11 2 2 3 1 1 7 50 -1 -1 4.000 0 0 7 0 0 5
12 1950 2475 3424 2475 3424 3225 1950 3225 1950 2475
13 4 0 1 50 -1 0 9 0.0000 2 171 2048 2028 2700 save time steps $h_i$,\001
14 4 0 1 50 -1 0 9 0.0000 2 156 1769 2028 2925 matrices $C_i$, and\001
15 4 0 1 50 -1 0 9 0.0000 2 156 2141 2028 3150 the LU factors of $J_i$\001
18 2 2 0 1 0 7 50 -1 -1 4.000 0 0 7 0 0 5
19 1350 2100 2250 2100 2250 2325 1350 2325 1350 2100
20 4 0 0 50 -1 0 9 0.0000 2 150 810 1425 2269 $t=t+h_i$\001
23 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
24 900 4800 2616 4800 2616 5025 900 5025 900 4800
25 4 0 0 50 -1 0 9 0.0000 2 187 1872 978 4950 update $x((m+k-1)T)$\001
28 2 2 3 1 4 7 100 -1 -1 4.000 0 0 7 0 0 5
29 655 3808 3088 3808 3088 5116 655 5116 655 3808
30 2 2 3 1 4 7 100 -1 -1 4.000 0 0 7 0 0 5
31 600 3750 3150 3750 3150 5175 600 5175 600 3750
33 2 1 0 1 0 7 50 -1 -1 4.000 0 0 7 1 0 2
36 2 1 0 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 2
39 2 1 0 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 4
41 750 5400 375 5400 375 1725 975 1725
42 2 1 0 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 4
44 1200 3525 525 3525 525 2175 1350 2175
45 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
48 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
49 975 1650 2625 1650 2625 1875 975 1875 975 1650
50 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
53 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
56 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
57 1200 750 2475 750 2475 975 1200 975 1200 750
58 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
61 2 1 0 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 2
64 2 1 0 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 3
66 1800 4125 1800 4275 1800 4350
67 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
70 2 1 0 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 2
73 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
75 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
78 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
79 1350 5700 2250 5700 2250 5925 1350 5925 1350 5700
80 2 4 1 2 0 7 50 -1 -1 4.000 0 0 7 0 0 5
81 2250 5475 1350 5475 1350 5250 2250 5250 2250 5475
82 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 5
84 1800 5925 1800 6000 3525 6000 3525 825 2475 825
85 2 4 1 2 0 7 50 -1 -1 4.000 0 0 6 0 0 5
86 2400 3600 1200 3600 1200 3375 2400 3375 2400 3600
87 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
88 600 300 3150 300 3150 525 600 525 600 300
89 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
90 675 1200 3000 1200 3000 1425 675 1425 675 1200
91 2 2 0 1 0 7 50 -1 -1 4.000 0 0 -1 0 0 5
92 600 2625 1650 2625 1650 3075 600 3075 600 2625
93 2 2 0 1 0 -1 50 -1 -1 0.000 0 0 -1 0 0 5
94 900 3900 2775 3900 2775 4125 900 4125 900 3900
95 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
96 750 4350 2925 4350 2925 4575 750 4575 750 4350
97 3 0 3 1 1 7 50 -1 -1 4.000 0 1 0 2
101 4 0 0 50 -1 0 9 0.0000 2 165 1440 1050 1800 set $t=(m+k-1)T$\001
102 4 0 0 50 -1 0 9 0.0000 2 180 2610 750 1350 make a guess of $x((m+k-1)T)$\001
103 4 0 0 50 -1 0 9 0.0000 2 165 1800 1275 900 select jump size $k$\001
104 4 0 0 50 -1 0 9 0.0000 2 165 3240 675 450 circuit state $x(mT)$ at time $t=mT$\001
105 4 0 0 50 -1 0 9 0.0000 2 120 270 750 3450 yes\001
106 4 0 0 50 -1 0 9 0.0000 2 165 2520 825 4500 solve Newton update equation\001
107 4 0 0 50 -1 0 9 0.0000 2 90 180 1950 3750 no\001
108 4 0 0 50 -1 0 9 0.0000 2 150 2340 975 4050 compute sensitivity matrix\001
109 4 0 0 50 -1 0 9 0.0000 2 165 990 1425 5400 converged ?\001
110 4 0 0 50 -1 0 9 0.0000 2 90 180 1125 5325 no\001
111 4 0 0 50 -1 0 9 0.0000 2 120 270 1950 5625 yes\001
112 4 0 0 50 -1 0 9 0.0000 2 135 630 1425 5850 $m=m+k$\001
113 4 0 0 50 -1 0 9 0.0000 2 165 1080 1275 3525 $t<(m+k)T$ ?\001
114 4 0 0 50 -1 0 9 0.0000 2 165 900 675 3000 for $x(t)$\001
115 4 0 0 50 -1 0 9 0.0000 2 165 1170 675 2775 integrate DAE\001