1 Let us first the basic recalls of the~\cite{HLG09} article.
4 The precise the context of video sensor network as represeted for instance
5 in figure~\ref{fig:sn}.
9 \includegraphics[scale=0.5]{reseau.png}
10 \caption{SN with 10 sensor}\label{fig:sn}.
15 Let us give a formalisation of such a wideo network sensor.
16 We start with the flow formalising:
18 The video sensor network is represented as a strongly
19 connected oriented labelled graph.
21 the nodes, in a set $N$ are sensors, links, or the sink.
22 Furtheremore, there is an edge from $i$ to $j$ if $i$ can
23 send a mesage to $j$. The set of all edges is further denoted as
25 This boolean information is stored as a
26 matrix $A=(a_{il})_{i \in N, l \in L}$,
31 1 & \textrm{if $l$ starts with $i$ } \\
32 -1 & \textrm{si $l$ ends width $i$ } \\
33 0 & \textrm{otherwise}
38 Let $V \subset N $ be the set of the video sensors of $N$.
39 Let thus $R_h$, $R_h \geq 0$ be the encoding rate of video sensor $h$, $h \in V$.
40 Let $\eta_{hi}$ be the production rate of the $i$ node, for the $h$ session. More precisely, we have
45 R_h & \textrm{si $i$ est $h$} \\
46 -R_h & \textrm{si $i$ est le puits} \\
51 We are then left to focus on the flows in this network.
52 Let $x_{hl}$, $x_{hl}\geq 0$, be the flow inside the edge $l$ that
53 issued from the $h$ sesssion and
54 let $y_l = \sum_{h \in V}x_{hl} $ the sum of all the flows inside $l$.
55 Thus, what is produced inside the $i^{th}$ sensor for session $h$
56 is $ \eta_{hi} = \sum_{l \in L }a_{il}x_{hl} $.
59 The encoding power of the $i$ node is $P_{si}$, $P_{si} > 0$.
61 The distortion is bounded $\sigma^2 e^{-\gamma . R_h.P_{sh}^{}2/3} \leq D_h$.
63 The initial energy of the $i$ node is $B_i$.
65 The overall consumed powed of the $i$ node is
66 $P_{si}+ P_{ti} + P_{ri}=
67 P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.y_l +
68 \sum_{l \in L} a_{il}^{-}.c^r.y_l \leq q.B_i.
71 The objective is thus to find $R$, $x$, $P_s$ which minimize
72 $q$ under the following set of constraints
74 \item $\sum_{l \in L }a_{il}x_{hl} = \eta_{hi},\forall h \in V, \forall i \in N $
75 \item $ \sum_{h \in V}x_{hl} = y_l,\forall l \in L$
76 \item $\dfrac{\ln(\sigma^2/D_h)}{\gamma.P_{sh}^{2/3}} \leq R_h \forall h \in V$
77 \item \label{itm:q} $P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.y_l +
78 \sum_{l \in L} a_{il}^{-}.c^r.y_l \leq q.B_i, \forall i \in N$
79 \item $x_{hl}\geq0, \forall h \in V, \forall l \in L$
80 \item $R_h \geq 0, \forall h \in V$
81 \item $P_{sh} > 0,\forall h \in V$
85 To achieve a local optimisation, the problem is translated into an
89 The objective is thus to find $R$, $x$, $P_s$ which minimize
90 $\sum_{i \in N }q_i^2$ with the same set of constraints, but
91 item \ref{itm:q}, which is replaced by:
93 $$P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl} \right) +
94 \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl} \right) \leq q.B_i, \forall i \in N$$
96 \JFC{Vérifier l'inéquation précédente}
98 The authors then aplly a dual based approach with Lagrange multiplier
99 to solve such a problem.
104 \inputFrameb{Formulation simplifiée}{formalisationsimplifiee}