]> AND Private Git Repository - desynchronisation-controle.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
corrections typos v0
authorcouchot <jf.couchot@gmail.com>
Thu, 28 Nov 2013 20:25:52 +0000 (21:25 +0100)
committercouchot <jf.couchot@gmail.com>
Thu, 28 Nov 2013 20:25:52 +0000 (21:25 +0100)
IWCMC14/HLG.tex
IWCMC14/main.tex

index 456b3693db23dd590767c1a42d423efb813debaa..183e00b45dae8115defdf97e0577eabd476edc4f 100644 (file)
@@ -1,52 +1,41 @@
-Let us first the basic recalls of the~\cite{HLG09} article.
-
-
-The  precise the context of video sensor network as represented for instance 
-in figure~\ref{fig:sn}.
-
 \begin{figure}
 \begin{center}
-\includegraphics[scale=0.5]{reseau.png}
+\includegraphics[scale=0.3]{reseau.png}
+
+\begin{scriptsize}
+An example of a sensor network ofsize 10. All nodes are video sensor 
+except the 5 and the 9 one which is the sink.
+\JFC{reprendre la figure, trouver un autre titre}
+\end{scriptsize} 
+
 \caption{SN with 10 sensor}\label{fig:sn}.
 \end{center}
 \end{figure} 
 
-
-Let us give a formalisation of such a video network sensor.
-We start with the flow formalising:
-
-The video sensor network is represented as a strongly 
-connected oriented labelled graph. 
+Let us first recall  the basics of the~\cite{HLG09} article.
+The video sensor network is memorized as a connected non oriented 
+oriented labelled graph. 
 In this one, 
-the nodes, in a set $N$ are sensors, links, or the sink.
+the nodes, in a set $N$, are sensors, links, or the sink.
 Furthermore, there is an edge from $i$ to $j$ if $i$ can 
 send a message to $j$. The set of all edges is further denoted as
-$L$ .  
-This boolean information is stored as a  
+$L$.
+Figure~\ref{fig:sn} gives an example of such a network.
+  
+This link information is stored as a  
 matrix $A=(a_{il})_{i \in N, l \in L}$,
 where 
-$a_{il} = 
-\left\{
-    \begin{array}{rl}
-      1 & \textrm{if $l$ starts with $i$ } \\
-      -1 & \textrm{si $l$ ends width $i$ }  \\
-      0 & \textrm{otherwise}
-    \end{array}
-  \right.$.
+$a_{il}$ is  1 if $l$ starts with $i$, is -1 if  $l$ ends width $i$ 
+and  0 otherwise.
 
 
 Let $V \subset N $ be the set of the video sensors of $N$.
-Let thus $R_h$, $R_h \geq 0$  be the encoding rate of  video sensor $h$, $h \in V$.  
-Let $\eta_{hi}$ be the  production rate of the $i$ node, for the $h$ session. More precisely, we have 
-  $$
-\eta_{hi} = 
-\left\{
-    \begin{array}{rl}
-      R_h & \textrm{if $i$ is $h$} \\
-      -R_h & \textrm{if $i$ is the sink} \\
-      0 & \textrm{otherwise}
-    \end{array}
-  \right.$$
+Let thus $R_h$, $R_h \geq 0$,
+be the encoding rate of  video sensor $h$, $h \in V$.  
+Let $\eta_{hi}$ be the  production rate of the  node $i$, 
+for the  session initiated by $h$. More precisely, we have 
+$ \eta_{hi}$ is equal to $ R_h$ if $i$ is $h$,
+is equal to $-R_h$ if $i$ is the sink, and $0$ otherwise.
   
 We are then left to focus on the flows in this network.
 Let $x_{hl}$, $x_{hl}\geq 0$, be the flow inside the edge $l$ that 
@@ -82,14 +71,18 @@ The objective is thus to find $R$, $x$, $P_s$  which minimize
 \end{enumerate}
 
 
-To achieve a local optimisation, the problem is translated into an 
+To achieve this optimizing goal 
+a local optimisation, the problem is translated into an 
 equivalent one: find $R$, $x$, $P_s$  which minimize 
 $\sum_{i \in N }q_i^2$ with the same set of constraints, but  
 item \ref{itm:q}, which is replaced by:
-
-$$P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl} \right) + 
-\sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl} \right) \leq q.B_i, \forall i \in N$$
-
+$$
+\begin{array}{l}
+P_{si}+ \sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl} \right) \\
+\qquad + 
+ \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl} \right) \leq q.B_i, \forall i \in N
+\end{array}
+$$
 
 The authors then apply a dual based approach with Lagrange multiplier 
 to solve such a problem.
@@ -114,11 +107,11 @@ The proposed algorithm iteratively computes the following variables
 \item 
 $v_{h}^{(k+1)}= \max\left\{0,v_{h}^{(k)} -  \theta^{(k)}.\left( R_h^{(k)} - \dfrac{\ln(\sigma^2/D_h)}{\gamma.(P_{sh}^{(k)})^{2/3}}   \right)\right\}$
 \item 
-  $\begin{array}{rcl}
-   \lambda_{i}^{(k+1)} = \lambda_{i}^{(k)} - \theta^{(k)}&.&\left( 
-    q^{(k)}.B_i 
-    \sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl}^{(k)} \right) \right.  \\
-   && - \left. \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl}^{(k)} \right) - P_{si}^{(k)}  \right)
+  $\begin{array}{l}
+   \lambda_{i}^{(k+1)} = \lambda_{i}^{(k)} - \theta^{(k)}.\left( 
+    q^{(k)}.B_i \right.\\
+  \qquad\qquad\qquad -\sum_{l \in L}a_{il}^{+}.c^s_l.\left( \sum_{h \in V}x_{hl}^{(k)} \right)   \\
+  \qquad\qquad\qquad  - \left. \sum_{l \in L} a_{il}^{-}.c^r.\left( \sum_{h \in V}x_{hl}^{(k)} \right) - P_{si}^{(k)}  \right)
 \end{array}
 $
 
@@ -162,16 +155,20 @@ $
 \item 
 $
 x_{hl}^{(k)} =
+\begin{array}{l}
 \arg \min_{x \geq 0}
 \left(
-\delta.x^2 + x.
+\delta.x^2  \right.\\
+\qquad \qquad + x.
 \sum_{i \in N} \left( 
 \lambda_{i}^{(k)}.(c^s_l.a_{il}^{+} +
-c^r. a_{il}^{-} )+
- u_{hi}^{(k)} a_{il}
+c^r. a_{il}^{-} ) \right.\\
+\qquad \qquad\qquad \qquad +
+\left.\left. u_{hi}^{(k)} a_{il}
 \right)
 \right)
- $
+\end{array}
+$
 \end{enumerate}
 where the first four elements are dual variable and the last four ones are 
 primal ones  
\ No newline at end of file
index f77d4eb0e9c6cdae7c4cdf6e6d0b33ee54d0bd42..0bea0885303bee17f1464cf95ed30dfa4f052e33 100644 (file)
@@ -1,4 +1,4 @@
-\documentclass{IEEEtran}
+\documentclass[10pt]{IEEEtran}
 \usepackage[utf8]{inputenc}
 \usepackage[T1]{fontenc}
 \usepackage[english]{babel}