\frac{g^{*,n+1}-g^n}{\tau} =\frac{(1-\Gamma)}{\tau} (g_e^n-g^n).
\end{align}
%
-The first term is similar to a first-order accurate Forward Euler\index{forward Euler} approximation of a rate of change term. This motivates an {\em embedded penalty forcing technique} based on adding a correction term of the form
+The first term is similar to a first-order accurate Forward Euler\index{Euler!forward Euler} approximation of a rate of change term. This motivates an {\em embedded penalty forcing technique} based on adding a correction term of the form
%
\begin{align}\label{ch7:eq:penalty}
\partial_t g = \mathcal{N}(g) + \frac{1-\Gamma(x)}{\tau} (g_e(t,x)-g(t,x)), \quad {\bf x}\in\Omega_\Gamma,