]> AND Private Git Repository - canny.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
reprise texte coutu
authorJean-François Couchot <couchot@couchot.iut-bm.univ-fcomte.fr>
Fri, 6 Mar 2015 11:17:22 +0000 (12:17 +0100)
committerJean-François Couchot <couchot@couchot.iut-bm.univ-fcomte.fr>
Fri, 6 Mar 2015 11:17:22 +0000 (12:17 +0100)
complexity.tex
experiments.tex

index db1609f28ebe17780a282b2087c9cd58da3f037a..390190fd6cac0624540fb5ddc397b137e0bc393f 100644 (file)
@@ -83,7 +83,7 @@ Thanks to these complexity results, we claim that our approach is lightweight.
 \begin{center}
 \includegraphics[scale=0.4]{complexity}
 \end{center}
 \begin{center}
 \includegraphics[scale=0.4]{complexity}
 \end{center}
-\caption{Complexity evaluation of WOW/UNIWARD, HUGO, and STABYLO}
+\caption{Complexity evaluation of WOW/UNIWARD, HUGO, and STABYLO.}
 \label{fig:compared} 
 \end{figure}
 
 \label{fig:compared} 
 \end{figure}
 
index 9590b1c4982484f286f04cd151f3b821449ac6c5..15fb5c10afca1fafb81bba6ea93ca3fe544301bd 100644 (file)
@@ -42,7 +42,7 @@ $$
 \hline
 \end{array}
 $$
 \hline
 \end{array}
 $$
-\caption{Matrix Generator for $\hat{H}$ in STC}\label{table:matrices:H}
+\caption{Matrix Generator for $\hat{H}$ in STC.}\label{table:matrices:H}
 \end{table}
 
 
 \end{table}
 
 
@@ -153,7 +153,7 @@ considered as state of the art steganalysers.
 \JFC{Features that are embedded into this steganalysis process 
 are CCPEV and SPAM features as described 
 in~\cite{DBLP:dblp_conf/mediaforensics/KodovskyPF10}.
 \JFC{Features that are embedded into this steganalysis process 
 are CCPEV and SPAM features as described 
 in~\cite{DBLP:dblp_conf/mediaforensics/KodovskyPF10}.
-These latter are extracted from the 
+The are extracted from the 
 set of cover images and the set of training images.}
 Next a small 
 set of weak classifiers is randomly built,
 set of cover images and the set of training images.}
 Next a small 
 set of weak classifiers is randomly built,
@@ -193,7 +193,7 @@ Ensemble Classifier & 0.35 & 0.44 & 0.47 & 0.47     & 0.48 &  0.49  &  0.43  & 0
 \end{tabular}
 \end{small}
 \end{center}
 \end{tabular}
 \end{small}
 \end{center}
-\caption{Steganalysing STABYLO\label{table:steganalyse}} 
+\caption{Steganalysing STABYLO\label{table:steganalyse}.
 \end{table*}
 
 
 \end{table*}
 
 
@@ -215,14 +215,23 @@ However due to its huge number of integration features, it is not lightweight.
 
 All these numerical experiments confirm 
 the objective presented in the motivations:
 
 All these numerical experiments confirm 
 the objective presented in the motivations:
-providing an efficient steganography approach in a lightweight manner.
-
-\RC{In Figure~\ref{fig:error}, Ensemble Classifier has been used with all the previsou steganalizers with 3 different payloads. It can be observed that with important payload, STABYLO is not efficient, but as mentionned its complexity is far more simple compared to other tools.\\
+providing an efficient steganography approach in a lightweight manner
+for small payload.
+
+\RC{In Figure~\ref{fig:error}, 
+Ensemble Classifier has been used with all the previous 
+steganographic schemes with 4 different payloads.
+It can be observed that face to high values of payload, 
+STABYLO is definitely not secure enough.
+However thanks to an efficient very low-complexity (Fig.\ref{fig:compared}), 
+we argue that the user should embed tiny messages in many images 
+than a larger message in only one image.
 \begin{figure}
 \begin{center}
 \includegraphics[scale=0.5]{error}
 \end{center}
 \begin{figure}
 \begin{center}
 \includegraphics[scale=0.5]{error}
 \end{center}
-\caption{Error obtained by Ensemble classifier with WOW/UNIWARD, HUGO, and STABYLO and different paylaods.}
+\caption{Testing error obtained by Ensemble classifier with 
+WOW/UNIWARD, HUGO, and STABYLO w.r.t. payload.}
 \label{fig:error} 
 \end{figure}
 }
 \label{fig:error} 
 \end{figure}
 }