2 \item Trouver $R$, $x$, $P_s$, $q_i$ minimisant $\sum_{i \in N }q_i^2$ t.q.
4 \item $\sum_{l \in L }a_{il}x_{hl} = \eta_{hi},\forall h \in V, \forall i \in N$
5 \alert{$ \leadsto$ $u_{hi}$}
7 \item $\dfrac{\ln(\sigma^2/D_h)}{\gamma.P_{sh}^{2/3}} \leq R_h, \forall h \in V$
8 \alert{$ \leadsto$ $v_{h}$}
9 \item $P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl} \right) +
10 \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl} \right) \leq q.B_i, \forall i \in N$
11 \alert{$ \leadsto$ $\lambda_{i}$}
13 \item $\sum_{i \in N} a_{il}.q_i = 0 \forall l \in L$
14 \alert{$ \leadsto$ $w_{l}$
17 \item $x_{hl}\geq0, \forall h \in V, \forall l \in L$
19 \item $R_h \geq 0, \forall h \in V$
21 \item $P_{sh} > 0,\forall h \in V$
23 \item $q_i > 0,\forall i \in N$