]> AND Private Git Repository - canny.git/blob - ourapproach.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ourapproach.tex modifié
[canny.git] / ourapproach.tex
1 This section first presents the embedding scheme through its 
2 four main steps: the data encryption (Sect.~\ref{sub:bbs}),
3 the cover pixel selection (Sect.~\ref{sub:edge}),
4 the adaptive payload considerations (Sect.~\ref{sub:adaptive}),
5 and how the distortion has been minimized (Sect.~\ref{sub:stc}).
6 The message extraction is then presented  (Sect.~\ref{sub:extract}) while a running example ends this section (Sect.~\ref{sub:xpl}). 
7
8
9 The flowcharts given in Fig.~\ref{fig:sch}
10 summarize our steganography scheme denoted by
11 STABYLO, which stands for STe\-ga\-no\-gra\-phy with 
12 Adaptive, Bbs, binarY embedding at LOw cost.
13 What follows are successively some details of the inner steps and the flows both inside 
14  the embedding stage (Fig.~\ref{fig:sch:emb}) 
15 and inside the extraction one (Fig.~\ref{fig:sch:ext}).
16 Let us first focus on the data embedding. 
17
18 \begin{figure*}%[t]
19   \begin{center}
20     \subfloat[Data Embedding]{
21       \begin{minipage}{0.4\textwidth}
22         \begin{center}
23             %\includegraphics[scale=0.45]{emb}
24             \includegraphics[scale=0.4]{emb}
25         \end{center}
26       \end{minipage}
27       \label{fig:sch:emb}
28     } 
29 \hfill
30     \subfloat[Data Extraction]{
31       \begin{minipage}{0.49\textwidth}
32         \begin{center}
33             \includegraphics[scale=0.4]{dec}
34         \end{center}
35       \end{minipage}
36       \label{fig:sch:ext}
37     }%\hfill
38   \end{center}
39   \caption{The STABYLO scheme}
40   \label{fig:sch}
41 \end{figure*}
42
43
44
45
46
47
48
49
50 \subsection{Security considerations}\label{sub:bbs}
51 Among the methods of  message encryption/decryption 
52 (see~\cite{DBLP:journals/ejisec/FontaineG07} for a survey)
53 we implement the Blum-Goldwasser cryptosystem~\cite{Blum:1985:EPP:19478.19501}
54 that is based on the Blum Blum Shub~\cite{DBLP:conf/crypto/ShubBB82} 
55 pseudorandom number generator (PRNG) and the 
56 XOR binary function.
57 It has been proven~\cite{DBLP:conf/crypto/ShubBB82} that this PRNG 
58 has the property of cryptographical security, \textit{i.e.}, 
59 for any sequence of $L$ output bits $x_i$, $x_{i+1}$, \ldots, $x_{i+L-1}$,
60 there is no algorithm, whose time complexity is polynomial  in $L$, and 
61 which allows to find $x_{i-1}$ or $x_{i+L}$ with a probability greater
62 than $1/2$.
63 Equivalent formulations of such a property can
64 be found. They all lead to the fact that,
65 even if the encrypted message is extracted, 
66 it is impossible to retrieve the original one in 
67 polynomial time.   
68
69 Starting thus with a key $k$ and the message \textit{mess} to hide, 
70 this step computes a message $m$, which is the encrypted version  of \textit{mess}.
71
72
73 \subsection{Edge-based image steganography}\label{sub:edge}
74
75
76 The edge-based image
77 steganography schemes 
78 already presented \cite{Luo:2010:EAI:1824719.1824720,DBLP:journals/eswa/ChenCL10} differ 
79 in how carefully they select edge pixels, and  
80 how they modify them.
81
82 %Image Quality: Edge Image Steganography
83 %\JFC{Raphael, les fuzzy edge detection sont souvent utilisés. 
84 %  il faudrait comparer les approches en terme de nombre de bits retournés,
85 %  en terme de complexité. } \cite{KF11}
86 %\RC{Ben, à voir car on peut choisir le nombre de pixel avec Canny. Supposons que les fuzzy edge soient retourne un peu plus de points, on sera probablement plus détectable...  Finalement on devrait surement vendre notre truc en : on a choisi cet algo car il est performant en vitesse/qualité. Mais on peut aussi en utilisé d'autres :-)}
87
88 Many techniques have been proposed in the literature to  detect 
89 edges in  images (whose noise has been initially reduced). 
90 They can be separated in two categories: first and second order detection
91 methods on the one hand, and fuzzy detectors on the other  hand~\cite{KF11}.
92 In first order methods like Sobel, Canny~\cite{Canny:1986:CAE:11274.11275}, and so on, 
93 a first-order derivative (gradient magnitude, etc.) is computed 
94 to search for local maxima, whereas in second order ones, zero crossings in a second-order derivative, like the Laplacian computed from the image,
95 are searched in order to find edges.
96 As far as fuzzy edge methods are concerned, they are obviously based on fuzzy logic to highlight edges.
97
98 Canny filters, on their parts, are an old family of algorithms still remaining a state of the art edge detector. They can be well-approximated by first-order derivatives of Gaussians.
99 As the Canny algorithm is fast, well known, has been studied in depth, and is implementable
100 on many  kinds of architectures like FPGAs, smart phones,  desktop machines, and
101 GPUs, we have chosen this edge detector for illustrative purpose.
102
103
104
105
106 This edge detection is applied on a filtered version of the image given 
107 as input.
108 More precisely, only $b$ most significant bits are concerned by this step, 
109 where the parameter $b$ is practically set with $6$ or $7$. 
110 Notice that only the 2 LSBs of pixels in the set of edges
111 are returned if $b$ is 6, and the LSB of pixels if $b$ is 7.
112 If set with the same value $b$, the edge detection returns thus the same 
113 set of pixels for both the cover and the stego image.   
114 Moreover, to provide edge gradient value, 
115 the Canny algorithm computes derivatives  
116 in the two directions with respect to a mask of size $T$. 
117 The higher $T$ is, the coarse the approach is. Practically, 
118 $T$ is set with $3$, $3$, or $7$.
119 In our flowcharts, this step is represented by ``Edge Detection(b, T, X)''.
120
121
122 Let $x$ be the sequence of these bits. 
123 The next  section presents how to adapt our scheme 
124 when the size of $x$  is not sufficient for the message $m$ to embed.
125
126
127  
128
129
130
131
132 \subsection{Adaptive embedding rate}\label{sub:adaptive}
133 Two strategies have been developed in our approach, 
134 depending on the embedding rate that is either \emph{adaptive} or \emph{fixed}.
135 In the former the embedding rate depends on the number of edge pixels.
136 The higher it is, the larger the message length that can be inserted is.
137 Practically, a set of edge pixels is computed according to the 
138 Canny algorithm with parameters $b=7$ and $T=3$.
139 The message length is thus defined to be less than 
140 half of this set cardinality.
141 If $x$ is too short for $m$, the message is split into sufficient parts
142 and a new cover image should be used for the remaining part of the message. 
143
144 In the latter, the embedding rate is defined as a percentage between the 
145 number of modified pixels and the length of the bit message.
146 This is the classical approach adopted in steganography.
147 Practically, the Canny algorithm generates  
148 a set of edge pixels related to increasing values of $T$ and 
149 until its cardinality
150 is sufficient. Even in this situation, our scheme is adapting 
151 its algorithm to meet all the user's requirements. 
152
153
154 Once the map of possibly modified pixels is computed, 
155 two methods may further be applied to extract bits that 
156 are really modified. 
157 The first one randomly chooses the subset of pixels to modify by 
158 applying the BBS PRNG again. This method is further denoted  as a \emph{sample}.
159 Once this set is selected, a classical LSB replacement is applied to embed the 
160 stego content.
161 The second method considers the last significant bits of all the pixels 
162 inside the previous map. It next directly applies the STC 
163 algorithm~\cite{DBLP:journals/tifs/FillerJF11}. 
164 It  is further referred to as \emph{STC} and is detailed in the next section.
165
166
167
168
169
170
171
172
173 \subsection{Minimizing distortion with syndrome-trellis codes}\label{sub:stc}
174 \input{stc}
175
176
177
178 % Edge Based Image Steganography schemes 
179 % already studied~\cite{Luo:2010:EAI:1824719.1824720,DBLP:journals/eswa/ChenCL10,DBLP:conf/ih/PevnyFB10} differ 
180 % how they select edge pixels, and  
181 % how they modify these ones.
182
183 % First of all, let us discuss about compexity of edge detetction methods.
184 % Let then $M$ and $N$ be the dimension of the original image. 
185 % According to~\cite{Hu:2007:HPE:1282866.1282944},
186 % even if the fuzzy logic based edge detection methods~\cite{Tyan1993} 
187 % have promising results, its complexity is in $C_3 \times O(M \times N)$
188 % whereas the complexity on the Canny method~\cite{Canny:1986:CAE:11274.11275} 
189 % is in $C_1 \times O(M \times N)$ where  $C_1 < C_3$.
190 % \JFC{Verifier ceci...}
191 % In experiments detailled in this article, the Canny method has been retained 
192 % but the whole approach can be updated to consider 
193 % the fuzzy logic edge detector.   
194
195 % Next, following~\cite{Luo:2010:EAI:1824719.1824720}, our scheme automatically
196 % modifies Canny parameters to get a sufficiently large set of edge bits: this 
197 % one is practically enlarged untill its size is at least twice as many larger 
198 % than the size of embedded message.
199
200
201
202 %%RAPH: paragraphe en double :-)
203
204
205
206
207 \subsection{Data extraction}\label{sub:extract}
208 The message extraction summarized in Fig.~\ref{fig:sch:ext} 
209 follows the data embedding approach 
210 since there exists a reverse function for all its steps.
211
212 More precisely,  let $b$ be the most significant bits and 
213 $T$ be the size of the canny mask, both be given as a key.
214 Thus, the same edge detection is applied on a stego content $Y$ to 
215 produce the sequence $y$ of LSBs. 
216 If the STC approach has been selected in embedding, the STC reverse
217 algorithm is directly executed to retrieve the encrypted message. 
218 This inverse function takes the $\hat{H}$ matrix as a parameter.
219 Otherwise, \textit{i.e.}, if the \emph{sample} strategy is retained,
220 the same random bit selection than in the embedding step 
221 is executed with the same seed, given as a key.
222 Finally, the Blum-Goldwasser decryption function is executed and the original
223 message is extracted.
224
225
226 \subsection{Running example}\label{sub:xpl}
227 In this example, the cover image is  Lena, 
228 which is a $512\times512$  image with 256 grayscale levels.
229 The message is the poem Ulalume (E. A. Poe), which is constituted by 104 lines, 667
230 words, and 3,754 characters, \textit{i.e.},  30,032 bits.
231 Lena and the first verses are given in Fig.~\ref{fig:lena}.
232
233 \begin{figure}
234 \begin{center}
235 \begin{minipage}{0.49\linewidth}
236 \begin{center}
237 \includegraphics[scale=0.20]{lena512}
238 \end{center}
239 \end{minipage}
240 \begin{minipage}{0.49\linewidth}
241 \begin{flushleft}
242 \begin{scriptsize}
243 The skies they were ashen and sober;\linebreak
244 $\qquad$ The leaves they were crisped and sere—\linebreak
245 $\qquad$ The leaves they were withering and sere;\linebreak
246 It was night in the lonesome October\linebreak
247 $\qquad$ Of my most immemorial year;\linebreak
248 It was hard by the dim lake of Auber,\linebreak
249 $\qquad$ In the misty mid region of Weir—\linebreak
250 It was down by the dank tarn of Auber,\linebreak
251 $\qquad$ In the ghoul-haunted woodland of Weir.
252 \end{scriptsize}
253 \end{flushleft}
254 \end{minipage}
255 \end{center}
256 \caption{Cover and message examples} \label{fig:lena}
257 \end{figure}
258
259 The edge detection returns 18,641 and 18,455 pixels when $b$ is
260 respectively 7 and 6 and $T=3$.
261 These edges are represented in Figure~\ref{fig:edge}.
262 When $b$ is 7, it remains one bit per pixel to build the cover vector.
263 This configuration leads to a cover vector of size  18,641 if b is 7 
264 and 36,910 if $b$ is 6.  
265
266 \begin{figure}[t]
267   \begin{center}
268     \subfloat[$b$ is 7.]{
269       \begin{minipage}{0.49\linewidth}
270         \begin{center}
271           %\includegraphics[width=5cm]{emb.pdf}
272           \includegraphics[scale=0.20]{edge7}
273         \end{center}
274       \end{minipage}
275       %\label{fig:sch:emb}
276     }%\hfill
277     \subfloat[$b$ is 6.]{
278       \begin{minipage}{0.49\linewidth}
279         \begin{center}
280           %\includegraphics[width=5cm]{rec.pdf}
281           \includegraphics[scale=0.20]{edge6}
282         \end{center}
283       \end{minipage}
284       %\label{fig:sch:ext}
285     }%\hfill
286   \end{center}
287   \caption{Edge detection wrt $b$ with $T=3$}
288   \label{fig:edge}
289 \end{figure}
290
291
292
293 The STC algorithm is optimized when the rate between message length and 
294 cover vector length is lower than 1/2. 
295 So, only 9,320 bits  are available for embedding 
296 in the  configuration where $b$ is 7.
297
298 When $b$ is 6, we could have considered 18,455 bits for the message.
299 However, first experiments have shown that modifying this number of bits is too 
300 easily detectable. 
301 So, we choose to modify the same amount of bits (9,320) and keep STC optimizing
302 which bits to change among  the 36,910 ones.
303
304 In the two cases, about the third part of the poem is hidden into the cover. 
305 Results with \emph{adaptive} and \textit{STC} strategies are presented in 
306 Fig.~\ref{fig:lenastego}.
307
308 \begin{figure}[t]
309   \begin{center}
310     \subfloat[$b$ is 7.]{
311       \begin{minipage}{0.49\linewidth}
312         \begin{center}
313           %\includegraphics[width=5cm]{emb.pdf}
314           \includegraphics[scale=0.20]{lena7}
315         \end{center}
316       \end{minipage}
317       %\label{fig:sch:emb}
318     }%\hfill
319     \subfloat[$b$ is 6.]{
320       \begin{minipage}{0.49\linewidth}
321         \begin{center}
322           %\includegraphics[width=5cm]{rec.pdf}
323           \includegraphics[scale=0.20]{lena6}
324         \end{center}
325       \end{minipage}
326       %\label{fig:sch:ext}
327     }%\hfill
328   \end{center}
329   \caption{Stego images wrt $b$}
330   \label{fig:lenastego}
331 \end{figure}
332
333
334 Finally, differences between the original cover and the stego images  
335 are presented in Fig.~\ref{fig:lenadiff}. For each pair of pixel $X_{ij}$ and  $Y_{ij}$ ($X$ and $Y$ being the cover and the stego content respectively), 
336 the pixel value $V_{ij}$ of the difference is defined with the following map
337 $$
338 V_{ij}= \left\{
339 \begin{array}{rcl}
340 0 & \textrm{if} &  X_{ij} = Y_{ij} \\
341 75 & \textrm{if} &  \vert X_{ij} - Y_{ij} \vert = 1 \\
342 150 & \textrm{if} &  \vert X_{ij} - Y_{ij} \vert = 2 \\
343 225 & \textrm{if} &  \vert X_{ij} - Y_{ij} \vert = 3 
344 \end{array}
345 \right..
346 $$
347 This function allows to emphasize differences between contents.
348 Notice that 
349
350
351 \begin{figure}[t]
352   \begin{center}
353     \subfloat[$b$ is 7.]{
354       \begin{minipage}{0.49\linewidth}
355         \begin{center}
356           %\includegraphics[width=5cm]{emb.pdf}
357           \includegraphics[scale=0.20]{diff7}
358         \end{center}
359       \end{minipage}
360       \label{fig:diff7}
361     }%\hfill
362     \subfloat[$b$ is 6.]{
363       \begin{minipage}{0.49\linewidth}
364         \begin{center}
365           %\includegraphics[width=5cm]{rec.pdf}
366           \includegraphics[scale=0.20]{diff6}
367         \end{center}
368       \end{minipage}
369       \label{fig:diff6}
370     }%\hfill
371   \end{center}
372   \caption{Differences  with Lena's cover  wrt $b$}
373   \label{fig:lenadiff}
374 \end{figure}
375
376
377 Notice that since $b$ is 7 in Fig.~\ref{fig:diff7}, the embedding is binary 
378 and this image only contains 0 and 75 values.
379 Similarly, when $b$ is 6 as in Fig.~\ref{fig:diff6}, the embedding is ternary 
380 and the image contains all the values in $\{0,75,150,225\}$.
381