$v=e^{-a}.u$ represents the general change of variables such that $a=\frac{b^{t}(x,y,z)}{2\eta}$.
Consequently, the numerical resolution of the diffusion problem (the self-adjoint
operator~(\ref{ch13:eq:04})) is done by optimization algorithms, in contrast to that
-of the convection-diffusion problem (non self-adjoint operator~(\ref{ch13:eq:03}))
+of the convection-diffusion problem (nonself-adjoint operator~(\ref{ch13:eq:03}))
which is done by relaxation algorithms. In the case of our studied algorithm, the convergence\index{convergence}
is ensured by M-matrix property; then, the performance is linked to the magnitude of
the spectral radius of the iteration matrix, which is independent of the condition
%%--------------------------%%
\section{Red-black ordering technique}
\label{ch13:sec:06}
-As is well-known, the Jacobi method\index{iterative method!Jacobi} is characterized
+As is well known, the Jacobi method\index{iterative method!Jacobi} is characterized
by a slow convergence\index{convergence} rate compared to some iterative methods\index{iterative method}
(for example, Gauss-Seidel method\index{iterative method!Gauss-Seidel}). So, in this
section, we present some solutions to reduce the execution time and the number of