\begin{document}
\title[Neural Networks and Chaos]{Neural Networks and Chaos:
-Construction, Evaluation of Chaotic Networks \\
+Construction, Evaluation of Chaotic Networks, \\
and Prediction of Chaos with Multilayer Feedforward Networks
}
chaos is introduced. Starting with a relationship between discrete
iterations and Devaney's chaos, we firstly show how to build a
recurrent neural network that is equivalent to a chaotic map and
-secondly a way to check whether an already available network, is
+secondly a way to check whether an already available network is
chaotic or not. We also study different topological properties of
these truly chaotic neural networks. Finally, we show that the
learning, with neural networks having a classical feedforward
\label{S1}
Several research works have proposed or used chaotic neural networks
-these last years. The complex dynamics of such a network leads to
+these last years. The complex dynamics of such networks lead to
various potential application areas: associative
memories~\cite{Crook2007267} and digital security tools like hash
functions~\cite{Xiao10}, digital
their universal approximator capacity
\cite{Cybenko89,DBLP:journals/nn/HornikSW89}. Thus, this kind of
networks can be trained to model a physical phenomenon known to be
-chaotic such as Chua's circuit \cite{dalkiran10}. Sometimes, a neural
-network which is build by combining transfer functions and initial
+chaotic such as Chua's circuit \cite{dalkiran10}. Sometime a neural
+network, which is build by combining transfer functions and initial
conditions that are both chaotic, is itself claimed to be chaotic
\cite{springerlink:10.1007/s00521-010-0432-2}.
precisely, in this paper, which is an extension of a previous work
\cite{bgs11:ip}, we establish the equivalence between chaotic
iterations and a class of globally recurrent MLP. The second
-contribution is a study of the converse problem, indeed we study the
+contribution is a study of the converse problem, indeed we investigate the
ability of classical multiLayer perceptrons to learn a particular
family of discrete chaotic dynamical systems. This family is defined
by a Boolean vector, an update function, and a sequence defining which