]> AND Private Git Repository - canny.git/blob - experiments.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
complexity
[canny.git] / experiments.tex
1 For whole experiments, the whole set of 10,000 images 
2 of the BOSS contest~\cite{Boss10} database is taken. 
3 In this set, each cover is a $512\times 512$
4 grayscale digital image in a RAW format. 
5 We restrict experiments to 
6 this set of cover images since this paper is more focused on 
7 the methodology than benchmarking.    
8 We use the matrices given in table~\ref{table:matrices:H}
9 as introduced in~\cite{}, since these ones have experimentally 
10 be proven to have the best modification efficiency.
11
12 \begin{table}
13 $$
14 \begin{array}{|l|l|}
15 \textrm{rate} & \textrm{matrix generators} \\
16 $\frac{1}{2} & \{71,109\}
17 $\frac{1}{3} & \{95, 101, 121\}
18 $\frac{1}{4} & \{81, 95, 107, 121\}
19 $\frac{1}{5} & \{75, 95, 97, 105, 117\}
20 $\frac{1}{6} & \{73, 83, 95, 103, 109, 123\}
21 $\frac{1}{7} & \{69, 77, 93, 107, 111, 115, 121\}
22 $\frac{1}{8} & \{69, 79, 81, 89, 93, 99, 107, 119\}
23 $\frac{1}{9} & \{69, 79, 81, 89, 93, 99, 107, 119, 125]
24
25
26
27 Our approach is always compared to Hugo~\cite{DBLP:conf/ih/PevnyFB10}
28 and to EAISLSBMR~\cite{Luo:2010:EAI:1824719.1824720}.
29 The former is the least detectable information hiding tool in spatial domain 
30 and the latter is the work that is the closest to ours, as far as we know. 
31
32
33
34 First of all,  in our experiments and with the adaptive scheme, 
35 the average size of the message that can be embedded is 16,445 bits.
36 Its corresponds to an  average payload of 6.35\%. 
37 The two other tools will then be compared with this payload. 
38 Sections~\ref{sub:quality} and~\ref{sub:steg} respectively present 
39 the quality analysis and the security of our scheme. 
40
41
42
43  
44
45 \subsection{Image quality}\label{sub:quality}
46 The visual quality of the STABYLO scheme is evaluated in this section.
47 For the sake of completeness, three metrics are computed in these experiments: 
48 the Peak Signal to Noise Ratio (PSNR), 
49 the PSNR-HVS-M family~\cite{psnrhvsm11}, 
50 %the BIQI~\cite{MB10}, 
51 and 
52 the weighted PSNR (wPSNR)~\cite{DBLP:conf/ih/PereiraVMMP01}.
53 The first one is widely used but does not take into
54 account the Human Visual System (HVS).
55 The other ones have been designed to tackle this problem.
56
57 If we apply them on the running example, 
58 the PSNR, PSNR-HVS-M, and wPSNR values are respectively equal to 
59 68.39, 79.85, and 89.71 for the stego Lena when $b$ is equal to 7.
60 If $b$ is 6, these values are respectively equal to 
61 65.43, 77.2, and 89.35.
62
63
64
65
66 \begin{table*}
67 \begin{center}
68 \begin{tabular}{|c|c|c||c|c|c|c|c|c|}
69 \hline
70 Schemes & \multicolumn{4}{|c|}{STABYLO} & \multicolumn{2}{|c|}{HUGO}& \multicolumn{2}{|c|}{EAISLSBMR} \\
71 \hline
72 Embedding &   Fixed & \multicolumn{3}{|c|}{Adaptive (about 6.35\%)} &  \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\
73 \hline
74 Rate &   10\% &  + sample &  +STC(7) & +STC(6) &  10\%&6.35\%& 10\%&6.35\%\\ 
75 \hline
76 PSNR & 61.86 & 63.48 &  66.55 (\textbf{-0.8\%}) &  63.7  & 64.65 & {67.08} & 60.8 & 62.9\\ 
77 \hline
78 PSNR-HVS-M & 72.9 & 75.39 & 78.6 (\textbf{-0.8\%}) & 75.5  & 76.67 & {79.23} & 71.8  & 74.3\\ 
79 %\hline
80 %BIQI & 28.3 & 28.28 & 28.4 & 28.28 & 28.28 & 28.2 & 28.2\\ 
81 \hline
82 wPSNR & 77.47 & 80.59 & 86.43(\textbf{-1.6\%})& 86.28  & 83.03 & {87.8} & 76.7 & 80.6\\ 
83 \hline
84 \end{tabular}
85
86 \begin{footnotesize}
87 \vspace{2em}
88 Variances given in bold font express the quality differences between 
89 HUGO and STABYLO with  STC+adaptive parameters.
90 \end{footnotesize}
91
92 \end{center}
93 \caption{Quality measures of steganography approaches\label{table:quality}}
94 \end{table*}
95
96
97
98 Results are summarized in Table~\ref{table:quality}.
99 Let us give an interpretation of these experiments.
100 First of all, the adaptive strategy produces images with lower distortion 
101 than the images resulting from the 10\% fixed strategy.
102 Numerical results are indeed always greater for the former strategy than 
103 for the latter one.
104 These results are not surprising since the adaptive strategy aims at 
105 embedding messages whose length is decided according to an higher threshold
106 into the edge detection.  
107 Let us focus on the quality of HUGO images: with a given fixed 
108 embedding rate (10\%), 
109 HUGO always produces images whose quality is higher than the STABYLO's one.
110 However our approach is always better than EAISLSBMR since this one may modify 
111 the two least significant bits.
112
113 If we combine \emph{adaptive} and \emph{STC} strategies 
114 (which leads to an average embedding rate equal to 6.35\%)
115 our approach  provides metrics equivalent to those provided by HUGO.
116 In this column STC(7) stands for embedding data in the LSB whereas
117 in STC(6), data are hidden in the two last significant bits. 
118
119
120
121 The quality variance between HUGO and STABYLO for these parameters
122 is given in bold font. It is always close to 1\% which confirms 
123 the objective presented in the motivations:
124 providing an efficient steganography approach with a lightweight manner.
125
126
127 Let us now compare the STABYLO approach with other edge based steganography
128 approaches, namely~\cite{DBLP:journals/eswa/ChenCL10,Chang20101286}.
129 These two schemes focus on increasing the
130 payload while the PSNR is acceptable, but do not 
131 give quality metrics for fixed embedding rates from a large base of images. 
132
133
134
135
136 \subsection{Steganalysis}\label{sub:steg}
137
138
139
140 The steganalysis quality of our approach has been evaluated through the two 
141 AUMP~\cite{Fillatre:2012:ASL:2333143.2333587}
142 and Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12} based steganalysers.
143 Both aim at detecting hidden bits in grayscale natural images and are 
144 considered as state of the art steganalysers in the spatial domain~\cite{FK12}.
145 The former approach is based on a simplified parametric model of natural images.
146 Parameters are firstly estimated and an adaptive Asymptotically Uniformly Most Powerful
147 (AUMP) test is designed (theoretically and practically), to check whether
148 an image has stego content or not.
149 This approach is dedicated to verify whether LSB has been modified or not.
150 In the latter, the authors show that the 
151 machine learning step, which is often
152 implemented as a support vector machine,
153 can be favorably executed thanks to an ensemble classifier.
154
155
156 \begin{table*}
157 \begin{center}
158 %\begin{small}
159 \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
160 \hline
161 Schemes & \multicolumn{4}{|c|}{STABYLO} & \multicolumn{2}{|c|}{HUGO}& \multicolumn{2}{|c|}{EAISLSBMR}\\
162 \hline
163 Embedding & Fixed &   \multicolumn{3}{|c|}{Adaptive (about 6.35\%)}  & \multicolumn{2}{|c|}{Fixed}& \multicolumn{2}{|c|}{Fixed} \\
164 \hline
165 Rate & 10\% &  + sample &   +STC(7) & +STC(6)   & 10\%& 6.35\%& 10\%& 6.35\%\\ 
166 \hline
167 AUMP & 0.22 & 0.33 & 0.39  &   0.45    &  0.50 &  0.50 & 0.49 & 0.50 \\
168 \hline
169 Ensemble Classifier & 0.35 & 0.44 & 0.47 & 0.47     & 0.48 &  0.49  &  0.43  & 0.46 \\
170
171 \hline
172 \end{tabular}
173 %\end{small}
174 \end{center}
175 \caption{Steganalysing STABYLO\label{table:steganalyse}} 
176 \end{table*}
177
178
179 Results are summarized in Table~\ref{table:steganalyse}.
180 First of all, STC outperforms the sample strategy for the two steganalysers, as 
181 already noticed in the quality analysis presented in the previous section. 
182 Next, our approach is more easily detectable than HUGO, which
183 is the most secure steganographic tool, as far as we know. 
184 However by combining \emph{adaptive} and \emph{STC} strategies
185 our approach obtains similar results to HUGO ones.
186
187 However due to its 
188 huge number of integration features, it is not lightweight, which justifies 
189 in the authors' opinion the consideration of the proposed method.   
190