$v=e^{-a}.u$ represents the general change of variables such that $a=\frac{b^{t}(x,y,z)}{2\eta}$.
Consequently, the numerical resolution of the diffusion problem (the self-adjoint
operator~(\ref{ch13:eq:04})) is done by optimization algorithms, in contrast to that
$v=e^{-a}.u$ represents the general change of variables such that $a=\frac{b^{t}(x,y,z)}{2\eta}$.
Consequently, the numerical resolution of the diffusion problem (the self-adjoint
operator~(\ref{ch13:eq:04})) is done by optimization algorithms, in contrast to that