1 Trouver $R$, $x$, $P_s$, $q_i$ minimisant
4 L(R,x,P_s,q,u,v,\lambda,w)= \\
5 \sum_{i \in N }q_i^2 + \alert<2>{\sum_{h \in V, l \in L } \delta.x_{hl}^2}
6 + \alert<2>{\sum_{h \in V }\delta.R_{h}^2} \\
7 + \sum_{h \in V }\sum_{i \in N } u_{hi} \left(\sum_{l \in L }a_{il}x_{hl} - \eta_{hi}\right) \\
8 + \sum_{h \in V}v_{h}.\left( \dfrac{\ln(\sigma^2/D_h)}{\gamma.P_{sh}^{2/3}} - R_h \right) \\
9 + \sum_{i \in N} \lambda_{i}. \left( P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl} \right) \right.
11 \qquad \qquad \qquad + \left. \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl} \right) - q.B_i \right) \\
12 + \sum_{l \in L} w_l. \left( \sum_{i \in N} a_{il}.q_i \right)
16 \item $x_{hl}\geq0, \forall h \in V, \forall l \in L$
18 \item $R_h \geq 0, \forall h \in V$
20 \item $P_{sh} > 0,\forall h \in V$
22 \item $q_i > 0,\forall i \in N$