]> AND Private Git Repository - canny.git/blob - stc.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
fin reprise
[canny.git] / stc.tex
1 Let 
2 $x=(x_1,\ldots,x_n)$ be the $n$-bits cover vector of the image $X$, 
3 $m$ be the message to embed and 
4 $y=(y_1,\ldots,y_n)$ be the $n$-bits stego vector.
5 The usual additive embbeding impact of replacing $x$ by $y$ in $X$
6 is given by a distortion function 
7 $D_X(x,y)= \Sigma_{i=1}^n \rho_X(i,x,y)$ where the function $\rho_X$
8 expressed the cost of replacing $x_i$ by $y_i$ in $X$.
9 Let us consider that $x$ is fixed: 
10 this is for instance the LSBs of the image edge bits. 
11 The objective is thus to find $y$ that minimizes $D_X(x,y)$.
12
13 Hamming embedding proposes a solution to this problem. 
14 Some steganographic 
15 schemes~\cite{DBLP:conf/ih/Westfeld01,DBLP:conf/ih/KimDR06,DBLP:conf/mmsec/FridrichPK07} are based on this binary embedding.
16 Furthermore this code provides a vector $y$ s.t. $Hy$ is equal to 
17 $m$ for a given binary matrix $H$. 
18
19 Let us explain this embedding on a small illustrative example where
20 $\rho_X(i,x,y)$ is identically equal to 1,
21 $m$ and $x$ are respectively  a 3 bits column
22 vector and a 7 bits column vector. 
23 Let then $H$ be the binary Hamming matrix  
24 $$
25 H = \left(
26 \begin{array}{lllllll}
27  0 & 0 & 0 & 1 & 1 & 1 & 1 \\
28  0 & 1 & 1 & 0 & 0 & 1 & 1 \\
29  1 & 0 & 1 & 0 & 1 & 0 & 1 
30 \end{array}
31 \right).
32 $$
33 The objective is to modify $x$ to get $y$ s.t. $m = Hy$.
34 In this algebra, the sum and the product respectively correspond to
35 the exclusive \emph{or} and to the \emph{and} Boolean operators.
36 If $Hx$ is already equal to $m$, nothing has to be changed and $x$ can be sent.
37 Otherwise we consider the difference $\delta = d(m,Hx)$ which is expressed 
38 as a vector : 
39 $$
40 \delta = \left( \begin{array}{l}
41 \delta_1 \\
42 \delta_2 \\
43 \delta_3
44 \end{array} 
45 \right)  
46 \textrm{ where $\delta_i$ is 0 if $m_i = Hx_i$ and 1 otherwise.} 
47 $$
48 Let us thus consider the $j$th column of $H$ which is equal to $\delta$.   
49 We denote by $\overline{x}^j$ the vector  we obtain by
50 switching the $j$th component of $x$, 
51 that is, $\overline{x}^j = (x_1 , \ldots, \overline{x_j},\ldots, x_n )$.
52 It is not hard to see that if $y$ is $\overline{x}^j$, then 
53 $m = Hy$.
54 It is then possible to embed 3 bits in only 7 LSB of pixels by modifying
55 1 bit at most.
56 In the general case, when comunicating $n$ message bits in 
57 $2^n-1$ pixels needs $1-1/2^n$ average changes. 
58
59
60
61 Unfortunately, 
62
63
64 for any given $H$, finding $y$ that solves $Hy=m$ and that 
65 that minimizes $D_X(x,y)$ has exponential complexity with respect to $n$. 
66 The Syndrome-Trellis Codes  (STC) 
67 presented by Filler et al. in~\cite{DBLP:conf/mediaforensics/FillerJF10} 
68 is a practical solution to this complexity. Thanks to this contribution,
69 the solving algorithm has a linear complexity with resspect to $n$.
70
71 First of all, Filler et al. compute the matrix $H$
72 by placing a small sub-matrix $\hat{H}$ of size $h × w$ next
73 to each other and shifted down by one row. 
74 Thanks to this special form of $H$, one can represent
75 every solution of  $m=Hy$ as a path through a trellis.
76
77 Next, the  process of finding $y$ consists of a forward and a backward part:
78 \begin{enumerate}
79 \item Forward construction of the trellis that depends on $\hat{H}$, on $x$, on $m$, and on $\rho$;
80 \item Backward determinization of $y$ which minimizes $D$ starting with 
81 the complete path with minimal weight
82 \end{enumerate} 
83 Let us now give some details about these two parts.
84
85