
723                               & poli\_large       & $53,322,580$  & $15,576$         \\
724
725                               & torso3            & $433,795,264$ & $328,757$        \\ \hline
726 \end{tabular}
727 \vspace{0.5cm}
728 \caption{Main characteristics of sparse banded matrices generated from those of the Davis collection.}
729 \label{ch12:tab:04}
730 \end{table}
731
732 We have used the parallel CG and GMRES algorithms for solving sparse linear systems of $25$
733 million unknown values. The sparse matrices associated to these linear systems are generated
734 from those presented in Table~\ref{ch12:tab:01}. Their main characteristics are given in Table~\ref{ch12:tab:04}.
735 Tables~\ref{ch12:tab:05} and~\ref{ch12:tab:06} shows the performances of the parallel CG and
736 GMRES solvers, respectively, obtained on a cluster of $24$ CPU cores and on a cluster of $12$
737 GPUs. Obviously, we can notice from these tables that solving large sparse linear systems on
738 a GPU cluster is more efficient than on a CPU cluster (see relative gains $\tau$). We can also
739 notice that the execution times of the CG method, whether in a CPU cluster or in a GPU cluster,
740 are better than those of the GMRES method for solving large symmetric linear systems. In fact, the
741 CG method is characterized by a better convergence\index{Convergence} rate and a shorter execution
742 time of an iteration than those of the GMRES method. Moreover, an iteration of the parallel GMRES
743 method requires more data exchanges between computing nodes compared to the parallel CG method.
744  
745 \begin{table}
746 \begin{center}
747 \begin{tabular}{|c|c|c|c|c|c|c|} 
748 \hline
749 {\bf Matrix}    & $\mathbf{Time_{cpu}}$ & $\mathbf{Time_{gpu}}$ & $\mathbf{\tau}$ & $\mathbf{\# iter.}$ & $\mathbf{prec.}$ & $\mathbf{\Delta}$   \\ \hline \hline
750
751 2cubes\_sphere  & $1.625s$             & $0.401s$              & $4.05$          & $14$                & $5.73e$-$11$     & $5.20e$-$18$ \\
752
753 ecology2        & $0.856s$             & $0.103s$              & $8.27$          & $15$                & $3.75e$-$10$     & $1.11e$-$16$ \\
754
755 finan512        & $1.210s$             & $0.354s$              & $3.42$          & $14$                & $1.04e$-$10$     & $2.77e$-$16$ \\
756
757 G3\_circuit     & $1.346s$             & $0.263s$              & $5.12$          & $17$                & $1.10e$-$10$     & $5.55e$-$16$ \\
758
759 shallow\_water2 & $0.397s$             & $0.055s$              & $7.23$          & $7$                 & $3.43e$-$15$     & $5.17e$-$26$ \\
760
761 thermal2        & $1.411s$             & $0.244s$              & $5.78$          & $16$                & $1.67e$-$09$     & $3.88e$-$16$ \\ \hline  
762 \end{tabular}
763 \caption{Performances of the parallel CG method for solving linear systems associated to sparse banded matrices on a cluster of 24 CPU cores vs. 
764 on a cluster of 12 GPUs.}
765 \label{ch12:tab:05}
766 \end{center}
767 \end{table}
768
769 \begin{table}
770 \begin{center}
771 \begin{tabular}{|c|c|c|c|c|c|c|} 
772 \hline
773 {\bf Matrix}      & $\mathbf{Time_{cpu}}$ & $\mathbf{Time_{gpu}}$ & $\mathbf{\tau}$ & $\mathbf{\# iter.}$ & $\mathbf{prec.}$ & $\mathbf{\Delta}$   \\ \hline \hline
774
775 2cubes\_sphere    & $3.597s$             & $0.514s$              & $6.99$          & $21$                & $2.11e$-$14$     & $8.67e$-$18$ \\
776
777 ecology2          & $2.549s$             & $0.288s$              & $8.83$          & $21$                & $4.88e$-$13$     & $2.08e$-$14$ \\
778
779 finan512          & $2.660s$             & $0.377s$              & $7.05$          & $17$                & $3.22e$-$12$     & $8.82e$-$14$ \\
780
781 G3\_circuit       & $3.139s$             & $0.480s$              & $6.53$          & $22$                & $1.04e$-$12$     & $5.00e$-$15$ \\
782
783 shallow\_water2   & $2.195s$             & $0.253s$              & $8.68$          & $17$                & $5.54e$-$21$     & $7.92e$-$24$ \\
784
785 thermal2          & $3.206s$             & $0.463s$              & $6.93$          & $21$                & $8.89e$-$12$     & $3.33e$-$16$ \\ \hline \hline
786
787 cage13            & $5.560s$             & $0.663s$              & $8.39$          & $26$                & $3.29e$-$11$     & $1.59e$-$14$ \\
788
789 crashbasis        & $25.802s$            & $3.511s$              & $7.35$          & $135$               & $6.81e$-$11$     & $4.61e$-$15$ \\
790
791 FEM\_3D\_thermal2 & $13.281s$            & $1.572s$              & $8.45$          & $64$                & $3.88e$-$09$     & $1.82e$-$12$ \\
792
793 language          & $12.553s$            & $1.760s$              & $7.13$          & $89$                & $2.11e$-$10$     & $1.60e$-$10$ \\
794
795 poli\_large       & $8.515s$             & $1.053s$              & $8.09$          & $69$                & $5.05e$-$11$     & $6.59e$-$12$ \\
796
797 torso3            & $31.463s$            & $3.681s$              & $8.55$          & $175$               & $2.69e$-$10$     & $2.66e$-$14$ \\ \hline
798 \end{tabular}
799 \caption{Performances of the parallel GMRES method for solving linear systems associated to sparse banded matrices on a cluster of 24 CPU cores vs. 
800 on a cluster of 12 GPUs.}
801 \label{ch12:tab:06}
802 \end{center}
803 \end{table}
804
805 %%--------------------------%%
806 %%       SECTION 5          %%
807 %%--------------------------%%
808 \section{Conclusion}
809 \label{ch12:sec:05}
810 In this chapter, we have aimed at harnessing the computing power of a
811 cluster of GPUs for solving large sparse linear systems. For this, we
812 have used two Krylov subspace iterative methods: the CG and GMRES methods.
813 The first method is well-known for its efficiency to solve symmetric
814 linear systems and the second one is used, particularly, to solve
815 nonsymmetric linear systems. 
816
817 We have presented the parallel implementation of both iterative methods
818 on a GPU cluster. Particularly, the operations dealing with the vectors
819 and/or matrices, of these methods, are parallelized between the different
820 GPU computing nodes of the cluster. Indeed, the data-parallel vector operations
821 are accelerated by GPUs and the communications required to synchronize the
822 parallel computations are carried out by CPU cores. For this, we have used
823 a heterogeneous CUDA/MPI programming to implement the parallel iterative
824 algorithms.
825
826 In the experimental tests, we have shown that using a GPU cluster is efficient
827 for solving linear systems associated to very large sparse matrices. The experimental
828 results, obtained in the present chapter, show that a cluster of $12$ GPUs is
829 about $7$ times faster than a cluster of $24$ CPU cores for solving large sparse
830 linear systems of $25$ million unknown values. This is due to the GPU ability to
831 compute the data-parallel operations faster than the CPUs.
832
833 In our future works, we plan to test the parallel algorithms of CG and GMRES methods, adapted
834 to GPUs, for solving large linear systems associated to sparse matrices of different structures.
835 For example, the matrices having large bandwidths, which can lead to many data dependencies
836 between the computing nodes and, thus, degrade the performances of both algorithms. So in
837 this case, it would be interesting to study the different data partitioning techniques, in
838 order to minimize the dependencies between the computing nodes and thus to reduce the total
839 communication volume. This may improve the performances of both algorithms implemented on
840 a GPU cluster. Moreover, in the recent GPU hardware and software architectures, the GPU-Direct
841 system with CUDA version 5.0 is used so that two GPUs located on the same node or on distant
842 nodes can communicate between them directly without CPUs. This allows to improve the data
843 transfers between GPUs.          
844    
845   
846
847 \putbib[Chapters/chapter12/biblio12]
848