]> AND Private Git Repository - book_gpu.git/blob - BookGPU/Chapters/chapter9/ch9.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[book_gpu.git] / BookGPU / Chapters / chapter9 / ch9.tex
1 \chapterauthor{Malika Mehdi and Ahc\`{e}ne Bendjoudi}{CERIST Research Center, DTISI, 3 rue des frères Aissou, 16030 Ben-Aknoun, Algiers, Algeria}
2
3 \chapterauthor{Lakhdar Loukil}{University of Oran, Algeria}
4
5 %\chapterauthor{Ahc\`{e}ne Bendjoudi}{CERIST Research Center, DTISI, 3 rue des frères Aissou, 16030 Ben-Aknoun, Algiers, Algeria}
6
7 \chapterauthor{Nouredine Melab}{Université Lille 1, LIFL/UMR CNRS 8022, 59655-Villeneuve d'Ascq cedex, France}
8
9 \chapter{Parallel GPU-accelerated Metaheuristics}
10 \label{chapter9}
11 \section{Introduction}
12 This chapter presents GPU-based parallel
13 metaheuristics\index{Metaheuristics!parallel~metaheuristics},
14 challenges, and issues related to the particularities of the GPU
15 architecture and a synthesis on the different implementation
16 strategies used in the literature. The implementation of parallel
17 metaheuristics\index{Metaheuristics!parallel~metaheuristics} on
18 GPUs is not straightforward. The traditional models used in CPUs
19 must be rethought to meet the new requirements of GPU
20 architectures. This chapter is organized as follows. Combinatorial
21 optimization\index{Combinatorial~optimization} and  resolution
22 methods are introduced in Section~\ref{ch8:sec:optim}. The main
23 traditional parallel models used for metaheuristics are recalled
24 in Section~\ref{ch8:sec:paraMeta}.
25 Section~\ref{ch8:sec:challenges} highlights the  main challenges
26 related to the GPU implementation of metaheuristics. A
27 state-of-the-art of GPU-based parallel
28 metaheuristics\index{Metaheuristics!parallel~metaheuristics} is
29 summarized in Section~\ref{ch8:sec:state}. In Section
30 Section~\ref{ch8:sec:GPU_APIs}, the main developed GPU-based
31 frameworks for metaheuristics are described. Finally, a case study
32 is presented in Section~\ref{ch8:sec:case} and some concluding
33 remarks are given in Section~\ref{ch8:conclusion}
34
35 \section{Combinatorial optimization}
36 \label{ch8:sec:optim}
37
38 Combinatorial optimization\index{Combinatorial~optimization} (CO) is a branch of applied and discrete mathematics.
39 It consists in finding optimal configuration(s) among a finite set of possible configurations
40 (or solutions) of a given combinatorial optimization problem (COP).  The set of all possible solutions noted $S$ is called solution space or search space. Each solution  in $S$ is defined by its real cost calculated by an objective function. COPs are generally defined as follows~\cite{blumMeta}:\\  %(Definition~\ref{def:cops})
41
42
43 %\begin{minipage}{0.5\linewidth}
44 A combinatorial problem $P=(S,f)$ can be defined by
45 \begin{itemize}
46 \item a set of decision variables $X$,
47 \item an objective function $f$ to optimize (minimize or maximize) over the set $S$,
48 \item subject to constraints on the decision variables.\\
49 \end{itemize}
50 %\end{minipage}
51
52 COPs are generally formulated as mixed integer programming
53 problems (MIPS) and most of them are NP-hard~\cite{garey}.
54 According to the quality level of solutions and deadlines required
55 for solving an optimization problem, two classes of optimization
56 methods can be distinguished: \emph{exact methods} and
57 \emph{approximate methods}. Exact methods allow one to reach
58 optimal solution(s) of the handled optimization problem with a
59 proof of its or their optimality. The most known methods of this
60 class are the \emph{branch and bound technique}, \emph{dynamic
61 programming}, \emph{constraint programming}, and \emph{A*
62 algorithm}. However, optimization problems, whether practical or
63 academic, are often complex and NP-hard. Moreover, a large number
64 of real-life optimization problems encountered in science,
65 engineering, economics, and business are usually large-sized
66 problems for which the size of the potential solution domain
67 increases dramatically with the size of the problem instance. Such
68 problems cannot be tackled using exact methods due to the
69 excessive computation time needed by these methods to find optimal
70 solution(s). In such a situation, approximate methods (or
71 \textit{metaheuristics}) offer an alternative approach to solve
72 these problems. Indeed, these methods allow one to reach good
73 quality solutions in reasonable computation time compared to exact
74 methods but with no guarantee to find optimal or even bounded
75 solutions. This is due to the nature of the search process adopted
76 by these approaches which consists in performing a
77 search in a subset of the whole search space.\\
78
79 Regarding the number of solutions considered at each iteration in
80 the search process, two classes of metaheuristics can be
81 distinguished~\cite{talbi2009mfdti}: \textit{solution-based} and
82 \textit{population-based} metaheuristics. In the rest of this
83 chapter, the term \emph{s-metaheuristic} refers to solution-based
84 metaheuristic and the term \emph{p-metaheuristic} refers to
85 population-based metaheuristic. In s-metaheuristics, the search
86 process starts with a single solution (generally set at random)
87 and iteratively improves it by exploring its neighborhood in the
88 search space. The most known methods in this class are local
89 search methods that include \emph{simulated
90 annealing}\index{Metaheuristics!simulated~annealing}~\cite{Kirkpatrick1983SA},
91 \emph{tabu search}~\cite{Glover1989TS}, \emph{iterated local
92 search\index{Metaheuristics!iterated local
93 search}}~\cite{stutzle2006ILSforQAP}, and \emph{variable
94 neighborhood search}~\cite{HansenMladenovic1997VNS}.\\
95
96 Unlike s-metaheuristics, p-metaheuristics start with a population
97 of solutions and implement an iterative process that evolves the
98 current population towards a new population of better quality
99 solutions. The process is repeated until a stopping criterion is
100 satisfied. \emph{Evolutionary algorithms}, \emph{swarm
101 optimization}, and \emph{ant colonies} fall into this class.
102
103
104 \section{Parallel models for metaheuristics}\label{ch8:sec:paraMeta}
105 Optimization problems, whether real-life or academic, are more
106 often NP-hard and CPU time and/or memory consuming. Metaheuristics
107 allow the significant reduction of the computational time of the search
108 process but remain time-consuming particularly when it comes
109 dealing with large-sized problems. \\
110
111 The use of parallelism in the design of metaheuristics is a relevant
112 approach that is widely adopted by the combinatorial optimization
113 community for various reasons:
114
115 \begin{itemize}
116   \item One of the main goals of parallelism is to reduce the search
117 time. This will allow the design of high performance optimization
118 methods and the solving of large-sized optimization problems.
119
120   \item Sequential processor architectures have reached their
121 physical limit which prevents creating faster processors. The
122 current trend of microprocessor manufacturers consists of placing
123 multiple cores on a single chip. Nowadays, laptops and
124 workstations are multicore processors. In addition, the evolution
125 of network technologies and the proliferation of broadband
126 networks have made possible the emergence of clusters of
127 workstations (COWs), networks of workstations (NOWS), and
128 large-scale networks of machines (grids) as platforms for
129 high-performance computing.
130 \end{itemize}
131
132 From the granularity of parallelism point of view, three major parallel
133 models for metaheuristics can be distinguished~\cite{talbi2009mfdti}: \emph{algorithmic-level}\index{Metaheuristics!algorithmic-level parallelism},
134 \emph{iteration-level} \index{Metaheuristics!iteration-level parallelism}, and \emph{solution-level} as illustrated in Figure~\ref{ch8:fig:paraMeta}. \\
135
136 \begin{figure}[h!]
137 \centerline{\includegraphics[width=0.6\textwidth]{Chapters/chapter9/figures/paraMeta.pdf}}
138 \caption{Parallel models for metaheuristics.}
139 \label{ch8:fig:paraMeta}
140 \end{figure}
141
142 \begin{itemize}
143
144 \item{In the
145 algorithmic-level\index{Metaheuristics!algorithmic-level
146 parallelism} parallel model, several self-contained metaheuristics
147 are launched in parallel. The parallel
148 metaheuristics\index{Metaheuristics!parallel~metaheuristics} may
149 start with identical or different solutions (s-metaheuristics
150 case) or populations (p-metaheuristics case). Their parameter
151 settings such as the size of tabu list for tabu
152 search\index{Metaheuristics!tabu~search}, transition probabilities
153 for ant colonies, mutation and crossover probabilities for
154 evolutionary
155 algorithm\index{Metaheuristics!evolutionary~algorithm}s may be the
156 same or different. The parallel processes may evolve independently
157 or in a cooperative manner. In cooperative parallel models, the
158 algorithms exchange information related to the search during
159 evolution in order to find better and more robust solutions.}
160
161 \item{In the iteration-level\index{Metaheuristics!iteration-level
162 parallelism} parallel model, the focus is on the parallelization
163 of each iteration of the metaheuristic. Indeed, metaheuristics are
164 generally iterative search processes. Moreover, the most
165 resource-consuming part of a metaheuristic is the evaluation of
166 the generated solutions at each iteration. For s-metaheuristics
167 (e.g., tabu search\index{Metaheuristics!tabu~search}, simulated
168 annealing, variable neighborhood search), the evaluation and
169 generation of the neighborhood is the most time-consuming step of
170 the algorithm particularly when it comes to dealing with large
171 neighborhood sets. In this parallel model, the neighborhood is
172 decomposed into partitions, and each partition is evaluated in a
173 parallel way. For p-metaheuristics (e.g., evolutionary
174 algorithm\index{Metaheuristics!evolutionary~algorithm}s, ant
175 colonies, swarm optimization), the
176 iteration-level\index{Metaheuristics!iteration-level parallelism}
177 parallel model arises naturally since these metaheuristics deal
178 with a population of independent solutions. In evolutionary
179 algorithm\index{Metaheuristics!evolutionary~algorithm}s, for
180 instance, the iteration-level\index{Metaheuristics!iteration-level
181 parallelism} model consists of decomposing the whole population
182 into several partitions where each partition is evaluated in
183 parallel.}
184
185 \item{In the
186 solution-level\index{Metaheuristics!solution-level~parallelism}
187 parallel model, the focus is on the parallelization of the
188 evaluation of a single solution. This model is useful when the
189 objective function and/or the constraints are time and/or memory
190 consuming. Unlike the two previous parallel models, the
191 solution-level\index{Metaheuristics!solution-level~parallelism}
192 parallel model is problem-dependent.}
193 \end{itemize}
194
195 \section{Challenges for the design of GPU-based metaheuristics}
196 \label{ch8:sec:challenges}
197
198 Developing GPU-based parallel
199 metaheuristics\index{Metaheuristics!parallel~metaheuristics} is
200 not straightforward. The parallel models have to be rethought to
201 meet the new requirements of the GPU architecture. Several major
202 issues have to be taken into account both at design and
203 implementation levels to develop efficient metaheuristics on GPU.
204 These issues are mainly related to the size and latency of the GPU
205 memories, thread synchronization and divergence, the distribution
206 of tasks, and data transfer between the CPU and
207 GPU~\cite{luongMultiStart}.
208
209 \subsection{Data placement on a hierarchical memory}
210 \index{GPU Challenges!data~placement} During the execution of
211 metaheuristics on GPU, the different threads may access multiple
212 data structures from multiple memory spaces. These memories have
213 different sizes and access latencies. Nevertheless, faster
214 memories (registers, shared and constant memories) are generally
215 very small in size, and the larger memories (global memory) are
216 relatively slower. However, p-metaheuristics require the
217 exploration of a large amount of individuals to diversify the
218 search. Moreover, an efficient execution of s-metaheuristics
219 requires exploring large neighborhoods. Thus, programmers have to
220 take into account this point to efficiently place the different
221 data structures of the metaheuristic on the different memories to
222 benefit from both the faster memories and the larger ones. A deep
223 study has to be performed on both the metaheuristic data
224 structures (size and access frequency) and the GPU memories (size
225 and access latency) to identify which data will be placed on which
226 memory. Generally, the most accessed ones should be put on faster
227 memories (registers, shared memory) and larger ones on the larger
228 memories (global memory). Also, an efficient mapping between
229 threads and the corresponding metaheuristic elements (one neighbor
230 per thread, one individual per thread, single population per
231 threads block, one ant per thread, etc.) must be defined to ensure
232 a maximum occupancy of the GPU and
233 to cover CPU/GPU communication\index{GPU Challenges!CPU/GPU~communication} and memory access times.\\
234
235 According to the used metaheuristic and to the handled problem, the data
236 values may have different types and different ranges of their values. The data
237 types should then be chosen carefully and the ranges of the data values should
238 be analyzed to minimize the amount of occupied memory space.\\
239
240 In addition to the size and latency of GPU memory issues, the
241 memory access pattern is another important issue to be dealt with
242 to speedup GPU-based metaheuristics. Indeed, the different
243 memories have been designed to achieve specific features that
244 programmers must take into account to optimize their codes and
245 then to benefit from these features. For instance, the global
246 memory is optimized for coalesced accesses. The texture and the
247 constant memory are read-only memories. The texture is optimized
248 for uncoalesced accesses and the constant memory is optimized for
249 simultaneously accesses of all threads to the same
250 location~\cite{luongMultiStart}. Therefore, to improve the
251 performance of the kernel execution, the programmers should put
252 coalesced data on global memory, uncoalesced read-only data (e.g.,
253 metaheuristic instance data) on the texture, concurrent read-only
254 data (e.g., data for fitness evaluation that all threads
255 concurrently access) on the constant memory, and the most accessed
256 data structures (e.g., population of individuals for a CUDA thread
257 block) on the shared memory.
258
259 \subsection{Threads synchronization}
260 \index{GPU Challenges!threads~synchronization} The thread
261 synchronization issue is caused by both the GPU architecture and
262 the synchronization requirements of the implemented method.
263 Indeed, GPUs are based on a multicore architecture organized into
264 several multi-processors (Streaming Multiprocessor SM) supporting
265 the SPMD model (Single Program Multiple Data). Each SM contains
266 several cores executing the same instruction of different threads
267 following the SIMD model (Single Instruction Multiple Data). These
268 threads belong to a warp (a group of 32 threads) and handle
269 different data elements. An efficient execution of applications on
270 GPU is achieved when launching a large amount of threads
271 (thousands of threads)~\cite{CUDA}. However, the execution order
272 of these thousands of threads is unknown by the programmer which
273 makes the prediction of their execution order a challenging issue.
274 On an other hand, the developer has to control explicitly the
275 threads through the insertion of barrier synchronizations in the
276 codes to avoid concurrent accesses to data structures and to meet
277 some requirements related to data-dependent synchronizations.
278
279 \subsection{Thread divergence}
280
281 Thread divergence\index{GPU Challenges!thread~divergence} is
282 another challenging issue in GPU-based
283 metaheuristics~\cite{cecilia, pugace, audreyANT}. Generally,
284 metaheuristics contain irregular loops and conditional
285 instructions when generating and evaluating the neighborhood
286 (s-metaheuristics), and the population (p-metaheuristics) in the
287 same block. In addition,  the decision to apply a crossover or a
288 mutation on an individual in a genetic
289 algorithm\index{Metaheuristics!genetic~algorithm} and the
290 exploration of different paths using an ant
291 colony\index{Metaheuristics!ant~colony~optimization} are random
292 operations. Threads of the same warp have to execute
293 simultaneously instructions leading to different branches whereas
294 in an SIMD model the threads of a same warp execute the same
295 instruction. Consequently, the different branches of a conditional
296 instruction which is data-dependent lead to a serial execution of
297 the different threads degrading the performance of the application
298 in terms of execution time. The challenge here is then to revisit
299 the traditional irregular metaheuristic codes to eliminate these
300 divergences.
301
302 \subsection{Task distribution and CPU/GPU communication}
303
304 The performance of GPU-based metaheuristics in terms of execution
305 time could be improved by choosing the most appropriate parallel
306 model (algorithmic-level\index{Metaheuristics!algorithmic-level
307 parallelism}, instruction-level,
308 solution-level\index{Metaheuristics!solution-level~parallelism}).
309 Moreover, an efficient decomposition of the metaheuristic and an
310 efficient assignment of code portions between the CPU and GPU
311 should be adopted. The objective is to take benefit from the GPU
312 computing power without affecting the efficiency and the behavior
313 of the metaheuristic and without losing performance in CPU/GPU
314 communication\index{GPU Challenges!CPU/GPU~communication} and
315 memory accesses. In order to decide which part of the
316 metaheuristic will be executed on which component, one should
317 perform a careful analysis on the serial code of the
318 metaheuristic, identify the compute-intensive tasks (e.g.,
319 exploration of the neighborhood, evaluation of individuals), and
320 then offload them to the GPU, while the remaining
321 tasks still run on the CPU in a serial way. \\
322
323 The CPU/GPU communication\index{GPU
324 Challenges!CPU/GPU~communication} is done through the global
325 memory which is a slow memory making the memory transfer between
326 the CPU and GPU time-consuming which can significantly degrade the
327 performance of the application. Accesses to this memory should be
328 optimized by minimizing the amount of transferred data between the
329 two components in order to reduce the communication time and,
330 therefore, the whole execution time of the metaheuristic.
331
332 \section{State-of-the-art parallel metaheuristics on GPUs}
333 \label{ch8:sec:state}
334 After more than two decades of research by the combinatorial optimisation
335 community devoted to developing adequate parallel metaheuristics\index{Metaheuristics!parallel~metaheuristics} for different types of
336 parallel architectures (clusters, supercomputers and grids), the actual developement
337 of General Perpose GPU (GPGPU) brings new challenges for parallel metaheuristics\index{Metaheuristics!parallel~metaheuristics} on SIMD architectures.\\
338
339 The first works on metaheuristic algorithms implemented on GPUs
340 started on old graphics cards before the appearance of modern GPUs
341 equipped with high-level programming interfaces such as CUDA and
342 OpenCL. Among these pioneering works we cite the work of Wong
343 \emph{et al.}~\cite{wongOldGPU2006} dealing with the
344 implementation
345 of EAs on graphics processing cards and the work by Catala \emph{et al.} in~\cite{catala2007} where the ACO\index{Metaheuristics!ant~colony~optimization} algorithm
346 is implemented on old GPU architectures. Yu \emph{et al.}~\cite{yu2005} and
347 Li \emph{et al.}~\cite{li2007} proposed a full parallelization of genetic
348 algorithm\index{Metaheuristics!genetic~algorithm}s  on old GPU architectures using
349 shader libraries based on Direct3D and OpenGL.\\
350
351 Such architectures are based on preconfigured pipelined stages
352 used to accelerate the transformation of 3D geometric primitives
353 into pixels. Implementing a general-purpose algorithm on such
354 preconfigured architectures is very hard and requires the
355 tailoring of the algorithm's data and instructions to fit the
356 pipelined stages of the GPU. Since then, GPU architectures have
357 evolved to become programmable using high-level programming
358 interfaces. In this section we will focus only on recent
359 state-of-the-art works dealing with metaheuristics implementation
360 on modern programmable GPUs. In this review two classes are
361 considered: (1) s-metaheuristics on GPUs and (2) p-metaheuristics
362 on GPUs. A comparative study is done of the main works and a
363 classification of the different existing strategies is proposed in
364 Section~\ref{ch8:sec:synthesis}.
365
366 \subsection{Implementing solution-based metaheuristics on GPUs}
367
368
369 A very basic local search algorithm starts with an initial
370 solution generated either at random or by the mean of a specific
371 heuristic and is based on two elementary components: the
372 generation of neighborhood structures using an elementary move
373 function and a selection function that determines which solution
374 in the current neighborhood will replace the actual search point.
375 The search continues as long as there is improvement and stops
376 when there is no better solution in the current neighborhood. The
377 exploration (or evaluation) of the different moves of a given
378 neighborhood is done independently for each move. Thus, the
379 easiest way to accelerate a local search algorithm is to
380 parallelize the evaluation of the neighborhood (instruction-level
381 parallelism). This is  by far the most used scheme in the
382 literature for parallelizing local search algorithms on GPUs.
383 Nevertheless, small neighborhoods may lead to  nonoptimal
384 occupation of the CUDA threads which may lead in turn to an
385 overhead due to the communication and memory latencies. Therefore,
386 large neighborhoods are necessary for efficient implementation of
387 local searches on GPUs.\\
388
389 Luong \emph{et al.}~\cite{luong2010large} proposed efficient
390 mappings for large neighborhood structures on GPUs. In this work,
391 three different neighborhoods are studied and mapped to the
392 hierarchical GPU for binary problems. The three neighborhoods are
393 based on the \emph{Hamming} distance. The move operators used in
394 the three neighborhoods consider \emph{Hamming} distances of 1, 
395 2, and 3 (this consists on flipping the binary value of one, two,
396 or three positions at a time in the candidate binary vector).
397 In~\cite{luong2010large}, each thread is associated to a unique
398 solution in the neighborhood. The addressed issue is how to
399 efficiently map the different neighborhoods on the device memory,
400 more explicitly, how to calculate the memory index of each
401 solution associated to each CUDA thread's \textit{id}.
402 %For 1-Hamming neighborhoods, as there is exactly n solutions in the neighborhood, the mapping of this neighborhood to CUDA threads is obvious: the CPU host offloads to GPU exactly $n$ threads, and each thread id is associated to one index in the binary vector. In the case of 2-Hamming and 3-Hamming neighborhoods, each thread id should be mapped respectively to two and three indexes  in the candidate vector.
403 The three neighborhoods are  implemented and experimented on the Permuted Perceptron Problem (PPP) using a tabu search\index{Metaheuristics!tabu~search} algorithm (TS). Accelerations from $9.9 \times$ to $18.5 \times$ are obtained on different problem sizes.\\ % The experiments are performed on an Intel Xeon 8 cores 3GHz coupled with an NVIDIA GTX 280 card.\\
404
405 In the same context, Deevacq \emph{et al.}~\cite{audreyANT}
406 proposed two parallelization strategies inspired by the multi-walk
407 parallelization strategy, of a 3-opt iterated local
408 search\index{Metaheuristics!iterated local search} algorithm (ILS)
409 over a CPU/GPU architecture. In the first strategy, each Local
410 Search (LS) is associated to a unique CUDA thread and improves a
411 unique solution by generating its neighborhood. The second
412 strategy associates each solution to a CUDA block and the
413 neighborhood exploration is parallelized on the block threads. In
414 the first strategy, since several LS are executed on different
415 solutions on each Multi Processor (MP), the data structures should
416 be stored on the global memory, while the exploration of a single
417 solution at a time in the second strategy allows the use of the
418 shared memory to store the related data structures. The two
419 strategies have been experimented on standard benchmarks of
420 the Traveling Salesman Problem (TSP) with sizes varying from $100$ to $3038$ cities. The results indicate that increasing the number of solutions to be explored simultaneously improves the speedup in the two strategies, but at the same time it decreases final solution quality. The greater speedup factor reached by the second strategy is $6 \times$.\\
421
422 The same strategy is used by Luong \emph{et al.}
423 in~\cite{luongMultiStart} to implement multistart parallel local
424 search algorithms (a special case of the
425 algorithmic-level\index{Metaheuristics!algorithmic-level
426 parallelism} parallel model where several homogeneous LS
427 algorithms are used). The multistart model is combined with
428 iteration-level\index{Metaheuristics!iteration-level parallelism}
429 parallelism: several LS algorithms are managed by the CPU and the
430 neighborhood evaluation step of each algorithm is parallelized on
431 the GPU (each GPU thread is associated with one neighbor and
432 executes the same evaluation function kernel). The advantage of
433 such a model is that it allows a  high occupancy of the GPU
434 threads. Nevertheless, memory management\index{GPU
435 Challenges!memory~management} causes new issues due to the
436 quantity of data to store and to communicate between CPU     and
437 GPU. A second proposition for implementing the same model on GPU
438 consists of implementing the whole LS processes on GPU with each
439 GPU thread being associated to a unique LS algorithm. This solves
440 the communication issue encountered in the first model. In
441 addition, a memory management\index{GPU
442 Challenges!memory~management} strategy is proposed to improve the
443 efficiency of the
444 algorithmic-level\index{Metaheuristics!algorithmic-level
445 parallelism} model: texture memory is used to avoid memory latency
446 due to uncoalesced memory accesses. The proposed approaches are
447 implemented on the quadratic assignment problem (QAP) using CUDA.
448 The acceleration rates obtained for the
449 algorithmic-level\index{Metaheuristics!algorithmic-level
450 parallelism} with usage of texture memory rise from $7.8\times$ to
451 $12\times$ (for different
452 QAP benchmark sizes). \\
453
454 Janiak \emph{et al.}~\cite{Janiak_et_al_2008} implemented two
455 algorithms for TSP and the flow-shop scheduling problem (FSP).
456 These algorithms are based on a multistart tabu
457 search\index{Metaheuristics!tabu~search} model. Both of the two
458 algorithms exploit multicore CPU and GPU. A full parallelization
459 on GPU is adopted using shader libraries where each thread is
460 mapped with one tabu search\index{Metaheuristics!tabu~search}.
461 However, even though their experiments report that the use of GPU
462 speedups the serial execution almost $16 \times$, the mapping of
463 one thread with one tabu search\index{Metaheuristics!tabu~search}
464 requires a large number of local search algorithms to
465 cover the memory access latency. The same mapping policy is adopted by Zhu \emph{et al.} in~\cite{zhu_et_al_2008} (one thread is associated to one local search) solving the quadratic assignment problem but using the CUDA toolkit instead of shader libraries.\\
466
467 Luong \emph{et al.}~\cite{luong2012ppsn} proposed a GPU-based
468 implementation of hybrid metaheuristics on heterogeneous parallel
469 architectures (multicore CPU  coupled to one GPU).  The challenge
470 of using such a heterogeneous architecture is how to distribute
471 tasks between the CPU cores and the GPU in such a way to have
472 optimal performances. Among the three traditional parallel models
473 (solution-level\index{Metaheuristics!solution-level~parallelism},
474 iteration-level\index{Metaheuristics!iteration-level parallelism},
475 and algorithmic-level\index{Metaheuristics!algorithmic-level
476 parallelism}), the authors pointed out that the most convenient
477 model for the considered heterogeneous architecture is a hybrid
478 model combining
479 iteration-level\index{Metaheuristics!iteration-level parallelism}
480 and algorithmic-level\index{Metaheuristics!algorithmic-level
481 parallelism} models. Several CPU threads execute several instances
482 of the same S-metaheuristic in parallel while the GPU device is
483 associated to one CPU core and  used to accelerate the
484 neighborhood calculation of several S-metaheuristics at the same
485 time.
486  In order to efficiently exploit the remaining CPU cores, a load-balancing heuristic is also proposed in order to decide on the number of additional
487 S-metaheuristics to launch on the remaining CPU cores relative to the efficiency of the GPU calculations. The proposed approach is applied to the QAP using several instances of the fast ant colony algorithm (FANT)~\cite{taillardFant}. \\
488
489 All the previously noted works  exploit the same parallel models
490 used on CPUs based on the task parallelism. A different
491 implementation approach is proposed by Paul in~\cite{gerald2012}
492 to implement a simulated
493 annealing\index{Metaheuristics!simulated~annealing} (SA) algorithm
494 for the QAP on GPUs. Indeed, the author used a preinitialized
495 matrix \emph{delta} in which the incremental evaluation of simple
496 swap moves are calculated and stored relative to the initial
497 permutation $p$. For the GPU implementation, the authors used the
498 parallel implementation of neighborhood exploration. The
499 time-consuming tasks in the SA-matrix are identified by the
500 authors as: updating the matrix and passing through it to select
501 the next accepted move. To initialize the delta matrix, several
502 threads from different blocks explore different segments of the
503 matrix (different moves) at the same time.  In order to select the
504 next accepted, swap several threads are also used. Starting from
505 the last move, a group of threads explores different subsets of
506 the delta matrix. The shared memory is used to preload all the
507 necessary elements for a given group of threads responsible for
508 the updating of the delta matrix. The main difference in this work
509 compared to the previous works resides in the introduction of a
510 data parallelism using the precalculated delta matrix. The use of
511 this matrix allows the increasing of the number of threads
512 involved in the evaluation of a single move. Experimentations are
513 done on standard QAP instances from the
514 QAPLIB~\cite{burkard1991qaplib}. Speedups up to $10 \times$ are
515 achieved by the GPU implementation compared
516 to the same sequential implementation on CPU using SA-matrix.\\
517
518 \subsection{Implementing population-based metaheuristics on GPUs}
519
520 State-of-the-art works dealing with the implementation of
521 p-metaheuristics on GPUs generally rely on parallel models and
522 research efforts done for parallelizing different classes of
523 p-metaheuristics over different types of parallel architectures:
524 supercomputers, clusters, and computational grids. Three main
525 classes of p-metaheuristics are considered in this section:
526 evolutionary
527 algorithm\index{Metaheuristics!evolutionary~algorithm}s (EAs), ant
528 colony\index{Metaheuristics!ant~colony~optimization} optimization
529 (ACO\index{Metaheuristics!ant~colony~optimization}), and particle
530 swarm optimization\index{Metaheuristics!particle swarm
531 optimization} (PSO).
532
533 \subsubsection*{Evolutionary Algorithms}
534
535 Traditional parallel models for EAs are classified in three main
536 classes: coarse grain models using several sub-populations
537 (islands), master-slave models used for the parallelization of CPU
538 intensive steps (evaluation and transformation), and cellular
539 models based on the use of one population disposed (generally) on
540 a toroidal grid.
541
542 The three traditional models have been implemented on GPUs by several researchers for different
543 optimization problems. The main chalenges to be raised when implementing the traditional models on GPUs concern (1) the saturation of the GPU in order to cover memory latency by calculations, and (2) efficent usage of the hierarchical GPU  memories.\\
544
545 In~\cite{kannan}, Kannan and Ganji present a CUDA implementation
546 of the drug discovery application Autodock (molecular docking
547 application). Autodock uses a genetic
548 algorithm\index{Metaheuristics!genetic~algorithm} to find optimal
549 docking positions of a ligand to a protein. The most
550 time-consuming task in Autodock is the fitness function
551 evaluation. The fitness function used for a docking problem
552 consists of calculating the energy  of the ligand-protein complex
553 (sum of intermolecular energies). The authors explore two
554 different approaches to evaluate the fitness function on GPU. In
555 the first approach, each GPU thread calculates the energy function
556 of a single individual. This approach requires the use of
557 large-sized populations to saturate the GPU (thousands of
558 individuals). In the second approach each individual is associated
559 with one thread block. The evaluation of the energy function is
560 performed by the threads of the same block. This allows the use of
561 medium population sizes (hundreds of individuals) and the
562 acceleration of a single fitness evaluation. Another great
563 advantage of the per block approach resides in the use of shared
564 memory instead of global memory to store all the information
565 related to each individual. The obtained speedups range from  $10
566 \times$ to $47 \times$ for population sizes
567 ranging from $50$ to $10000$. \\
568
569 Maitre \emph{et al.}~\cite{maitre2009} also exploited the
570 master-slave parallelism of EAs on GPUs using EASEA. EASEA is a
571 C-like metalanguage for easy development of EAs. The user writes a
572 description  of the problem specific components (fitness function,
573 problem representation, etc) in EASEA. The code  is then compiled
574 to obtain a ready-to-use evolutionary
575 algorithm\index{Metaheuristics!evolutionary~algorithm}. The EASEA
576 compiler  uses genetic
577 algorithm\index{Metaheuristics!genetic~algorithm}LIB and EO
578 Libraries to produce C++ or JAVA written EA codes.
579 In~\cite{maitre2009}, the authors  proposed an extension of EASEA
580 to produce CUDA code from the EASEA files. This extension has been
581 used  to generate a master-slave parallel EA in which the
582 sequential algorithm is maintained on CPU and the population is
583 sent to GPU for evaluation. Two problems have been considered
584 during the experiments: a benchmark mathematical function and a
585 real problem (molecular structure prediction). In order to
586 maximize the GPU occupation, very large populations are used (from
587 $2000$ to $20000$). Even though transferring such large
588 populations from the CPU to the GPU device memory at every generation is very costly, the authors reported important speedups on the two problems on a GTX260 card:  $105 \times$ is reported for the benchmark function while for the real problem the reported speedup is $60 \times$. This may be best explained by the complexity of the fitness functions. Nevertheless, there is no indication in the paper about the memory management\index{GPU Challenges!memory~management} of the populations on GPU.\\
589
590 The master-slave  model is efficient when the fitness function is
591 highly time intensive. Nevertheless, it requires the use of
592 large-sized populations in order to saturate the GPU unless the
593 per-block is used (one individual perblock) when the acceleration
594 of the fitness function itself is possible. The use of many
595 sub-populations of medium sizes is another way to obtain a maximum
596 occupation of the GPU. This is coarse-grained parallelism (island
597 model).\\
598
599 The coarse grained model is  used by Pospichal \emph{et al.}
600 in~\cite{pospichal10} to implement a parallel genetic
601 algorithm\index{Metaheuristics!genetic~algorithm} on GPU. In this
602 work the entire genetic
603 algorithm\index{Metaheuristics!genetic~algorithm} is implemented
604 on GPU. This choice is motivated by the overhead engendered by the
605 CPU/GPU communication\index{GPU Challenges!CPU/GPU~communication}
606 when only population evaluation is performed on GPU. Each
607 population island is mapped with a CUDA thread block and each
608 thread is responsible for a unique individual. Subpopulations are
609 stored on shared memory of each block. Nevertheless, because
610 interblock communications are not possible on the CUDA
611 architecture, the islands evolve independently in each block, and
612 migrations are performed
613 asynchronously through the global memory. That is, after a given number of generations, selected individuals for migration from each island are copied to the GPU global memory part of the neighbor island and then to its shared memory to replace the worst individuals in the local population. The experiments are performed on three benchmark mathematical functions. During these experiments, the island sizes are varied from $2$ to $256$ individuals and island numbers from $1$ to $1024$. The maximum performance is achieved for high number of islands and increasing population sizes.\\
614
615 The same strategy is also adopted by Tsutsui and Fujimoto
616 in~\cite{tsutsuiGAQAP}  to implement a coarse-grained genetic
617 algorithm\index{Metaheuristics!genetic~algorithm} on GPU to solve
618 the QAP. Initially, several subpopulations are created on CPU and
619 transferred to the global memory. The subpopulations are organized
620 in the global memory into blocks of $8$ individuals in such a way
621 to allow coalesced memory access by the threads of the same thread
622 block. Each sub-population is allocated to a single thread block
623 in the GPU and transfered to the shared memory to start evolution.
624 Population evaluation and transformation are done in parallel by
625 the different threads of a given block. Migration is also done
626 through the global memory. Experiments are performed on standard
627 QAP benchmarks from the QAPLIB~\cite{burkard1991qaplib}. The GPU
628 implementation reached speedups of $2.9\times$ to $12.6 \times$
629 compared to a single core implementation of a coarse-grained
630 genetic algorithm\index{Metaheuristics!genetic~algorithm} on a
631 Intel i7 processor.\\
632
633 Nowotniak \emph{et al.}~\cite{nowotniak} proposed a GPU-based
634 implementation of a quantum inspired genetic
635 algorithm\index{Metaheuristics!genetic~algorithm} (QIGA). The used
636 parallel model is a hierarchical model based on two levels: each
637 thread in a block transforms a unique individual and a different
638 population is assigned to each block. The algorithm is run
639 entirely on GPU. A different instance of the QIGA is run on each
640 block and the computations have been shared between 8 GPUs. This
641 approach is very convenient to speed up the experimental process
642 on metaheuristics that require several independent runs of the
643 same algorithm in order to asses statistical efficiency. The
644 populations are stored in the shared memory, the data matrix used
645 for fitness evaluation is placed in read only constant memory, and
646 finally seeds for random numbers generated on the GPU are stored
647 in the global memory.\\
648
649 In coarse-grained parallelism, the use of the per-block approach
650 to implement the islands (one subpopulation per thread block) is
651 almost natural  and it allows the use of shared memory to store
652 the subpopulations. Fine-grained parallel models for EAs (cellular
653 EAs) have been used by many authors to implement parallel EAs on
654 GPUs. Indeed, the fine-grained parallelism of EAs fits perfectly
655 to the SIMD architecture of the GPU. \\
656
657 Pinel \emph{et al.} in~\cite{pinel2012JPDC} developed a highly
658 parallel synchronous cellular genetic
659 algorithm\index{Metaheuristics!genetic~algorithm} (CGA), called
660 GraphCell, to solve the independent task scheduling problem on GPU
661 architectures. In CGAs, the population is arranged into a
662 two-dimensional toroidal grid where only neighboring solutions are
663 allowed to interact with each other  during the recombination
664 step. In GraphCell, two recombination operators for CGA are
665 especially designed to run efficiently on GPU. Indeed, instead of
666 assigning a single thread to each solution of the population to
667 perform the recombination, in GraphCell, a single thread is
668 assigned to each task  of each solution. Offsprings are created by
669 independently modifying the assignment of some tasks in the
670 current solution. Mainly, each thread chooses one neighboring
671 solution in the grid as second parent using different selection
672 strategies and assigns one  task of  the solution (first parent)
673 to the machine for which the same task is assigned in the second
674 parent.  This way, the number of threads used for the
675 recombination step is equal to population size $\times$  size of
676 the solution (number of tasks). This leads to a high number of
677 threads used to accelerate the recombination operators especially
678 when dealing with large instances of the problem. In addition to
679 the recombination operators, the rest of the CGA steps are  also
680 parallelized on GPU (fitness evaluation, mutation, and
681 replacement).\\
682
683 A similar work is proposed by Vidal and Alba  in~\cite{albaCGAGPU}
684 where a  CGA using a toroidal grid is completely implemented on
685 GPU. A direct mapping between the population and the GPU threads
686 is done. At each step, several threads execute the same operations
687 on each individual independently: initialization, computing the
688 neighborhood, selection, crossover, mutation, and evaluation.  A
689 synchronization is done for all threads to perform the replacement
690 stage and form the next generation. All the data of the algorithm
691 is placed on the global memory. Several experiments have been
692 performed on a set of standard benchmark functions with different
693 grid sizes ranging from $32^2$ to $512^2$. The speedups reached by
694 the GPU implementation against the CPU version range from
695 $5\times$ to $24\times$ and increase as the size of the population
696 increases. However, the CPU implementation run faster than the GPU
697 version for all the tested  benchmarks when the size of the
698 population is set to $32^2$. When the size of the population is
699 too small, there are not enough computations to cover the overhead
700 created by the call of kernel functions, CPU/GPU
701 communication\index{GPU Challenges!CPU/GPU~communication}s,
702 synchronization, and access to global memory. Finally, an
703 interesting review on GPU parallel computation in bio-inspired
704 algorithms is proposed by Arenas \emph{et al.}
705 in~\cite{arenas2011}. \\
706
707 \subsubsection*{Ant Colony Optimization}
708
709 Ant colony optimization
710 (ACO\index{Metaheuristics!ant~colony~optimization}) is another
711 p-metaheuristic subject to parallelization on GPUs.
712 State-of-the-art works on parallelizing
713 ACO\index{Metaheuristics!ant~colony~optimization} focus on
714 accelerating the tour construction step performed by each ant by
715 taking a task-based parallelism approach, with pheromone
716 deposition on the CPU.\\
717
718 In~\cite{cecilia}, Cecilia \emph{et al.}  present a GPU-based
719 implementation of
720 ACO\index{Metaheuristics!ant~colony~optimization} for TSP where
721 the two steps (tour construction and pheromone update) are
722 parallelized on the GPU. A data parallelism approach is used to
723 enhance the performance of the tour  construction step. The
724 authors use two categories of artificial ants: queen ants
725 associated with CUDA thread-blocks and worker ants associated with
726 CUDA threads. A queen ant represents a simulated ant and worker
727 ants collaborate with the queen ant to accelerate the decision
728 about the  next city to visit. The tour construction step of each
729 queen ant is accelerated. Each worker ant  maintains a history of
730 the search in a tabu list containing a chronological ordering of
731 the already visited cities. This memory is used to determine the
732 feasible neighborhoods. After all queen ants have constructed
733 their tours, the pheromone trails are updated. For pheromone
734 update, several GPU techniques are also used to increase the data
735 bandwidth of the application mainly by the use of precalculated
736 matrices that are easily updated by several threads (one thread
737 per matrix entry). The achieved speedups are $21 \times$ for tour
738 construction and  $20 \times$ for pheromone updates.\\
739
740 In another work, Tsutsui \emph{et al.}~\cite{tsutsui} propose  a
741 hybrid algorithm combining
742 ACO\index{Metaheuristics!ant~colony~optimization} metaheuristic
743 and tabu search (TS)\index{Metaheuristics!tabu~search} implemented
744 on GPU to solve the QAP. A solution of QAP is represented as a
745 permutation of ${1,2,..,n}$ with $n$ being the size of the
746 problem. The TS algorithm is based on the 2-opt neighborhood
747 (swapping of two elements $(i,j)$ in the permutation). The authors
748 point out that the move cost of each neighbor depends on the
749 couple $(i,j)$. Two groups of moves are formed according to the
750 move cost. In order to avoid thread divergence\index{GPU
751 Challenges!thread~divergence} within the same warp, the
752 neighborhood evaluation is parallelized in such a way to assign
753 only moves of the same cost to each thread warp. This strategy is
754 called MATA for Move-cost Adjusted Thread Assignment. Concerning
755 the memory management\index{GPU Challenges!memory~management}, all
756 the data of the ACO\index{Metaheuristics! ant~colony~optimization}
757 (population, pheromone matrix), QAP matrices, and tabu list are
758 placed on the global memory of the GPU. Shared memory is used only
759 for working data common to all threads in a given block.
760  All the
761 steps of the hybrid algorithm
762 ACO\index{Metaheuristics!ant~colony~optimization}-TS
763 (ACO\index{Metaheuristics!ant~colony~optimization} initialization,
764 pheromone update, construct solutions, applying TS) are
765 implemented as kernel functions on the GPU. The GPU/CPU
766 communications are only used to transfer the best-so-far solution
767 in order to verify termination conditions. The experiments
768 performed on standard QAP benchmarks showed that the GPU
769 implementation using MATA obtained a  speedup of $19 \times$
770 compared to the CPU implementation,  compared with a speedup of
771 only $5 \times$
772 when MATA is not used. \\
773
774 \subsubsection*{Particle Swarm Optimization}
775 In~\cite{zhou2009} Zhou and Tan propose a full GPU implementation
776 of a standard PSO algorithm. All the data is stored in global
777 memory (velocities, positions, swarm population, etc). Only
778 working data is copied to shared memory by each thread. The four
779 steps of the PSO have been parallelized on GPU: fitness evaluation
780 of the swarm, update of local best and global best  of each
781 particle, and update of velocity and position of each particle.
782 The same strategy is used to parallelize the first and last
783 steps: the evaluation of fitness functions is performed in
784 parallel for each dimension  by several threads. It is the case
785 for the update of position and velocities of each particle: one
786 dimension at a time is updated for the whole swarm by several
787 threads. Random numbers needed for  updating the velocities and
788 positions for the whole PSO processes are generated on CPU at the
789 starting of the algorithm and transferred to the GPU global
790 memory. For the steps 2 and 3 (update of local best and global
791 best of each particle), the GPU threads are mapped to the \emph{N}
792 particles of the swarm one to one. Experiments done on four
793 benchmark functions show speedups ranging from $3.7 \times$ to
794 $9.0 \times$ for swarm sizes
795 ranging from $400$ to $2800$.\\
796
797 \subsection{Synthesis of the implementation strategies}
798 \label{ch8:sec:synthesis} After reviewing some works dealing with
799 GPU-based implementation of metaheuristics, in this section we
800 will try to come up with a classification of the different
801 strategies used in the literature for the implementation of
802 metaheuristics on GPUs. One may distinguish between the parallel
803 models adopted in each metaheuristic (design level)  and the way
804 they are exploited on GPU architectures (implementation level).
805 Indeed, even though the parallelization models used in most works
806 for GPUs are derived from the traditional parallel models of each
807 metaheuristic (on CPU), their implementation could take a
808 different way and sometimes it may result in new parallel models
809 customized for GPUs.\\
810
811 Traditional parallel models for metaheuristics are based on an
812 intuitive task parallelism: the independent tasks of the
813 algorithms are simply parallelized. For example, in the case of
814 s-metaheuristics, the evaluation of large neighborhoods could be
815 done in parallel since there is no synchronization at this step of
816 the algorithm. That is the case of EAs  when it comes to applying
817 the evaluation step. Nevertheless, because of the particularity of
818 the GPU architecture, some authors have used new implementation
819 techniques to enhance the data parallelism in the sequential
820 algorithms in order to increase the data throughput of the
821 application.\\
822
823 From this observation we propose the following classification
824 based on 2 levels: design level and implementation level as
825 illustrated in Figure~\ref{ch8:fig:classification}. The design
826 level regroups the three classes of parallel models used in
827 metaheuristics
828 (solution-level\index{Metaheuristics!solution-level~parallelism},
829 iteration-level\index{Metaheuristics!iteration-level parallelism},
830 algorithmic-level\index{Metaheuristics!algorithmic-level
831 parallelism}) with examples for s-metaheuristics, EAs,
832 ACO\index{Metaheuristics!ant~colony~optimization} and PCO. This
833 classification  is principally built from the reviewed
834 state-of-the-art works  in the previous section. The
835 implementation level refers to the way these parallel design
836 models are implemented on GPU. This classification focuses only on
837 the mapping strategies between the GPU threads and the
838 parallelized tasks (neighborhood evaluation, solution
839 construction, and so on). The different implementation strategies
840 are explained in the following sections.\\
841
842 \begin{figure}[h]
843 \centerline{\includegraphics[width=1\textwidth]{Chapters/chapter9/figures/classification.pdf}}
844 \caption{A two level classification of state-of-the-art GPU-based parallel metaheuristics.}
845 %[Comparison of number of cores in a CPU and in a GPU]
846 \label{ch8:fig:classification}
847 \end{figure}
848
849
850 \subsubsection*{GPU thread mapping for solution-level parallelism}
851 \index{GPU-based Metaheuristics!GPU-thread mapping} Parallel
852 models at solution level consist of parallelizing a time intensive
853 atomic task of the algorithm. Generally, it consists of the
854 fitness evaluation~\cite{kannan}. Nevertheless, crossover
855 operators have also been parallelized by some
856 authors~\cite{pinel2012JPDC}. These kinds of models are not always
857 possible as they are problem-dependent. The GPU implementation of
858 solution-level models uses the perblock mapping: each solution is
859 associated to a block of threads. A second level of parallelism is
860 used inside each block to parallelize the fitness evaluation of a
861 single solution. This kind of mapping allows the use of shared
862 memory to store the data structures of the solution and does not
863 require the use of very large neighborhoods or populations.\\
864 %data parallelism in SA-matrix to parallelize
865
866 \subsubsection*{GPU thread mapping for iteration-level parallelism}
867 \index{GPU-based Metaheuristics!GPU-thread mapping}
868 Iteration-level parallelism consists of parallelizing the tasks
869 performed independently on different solutions. Different mapping
870 strategies are adopted in the reviewed works to implement these
871 models.\\
872
873 In Figure \ref{ch8:fig:classification}, the first example of
874 iteration-level\index{Metaheuristics!iteration-level parallelism}
875 parallelism is the parallel evaluation of neighborhoods in
876 s-metaheuristics. In most of the reviewed works,  a per-thread
877 mapping approach is used: each solution of the neighborhood is
878 mapped to a unique thread in the GPU for
879 evaluation~\cite{luong2010large, audreyANT}. The same mapping is
880 used for master-slave parallel EAs to accelerate the evaluation of
881 large populations. This kind of mapping is only efficient for very
882 large neighborhoods and very large populations (to saturate the
883 GPU). Many authors have pointed out that the use of such large
884 populations (or neighborhoods) may lead to an overhead due to the
885 communication costs between the CPU and the GPU (if the sequential
886 part of the algorithm is placed on CPU). In order to circumvent
887 this issue, many authors have implemented the entire algorithm on
888 GPU~\cite{pospichal10}. On the other hand, as several solutions
889 may be mapped with the same thread block in the GPU, shared memory
890 could not be used and all the data should be placed on global
891 memory.
892 %pheromone update data parallelism matrices
893
894 \subsubsection*{GPU thread mapping  for algorithmic-level parallelism}
895 \index{GPU-based Metaheuristics!GPU-thread mapping}
896 Algorithmic-level parallelism consists of launching several self-contained algorithms in parallel. In the previously reviewed works two algorithmic-level\index{Metaheuristics!algorithmic-level parallelism} models have been used: the multistart model and the island model (parallel EAs).\\
897
898 The implementation of the multistart model is based on two
899 different mapping strategies~\cite{luongMultiStart, audreyANT}:
900 (1) each local search (LS) is associated to a unique thread and
901 (2) each solution (from multiple neighborhoods) is associated to a
902 unique thread. The first mapping strategy (one thread per LS)
903 presents a big drawback: the number of LS to use should be very
904 large to saturate the GPU and cover the memory access latency. On
905 the other hand, the evaluation of the neighborhood of a single LS
906 by one thread is time intensive. Furthermore, shared memory could
907 not be used to store the huge data generated by the different
908 neighborhoods. In the second mapping strategy, the LS algorithms
909 are placed on CPU and the neighborhood evaluation of each LS is
910 parallelized on GPU using per-thread mapping strategy (one thread
911 per solution). This consists of a hierarchical parallel model
912 combining algorithmic-level\index{Metaheuristics!algorithmic-level
913 parallelism} parallelism (multistart) with
914 iteration-level\index{Metaheuristics!iteration-level parallelism}
915 parallelism (master-worker).\\
916
917 In the island model, the same mapping is used in all the reviewed
918 works~\cite{tsutsuiGAQAP, nowotniak, maitre2009}: each
919 subpopulation (island) is associated to one thread block in the
920 GPU. A second level of parallelism is used inside the block to
921 parallelize the evaluation step of the local population.
922 Migrations are always performed through the global memory as
923 interblock communications  are impossible in CUDA. The first
924 advantage of this hierarchical implementation is that it allows
925 the occupation of a large number of threads even for medium
926 population sizes. The second advantage consists of using shared
927 memory to store subpopulations to benefit from the low latency of
928 shared memory.\\
929
930 \section{Frameworks for metaheuristics on GPUs}
931 \label{ch8:sec:frameworks}
932
933 After the first pioneering works of metaheuristics on graphics
934 processing units, the next challenge is to provide easy-to-use
935 frameworks and libraries for rapid development of metaheuristics
936 on GPUs. Although the works on this subject are not yet mature and
937 do not cover the main metaheuristic algorithms, we will present
938 the only three works to our knowledge, which propose open source
939 frameworks for developing
940 metaheuristics on GPUs.\\
941
942 The three frameworks reviewed in this section are
943 PUGACE\index{GPU-based frameworks!PUGACE}~\cite{pugace},
944 ParadisEO-MO-GPU\index{GPU-based
945 frameworks!ParadisEO-MO-GPU}~\cite{paradiseoGPU}, and
946 libCudaOptimize\index{GPU-based
947 frameworks!libCudaOptimize}~\cite{libcuda}. PUGACE\index{GPU-based
948 frameworks!PUGACE} is a framework for implementing EAs on GPUs.
949 ParadisEO-MO-GPU is an extension of the framework
950 ParadisEO~\cite{paradiseo} for implementing s-metaheuristics on
951 GPU. Finally, libCudaOptimize\index{GPU-based
952 frameworks!libCudaOptimize} is a  library intended for the
953 implementation of p-metaheuristics on GPU. The three frameworks
954 are presented in more detail in the following.
955
956 \subsection{PUGACE\index{GPU-based frameworks!PUGACE}: framework for implementing evolutionary computation on GPUs}
957 PUGACE\index{GPU-based frameworks!PUGACE} is a generic  framework
958 for easy implementation of cellular evolutionary algorithms on
959 GPUs implemented using C and CUDA. It is based on the frameworks
960 MALLBA and JCell (a framework for cellular algorithms). The
961 authors justified the choice of cellular evolutionary
962 algorithm\index{Metaheuristics!evolutionary~algorithm} by the good
963 feedback found in the literature concerning its efficient
964 implementation on GPUs compared to other parallel models for EAs
965 (island, master-slave). The main standard evolutionary operators
966 are already implemented in PUGACE\index{GPU-based
967 frameworks!PUGACE}: different selection strategies, standard
968 crossover, and mutation operators (\emph{PMX, swap, 2-exchange},
969 etc.). Different problem encoding is also supported. The framework
970 is organized as a set of modules in which the different
971 functionalities  are separated as much as possible in order to
972 facilitate the extension of the framework. All
973 the functions and procedures that execute on GPU are implemented in the same file kernel.cu. \\
974
975 The implementation strategy adopted on the GPU is as follows.
976 Population initialization is done on the CPU side and the
977 population is transferred to the GPU. On the GPU side, each
978 individual is associated to a unique CUDA thread. The function
979 evaluation and mutation are done on the GPU while selection and
980 replacement are maintained on the CPU. In order to avoid thread
981 divergence\index{GPU Challenges!thread~divergence} appearing in
982 the same CUDA thread block at the crossover step (because of the
983 probability of application which may give different results from
984 one thread to the other), the decision of whether to apply a
985 crossover is taken at the block level and applied to all the
986 individuals within the block. It is the decision on the choose
987 of the cutting point for the crossover.\\
988
989 The framework is validated on standard benchmarks of the quadratic
990 assignment problem (QAP). Speedups of $15.44 \times$  to $18.41
991 \times$ are achieved compared to a CPU implementation of a cEA
992 using population sizes rising from 512 to 1024 and from 1024 to
993 2048.
994
995 % The authors noticed an
996 % improvement on the speedup when the size of the population increases. This is best explained
997 % by the linear increasing of execution time on CPU side while a sublinear increasing is
998 % occuring on GPU side (due to a better exploitation of the GPU threads). Neverethless,
999 % dispite the positive impact of large populations on th parallel efficieny of the implementation
1000 % on GPU, a study on the impact on the final solution quality when using such large populations
1001 % is to be done. Indeed, too large populations on EAs may lead to high diversification of the
1002 % search and poor intensification capabilities, which leads to poor results.
1003 % For the moment, plateforms whith more than one CPU and one GPU are not yet supported in PUGACE\index{GPU-based frameworks!PUGACE}.
1004 % No details on how to get PUGACE\index{GPU-based frameworks!PUGACE} code source are given in the paper.
1005
1006 \subsection{ParadisEO-MO-GPU}
1007
1008 Melab \emph{et al.}~\cite{paradiseoGPU} developed a reusable
1009 framework ParadisEO-MO-GPU\index{GPU-based
1010 frameworks!ParadisEO-MO-GPU} for parallel local search
1011 metaheuristics (s-metaheuristics) on GPUs. It focuses on the
1012 iteration-level\index{Metaheuristics!iteration-level parallelism}
1013 parallel model of s-metaheuristics which consists of exploring in
1014 parallel the neighborhood of a problem solution on GPU. The
1015 framework, implemented using C++ and CUDA, is an extension of the
1016 ParadisEO~\cite{paradiseo} framework previously developed by the
1017 same team for parallel and distributed metaheuristics on both
1018 dedicated parallel hardware platforms and computational grids. The
1019 objective of this framework is to facilitate the development of
1020 GPU-based metaheuristics providing a transparent use of GPUs to
1021 users who are unfamiliar with advanced features of all
1022 parallelization techniques and deployment on GPUs. The framework
1023 allows one to efficiently manage the hierarchical organization of
1024 the memories (latencies and sizes) of the GPU and its
1025 communication with the CPU as well as the minimizing of the user
1026 involvement in its management.\\
1027
1028 \begin{figure}[h]
1029 \centerline{\includegraphics[width=0.8\textwidth]{Chapters/chapter9/figures/paradiseoGPU.pdf}}
1030 \caption{The skeleton of the ParadisEO-MO-GPU\index{GPU-based
1031 frameworks!ParadisEO-MO-GPU}.}
1032 %[Comparison of number of cores in a CPU and in a GPU]
1033 \label{ch1:fig:paradiseoGPU}
1034 \end{figure}
1035
1036 The framework is based on a master-worker model where the master
1037 is the CPU and the workers are threads executed by the processing
1038 cores of the GPU. The CPU executes the serial part of the
1039 metaheuristic and sends only the current solution to the GPU to
1040 minimize the transfer cost. The GPU, on its side, generates the
1041 neighboring of the received solution and evaluates them at each
1042 iteration. All the threads execute the same kernel and according
1043 to a static mapping table between the threads and the neighbors
1044 where each thread is associated with exactly one neighbor
1045 evaluation. After all the neighborhood is generated and evaluated,
1046 it is sent back to the CPU which selects the best solution (See
1047 Figure~\ref{ch1:fig:paradiseoGPU}).
1048
1049 \subsection{libCudaOptimize: an open source library of GPU-based metaheuristics}
1050 \index{GPU-based frameworks!libCudaOptimize}
1051 LibCudaOptimize~\cite{libcuda} is a C++/Cuda open source library
1052 for the design and implementation of metaheuristics on GPUs. Until
1053 now, the metaheuristics supported by LibCudaOptimize are: scatter
1054 search, differential evolution, and particle swarm
1055 optimization\index{Metaheuristics!particle swarm optimization}.
1056 Nevertheless, the library is designed in such a way to allow
1057 further extensions for other metaheuristics and it is still in
1058 development phase by the authors. The parallelization strategy
1059 adopted on GPU is principally based on fitness evaluation. The
1060 sequential structure of the optimization algorithms is maintained
1061 on CPU.
1062
1063 \section{Case study: accelerating large neighborhood LS method on GPUs for solving the Q3AP}
1064 \label{ch8:sec:case}
1065
1066 In this case study, a large neighborhood GPU-based local
1067 search\index{GPU-based Metaheuristics!GPU-based~local~search}
1068 method for solving the quadratic 3-dimensional assignment problem
1069 (Q3AP) will be presented. The local search method is an iterated
1070 local search\index{Metaheuristics!iterated local search}
1071 (ILS)~\cite{stutzle2006ILSforQAP} using an embedded
1072 TS\index{Metaheuristics!tabu~search} algorithm. The ILS principle
1073 consists of executing iteratively the embedded local search, each
1074 iteration which starts from a disrupted local optima reached by
1075 the previous local search process. The disruption heuristic is a
1076 performance parameter of an ILS algorithm and should be
1077 judiciously defined. A template of an
1078 ILS algorithm is given by the Algorithm~\ref{ch8:ils_algorithm_template}.\\
1079
1080 \begin{algorithm}[H]
1081     \SetAlgoLined
1082     %\KwData{this text}
1083     %\KwResult{how to write algorithm with \LaTeX2e }
1084    $s_{0}$=GenerateInitSol()\;
1085    $s^*$=LocalSearch($s_0$)\;
1086     \Repeat{a maximum number of iterations is reached}{
1087      $s'$=Perturbate($s^*,history$)\;
1088      $s^{*'}$=LocalSearch($s'$)\;
1089      $s^*$=AcceptationCriteria($s^*,s^{*'},history$)\;
1090
1091     }
1092 \caption{Iterated local search template}
1093 \label{ch8:ils_algorithm_template}
1094 \end{algorithm}
1095
1096 %
1097 %   \begin{algorithm}
1098 %  % \label{ch8:ils_algorithm_template}
1099 %   \caption{iterated local search\index{Metaheuristics!iterated local search} template}
1100 %   \begin{algorithmic}[1]
1101 %
1102 %   \STATE $s_{0}$=\texttt{GenerateInitSol}();
1103 %
1104 %   \STATE $s^*$=\texttt{LocalSearch}($s_0$);
1105 %
1106 %   \REPEAT
1107 %     \STATE $s'$=\texttt{Perturbate}($s^*,history$);
1108 %     \STATE $s^{*'}$=\texttt{LocalSearch}($s'$);
1109 %     \STATE $s^*$=\texttt{AcceptationCriteria}($s^*,s^{*'},history$);
1110 %
1111 %   \UNTIL {a maximum number of iterations is reached}
1112 %
1113 %   \end{algorithmic}
1114 %
1115 %   \end{algorithm}
1116
1117 \subsection{The quadratic 3-dimensional assignment problem}
1118
1119 The Q3AP is an extension of the well-known NP-hard QAP. The latter
1120 is one of the most studied problem by the combinatorial
1121 optimization community due to its wide range of practical
1122 applications (site planning, schedule problem, computer-aided
1123 design, etc.) and to its computational challenges since it is
1124 considered as one of the most computationally difficult
1125 optimization problems.\\
1126
1127 The Q3AP was first introduced by William P. Pierskalla in
1128 1967~\cite{Pierskalla1967Q3AP} and, unlike the QAP, the Q3AP is a
1129 less studied problem. Indeed, the Q3AP was revisited only this
1130 past years and has recently been used to model some advanced
1131 assignment problems such as the symbol-mapping problem encountered
1132 in wireless communication systems and described
1133 in~\cite{Hahn2008q3ap}. The Q3AP optimization problem can be
1134 mathematically expressed as follows:
1135
1136 % debut -----------------------------------------------------------------------------
1137 \begin{equation*} min \left \{
1138 \sum_{i=0}^{n-1}\sum_{j=0}^{n-1}\sum_{l=0}^{n-1}\sum_{k=0}^{n-1}\sum_{s=0}^{n-1}\sum_{r=0}^{n-1}c_{ijlksr}x_{ijl}x_{ksr}
1139 \quad+ \right . \end{equation*}
1140
1141 \begin{equation} \label{Q3APFormulation} \left .
1142 \sum_{i=0}^{n-1}\sum_{j=0}^{n-1}\sum_{l=0}^{n-1}b_{ijl}x_{ijl}
1143 \right \} \end{equation}
1144
1145 where
1146
1147 \begin{eqnarray}
1148   X=(x_{ijl})\in I \cap J \cap L, \label{Q3APConstraints1}\\
1149   x_{ijl}\in \{0,1\}, \quad i,j,l=0,1,...,n-1. \label{Q3APConstraints2}
1150 \end{eqnarray} $I$, $J$, and $L$ sets are defined as follows:
1151 \begin{displaymath} I=\lbrace X=(x_{ijl}):
1152 \sum_{j=0}^{n-1}\sum_{l=0}^{n-1}x_{ijl}=1, \quad
1153 i=0,1,...,n-1\rbrace \mathrm{;} \end{displaymath}
1154 \begin{displaymath} J=\lbrace X=(x_{ijl}):
1155 \sum_{i=0}^{n-1}\sum_{l=0}^{n-1}x_{ijl}=1, \quad
1156 j=0,1,...,n-1\rbrace \mathrm{;} \end{displaymath}
1157 \begin{displaymath} L=\lbrace X=(x_{ijl}):
1158 \sum_{i=0}^{n-1}\sum_{j=0}^{n-1}x_{ijl}=1, \quad
1159 l=0,1,...,n-1\rbrace \mathrm{.} \end{displaymath}
1160 % fin------------------------------------------------------------------------------
1161
1162 Other equivalent formulations of the Q3AP can be found in the literature. A particularly useful one is the
1163 \textit{permutation-based formulation} wherein the Q3AP can be expressed as follows:
1164
1165  \begin{equation*}
1166  min\left\{ f(\pi_1,\pi_2) =
1167  \sum_{i=0}^{n-1}\sum_{j=0}^{n-1}c_{i\pi_{1(i)}\pi_{2(i)}j\pi_{1(j)}\pi_{2(j)}} \quad
1168  + \right.
1169 \end{equation*}
1170
1171 \begin{equation}
1172  \left. \sum_{i=0}^{n-1}b_{i\pi_{1(i)}\pi_{2(i)}}\right
1173  \} \label{Q3APPermutationBasedFormulation}
1174 \end{equation}
1175 where $\pi_1$ and $\pi_2$ are permutations over the set
1176 $\left\lbrace 0,1,\ldots,n-1\right\rbrace$. According to this
1177 formulation, minimizing the Q3AP consists of finding a double
1178 permutation $(\pi_1,\pi_2)$ which minimizes the objective function
1179 (\ref{Q3APPermutationBasedFormulation}).\\
1180
1181 The Q3AP is proven to be an NP-hard problem since it is an
1182 extension of the quadratic assignment problem and of the axial
1183  3-dimensional assignment problem which are both NP-hard problems. It is particularly computationally difficult since the
1184 number of feasible solutions of an instance of size $n$ is $n! \times n!$.
1185
1186 \subsection{Iterated tabu search algorithm for the Q3AP}
1187
1188 To tackle large-sized instances of the Q3AP and speed up the
1189 search process, a parallel ILS\index{Metaheuristics!iterated local
1190 search} algorithm has been designed. The local search embedded in
1191 the ILS is a TS\index{Metaheuristics!tabu~search}. A TS
1192 procedure~\cite{Glover1989TS} starts from an initial feasible
1193 solution and tries, at each step, to move to a neighboring
1194 solution that minimizes the fitness (for a minimization case). If
1195 no such move exists, the neighbor solution that less degrades the
1196 fitness is chosen as a next move. This enables, TS process to
1197 escape local optima. However, this strategy may generate cycles,
1198 i.e., previous moves can be selected again. To avoid cycles, the
1199 TS manages a short-term memory that contains the moves that have
1200 been recently performed. A TS\index{Metaheuristics!tabu~search}
1201 template is given by the Algorithm \ref{TS_pseudo_code}.\\
1202 %
1203 %  \begin{algorithm}
1204 %  \label{TS_pseudo_code}
1205 %  \caption{Tabu search template}
1206 %  \begin{algorithmic}[1]
1207 %  \STATE GenerateInitSol($s_0$);
1208 %  \STATE TabuList=$\phi$;
1209 %  \STATE $t=0$;
1210 %  \REPEAT
1211 %          \STATE $m(t)$ = SelectBestMove($s(t)$);
1212 %          \STATE $s(t+1)$ = ApplyMove($m(t),s(t)$);
1213 %          \STATE TabuList = TabuList $\bigcup \{m(t)\}$;
1214 %          \STATE $t = t + 1$;
1215 %  \UNTIL{a maximum number of iterations is reached}
1216 %
1217 %  \end{algorithmic}
1218 %  \end{algorithm}
1219
1220 \begin{algorithm}[H]
1221     \SetAlgoLined
1222     %\KwData{this text}
1223     %\KwResult{how to write algorithm with \LaTeX2e }
1224     GenerateInitSol($s_0$)\;
1225     TabuList=$\phi$\;
1226     $t=0$\;
1227     \Repeat{a maximum number of iterations is reached}{
1228           $m(t)$ = SelectBestMove($s(t)$)\;
1229           $s(t+1)$ = ApplyMove($m(t),s(t)$)\;
1230           TabuList = TabuList $\bigcup \{m(t)\}$\;
1231           $t = t + 1$\;
1232
1233     }
1234 \caption{Tabu search template}
1235 \label{TS_pseudo_code}
1236 \end{algorithm}
1237
1238
1239 \subsection{Neighborhood functions for the Q3AP}
1240
1241 The neighborhood function is a crucial parameter in any local
1242 search algorithm. Indeed, if the neighborhood function is not
1243 adequate to the problem and/or does not consider the targeted
1244 computing framework, any local search algorithm will fail to reach
1245 good quality solutions of the search space.\\
1246
1247 Regarding the Q3AP, many neighborhood structures can be
1248 considered. A basic neighborhood was proposed and investigated in
1249 different works of the
1250 literature~\cite{Hahn2008q3ap,DBLP:journals/ijfcs/LoukilMMTB12}
1251 and consists of the set of all solutions (double-permutations)
1252 generated from the current one by an exchange of two positions in
1253 either the first ($\pi_1$) or the second ($\pi_2$) permutation.
1254 This neighborhood that we denote by $N_b$ can be formalized as
1255 follows:
1256
1257 \begin{equation}
1258 \begin{array}{rl}
1259 N_b(\pi_1,\pi_2)=\{&(\pi_1^{'},\pi_2^{'}): \pi_1^{'}[k]=\pi_1[l], \pi_1^{'}[l]=\pi_1[k]\\
1260                        & 0\leq k \neq l < n;\\
1261                 & \pi_1^{'}[i]=\pi_1[i], \quad 0\leq i\neq k,l < n;\\
1262                 & \pi_2^{'}[j]=\pi_2[j], \quad 0\leq j<n\\ \} \\
1263 \bigcup \\
1264 \{& (\pi_1^{'},\pi_2^{'}): \pi_2^{'}[k]=\pi_2[l], \pi_2^{'}[l]=\pi_2[k]\\
1265                 & 0\leq k \neq l < n;\\
1266                 & \pi_2^{'}[i]=\pi_2[i], \quad 0\leq i < n;\\
1267                 & \pi_1^{'}[j]=\pi_1[j], \quad 0\leq j\neq k,l < n\\
1268 \}& \end{array}
1269 \end{equation}
1270 where $(\pi_1,\pi_2)$ is the current solution and $n$ is the size
1271 of the Q3AP instance. The size $|N_b|$ of such neighborhood is
1272 equal to
1273
1274 \begin{equation}
1275  |N_b| = n \times (n-1)
1276 \end{equation}
1277
1278
1279 In our GPU-based implementations, a large-sized neighborhood
1280 structure has been used for experimentation. In fact, theoretical
1281 and experimental studies have shown that the use of large
1282 neighborhood structures may improve the effectiveness of LS
1283 algorithms~\cite{Ahuja:2007:VLN:1528422.1528438}. However, for
1284 such a neighborhood, the generation/evaluation step of an LS
1285 becomes a time-consuming task and may dramatically increase the
1286 computational time of the LS process. This
1287 justifies the use of intensive data-parallelism provided by GPUs where all neighboring solutions may be concurrently evaluated. \\
1288
1289 The considered large-sized neighborhood consists of swapping two
1290 positions in both permutations $\pi_1$ and $\pi_2$. This
1291 neighborhood structure, $N(\pi_1,\pi_2)$, can be formalized as
1292 follows:
1293
1294 \begin{equation} \begin{array}{rl}
1295 N(\pi_1,\pi_2)=\{&(\pi_1^{'},\pi_2^{'}): \pi_1^{'}[k]=\pi_1[l], \pi_1^{'}[l]=\pi_1[k],\\
1296                 & \pi_2^{'}[r]=\pi_2[s], \pi_2^{'}[s]=\pi_2[r]\\
1297                 & 0\leq k \neq l < n,0\leq r \neq s < n;\\
1298                 & \pi_1^{'}[i]=\pi_1[i], \quad 0\leq i\neq k,l < n;\\
1299                 & \pi_2^{'}[j]=\pi_2^{'}[j], \quad 0\leq j\neq r,s < n\\
1300
1301 \}& \end{array}
1302 \end{equation}
1303
1304 So, for a given Q3AP instance of size $n$, the size $|N|$ of the advanced neighborhood set can be expressed by the following formula:
1305
1306 \begin{equation}
1307   |N|=\left(\frac{n \times (n-1)}{2}\right )^2
1308 \end{equation}
1309
1310 \subsection{Design and implementation of a GPU-based iterated tabu search algorithm for the Q3AP} \label{ch8:ITS-Q3APSection}
1311
1312 The use of GPU devices to speed up the search process of local
1313 search methods is not a straightforward task. It requires one to
1314 consider, at the same time, the characteristics and underlying
1315 issues of the GPU architecture and the parallel models of LS
1316 methods. The main challenges that must be faced when designing a
1317 local search algorithm are the efficient distribution of the
1318 search process between the CPU and the GPU minimizing the data
1319 transfer between them, the hierarchical memory
1320 management\index{GPU Challenges!memory~management} and the
1321 capacity constraints of GPU memories, and the thread
1322 synchronization. All these issues must be regarded when designing
1323 parallel LS models to allow
1324 solving of large scale optimization problems on GPU architectures.\\
1325
1326 To go back to our problem (i.e., Q3AP), we propose in
1327 Algorithm~\ref{ch8:algoITS} an iterated tabu
1328 search\index{Metaheuristics!tabu~search} on GPU (GPU-ITS). The
1329 parallel model is in agreement with the
1330 iteration-level\index{Metaheuristics!iteration-level parallelism}
1331 parallel model of LS methods presented in Section
1332 \ref{ch8:sec:paraMeta} (Fig. \ref{ch8:fig:paraMeta}). This
1333 algorithm can be seen as a cooperative model between the CPU and
1334 the GPU. Indeed, the GPU is used as a coprocessor in a synchronous
1335 manner. The resource-consuming part, i.e., the generation and
1336 evaluation kernel, is calculated by the GPU and the rest of the LS
1337 process is handled by the CPU. First of all, at initialization
1338 stage, memory allocations on GPU are made; the input matrices
1339 (distance and flow matrices) and the initial candidate solution of
1340 the Q3AP must be allocated (lines 4 and 5). Since GPUs require
1341 massive computations with predictable memory accesses, a structure
1342 has to be allocated for storing all the neighborhood fitnesses at
1343 different addresses (line 6). Second, the matrices and the initial
1344 candidate solution have to be copied on the GPU (lines 7 and 8).
1345 We notice that the input matrices are read-only structures and do
1346 not change during all the execution of the LS algorithm.
1347 Therefore, their associated memory is copied only once during all
1348 the execution. Third, comes the parallel
1349 iteration-level\index{Metaheuristics!iteration-level parallelism},
1350 in which each neighboring solution is generated, evaluated, and
1351 copied into the neighborhood fitnesses structure (from lines 10 to
1352 14). Fourth, since the order in which candidate neighbors are
1353 evaluated is undefined, the neighborhood fitnesses structure has
1354 to be copied to the host CPU (line 15). Then the selection
1355 strategy is applied to this structure (line 16): the exploration
1356 of the neighborhood fitnesses structure is done by the CPU.
1357 Finally, after a new candidate has been selected, this information
1358 is copied to the GPU (line 18). The process is repeated until a
1359 given number of iterations has been reached.
1360
1361 % \begin{algorithm}
1362 % \caption{Template of an iterated tabu search\index{Metaheuristics!tabu~search} on GPU for solving the Q3AP} \label{LSGPU}
1363 %  \begin{algorithmic}[1]
1364 %  \STATE Choose an initial solution
1365 %  \STATE Evaluate the solution
1366 %  \STATE Initialize the tabu list
1367 %  \STATE Allocate the Q3AP input data on GPU device memory
1368 %  \STATE Allocate a solution on GPU device memory
1369 %  \STATE Allocate a neighborhood fitnesses structure on GPU device memory
1370 %  \STATE Copy the Q3AP input data on GPU device memory
1371 %  \STATE Copy the solution on GPU device memory
1372 %  \REPEAT
1373 %      \FOR{each generated neighbor on GPU}
1374 %          \STATE Incremental evaluation of the candidate solution
1375 %          \STATE Insert the resulting fitness into the neighborhood fitnesses structure
1376 %      \ENDFOR
1377 %      \STATE Copy the neighborhood fitnesses structure on CPU host memory
1378 %      \STATE Select the best admissible neighboring solution
1379 %      \STATE Update the tabu list
1380 %      \STATE Copy the chosen solution on GPU device memory
1381 %  \UNTIL{a maximum number of iterations reached}
1382 %  \end{algorithmic}
1383 %  \end{algorithm}
1384
1385 \begin{algorithm}[H]
1386     \SetAlgoLined
1387     %\KwData{this text}
1388     %\KwResult{how to write algorithm with \LaTeX2e }
1389     Choose an initial solution\;
1390     Evaluate the solution\;
1391     Initialize the tabu list\;
1392     Allocate the Q3AP input data on GPU device memory\;
1393     Allocate a solution on GPU device memory\;
1394     Allocate a neighborhood fitnesses structure on GPU device memory\;
1395     Copy the Q3AP input data on GPU device memory\;
1396     Copy the solution on GPU device memory\;
1397     $t=0$\;
1398     \Repeat{a maximum number of iterations is reached}{
1399         \For{each generated neighbor on GPU}{
1400           Incremental evaluation of the candidate solution\;
1401           Insert the resulting fitness into the neighborhood fitnesses structure\;
1402         }
1403         Copy the neighborhood fitnesses structure on CPU host memory\;
1404         Select the best admissible neighboring solution\;
1405         Update the tabu list\;
1406         Copy the chosen solution on GPU device memory\;
1407     }
1408 \caption{Template of an iterated tabu search on GPU for solving the Q3AP}
1409 \label{ch8:algoITS}
1410 \end{algorithm}
1411
1412
1413 \subsection {Experimental results}
1414
1415 In this section, some experimental results related to the approach
1416 presented in Section \ref{ch8:ITS-Q3APSection} are reported. We
1417 recall that the approach is a GPU-based iterated tabu
1418 search\index{Metaheuristics!tabu~search} (GPU-ITS) method
1419 consisting in an iterated local search (ILS) embedding a tabu
1420 search\index{Metaheuristics!tabu~search} (TS) and where the
1421 generation/evaluation step of the TS process is executed on GPU.
1422 The ILS is used to improve the quality of successive local optima
1423 provided by TS methods. This is achieved by perturbing the local
1424 optima reached by the current TS process and reconsidering it as
1425 initial solution of the following TS process. Regarding our
1426 algorithm, the applied perturbation is a random number $\mu $ of
1427 swaps in either the first or the second permutation where $\mu \in
1428 [2:n]$ ($n$ is the instance size).\\
1429
1430 Experiments have been carried out on a node of the Chirloute
1431 cluster of the Lille site. This is one of the 10 sites that
1432 currently make up Grid5000~\cite{grid5000}, the French
1433 experimental computational grid. A Chirloute cluster node consists
1434 of an Intel Xeon E5620 CPU and a NVIDIA Tesla Fermi M2050 (448
1435 cores) GPU type. The number of ILS iterations and the number of TS
1436 iterations were set respectively to 20 and 500. The tabu list size
1437 has been initalized to $\frac{m}{4}$, $m$ being the size of the
1438 neighborhood set.\\
1439
1440 Table \ref{ch8:ITSQ3APResults} reports the obtained results for
1441 the GPU-ITS using our large-sized neighborhood structure. The
1442 method has been tested on 5 Q3AP instances derived from the QAP
1443 Nugent instances in QAPLIB~\cite{burkard1991qaplib}. The average
1444 time measurement for 20 executions is reported in seconds and
1445 acceleration factors compared to a standalone CPU are also
1446 considered. The algorithm is stopped when a maximum number of
1447 iterations has been reached or when the optimal (or best known)
1448 value has been discovered. Average and max values of the
1449 evaluation function of the parallel GPU version have been
1450 measured. The number of successful tries (hits) and the average
1451 number of ILS iterations to converge to the optimal/best known
1452 value are also represented. The associated standard deviation for
1453 each average measurement is shown in small type characters.\\
1454
1455 \begin{table}
1456 %\tiny
1457 %\footnotesize
1458 \small
1459 \begin{tabular}{|l|r|r|r|r|r|r|r|r|} \hline
1460 \multicolumn{1}{|c|}{Instance }& \multicolumn{1}{|c|}{Optimal}& \multicolumn{1}{|c|}{Average}  & \multicolumn{1}{|c|}{Maximal}  & \multicolumn{1}{|c|}{Hits} & \multicolumn{1}{|c|}{CPU} & \multicolumn{1}{|c|}{GPU} & \multicolumn{1}{|c|}{Speed-} & \multicolumn{1}{|c|}{ITS} \\
1461 & \multicolumn{1}{|c|}{/BKV\footnotemark }& \multicolumn{1}{|c|}{value }& \multicolumn{1}{|c|}{value }& & \multicolumn{1}{|c|}{time }& \multicolumn{1}{|c|}{time }&  \multicolumn{1}{|c|}{up}& \multicolumn{1}{|c|}{iteration}\\ \hline
1462 Nug12-d & $580$   & $615.4$    & $744$   & $35$\% & $87.7$ & $2.5$ & $34.7 \times$& $16$ \\
1463     &   & \tiny{$41.7$}    & && \tiny{$40.9$} & \tiny{$0.9$} & & \tiny{$6.3$} \\ \hline
1464 Nug13-d & $1912$  & $1985.4$   & $2100$  & $20$\% & $209.2$ & $3.3$ & $63.5 \times$ & $17$ \\
1465 &  & \tiny{$51.0$}   &  & & \tiny{$1.3$} & \tiny{$1.0$} &  & \tiny{$5.6$} \\ \hline
1466 Nug15-d & $2230$  & $2418.1$  & $2580$  & $30$\% & $305.5$ & $5.2$ & $58.8 \times$ & $17$ \\
1467  &  & \tiny{$135.3$}  & & & \tiny{$164.5$} & \tiny{$1.3$} & & \tiny{$5.0$} \\ \hline
1468 Nug18-d & $17836$ & $18110.2$ & $18506$ & $10$\% & $1375.9$ & $12.8$ & $107.4 \times$ & $19$ \\
1469 & & \tiny{$157.8$} & & & \tiny{$123.5$} & \tiny{$2.6$} & & \tiny{$4.2$} \\ \hline
1470 Nug22-d & $42476$ & $43282.1$ & $44140$ & $25$\% & $4506.5$ & $32.7$ & $137.8 \times$ & $18$ \\
1471 & & \tiny{$529.6$} & & & \tiny{$341.1$} & \tiny{$6.6$} & & \tiny{$4.0$} \\ \hline
1472 \end{tabular}
1473 \caption{Results of the GPU-based iterated tabu search for
1474 different Q3AP instances.} \label{ch8:ITSQ3APResults} \center
1475 \end{table}
1476
1477 %\begin{table}
1478 %\tiny
1479 %%\footnotesize
1480 %\caption{Results of the GPU-based iterated tabu search for different Q3AP instances}
1481 %\label{ch8:ITSQ3APResults} \center
1482 %\begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hline
1483 %Instance & Opt./BKV\footnotemark & Average val. & Max val. & Hits & CPU time & GPU time & Accel. & ITS iter.\\ \hline
1484 %Nug12-d & $580$   & $615.4_{41.7}$    & $744$   & $35$\% & $87.7_{40.9}$ & $2.5_{0.9}$ & $\times 34.7 $& $16_{6.3}$ \\ \hline
1485 %Nug13-d & $1912$  & $1985.4_{51.0}$   & $2100$  & $20$\% & $209.2_{1.3}$ & $3.3_{1.0}$ & $\times 63.5$ & $17_{5.6}$ \\ \hline
1486 %Nug15-d & $2230$  & $2418.1_{135.3}$  & $2580$  & $30$\% & $305.5_{164.5}$ & $5.2_{1.3}$ & $\times 58.8 $ & $17_{5.0}$ \\ \hline
1487 %Nug18-d & $17836$ & $18110.2_{157.8}$ & $18506$ & $10$\% & $1375.9_{123.5}$ & $12.8_{2.6}$ & $\times 107.4$ & $19_{4.2}$ \\ \hline
1488 %Nug22-d & $42476$ & $43282.1_{529.6}$ & $44140$ & $25$\% & $4506.5_{341.1}$ & $32.7_{6.6}$ & $\times 137.8$ & $18_{4.0}$ \\ \hline
1489 %\end{tabular}
1490 %\end{table}
1491
1492 \footnotetext{Best known value.}
1493
1494 Regarding the execution time, the generation and evaluation of the
1495 neighborhood in parallel on GPU provides an efficient way to
1496 speedup the search process in comparison with a single CPU. In
1497 fact, for the smaller instance Nug12-d, the GPU version starts to
1498 be faster than the CPU one (acceleration factor of $34.7~\times$).
1499 As long as the problem size increases, the speedup grows
1500 significantly (up to $137.8 \times$ for the Nug22-d instance).
1501 This means that the use of GPU provides an efficient way to deal
1502 with large neighborhoods. Indeed, the proposed neighborhoods were
1503 unpractical in terms of single CPU computational resources for
1504 large Q3AP instances such as Nug22-d (estimated to around $2$
1505 hours per run). So, implementing this algorithm on GPU has allowed
1506 the exploitation of  parallelism in such neighborhood and improved
1507 the robustness/quality of provided solutions.
1508
1509 \section{Conclusion}
1510 \label{ch8:conclusion}
1511
1512 This chapter has presented state-of-the-art GPU-based parallel
1513 metaheuristics\index{Metaheuristics!parallel~metaheuristics} and
1514 a case study on implementing large neighborhood local search
1515 methods on GPUs for solving large benchmarks of the quadratic
1516 three-dimensional assignment problem (Q3AP). \\
1517
1518 Implementing parallel
1519 metaheuristics\index{Metaheuristics!parallel~metaheuristics} on
1520 GPU architectures poses new issues and challenges such as memory
1521 management\index{GPU Challenges!memory~management},  finding
1522 efficient mapping strategies between tasks to parallelize; and the
1523 GPU threads, thread divergence\index{GPU
1524 Challenges!thread~divergence}, and synchronization. Actually, most
1525 of metaheuristics have been implemented on GPU using different
1526 implementation strategies. In this chapter, a two-level
1527 classification of the reviewed works has been proposed: design
1528 level and implementation level. Design level regroups traditional
1529 parallel models used for metaheuristics while implementation level
1530 refers to the way those models are mapped to the GPU architecture.
1531 This classification focuses mainly on  the mapping between the
1532 metaheuristic tasks to parallelize and the GPU threads. Indeed,
1533 the choice of a given mapping strategy strongly influences the
1534 other challenges (memory usage, communication, thread
1535 divergence\index{GPU Challenges!thread~divergence}).
1536
1537 \putbib[Chapters/chapter9/biblio9]