import sys as sy
import cv as cv
import cv2 as cv2
+import datetime as dt
errorq = 0.1
-errorD = 1E-5
+errorD = 1E-1
epsilon = 1E-10
vrate = 0.8
p = 0.7
coteCarre = 50
-distanceEmmissionMax = 20
+distanceEmmissionMax = 30
nbiter = 1000
POS = 1
POS_NUL = 2
#nx.draw(G)
#pb.show()
-(G,l) = genereGraph()
+#(G,l) = genereGraph()
N = G.nodes()
#V = list(set(sample(N,int(len(N)*vrate)))-set([sink]))
V = list(set(N)-set([sink]))
source = V
print "source",source
-afficheGraph(G,l,500,500,sink)
+
+
+#afficheGraph(G,l,500,500,sink)
#nx.draw(G)
#pb.show()
-exit()
+
#print G.edges(data=True)
#TODO afficher le graphe et etre sur qu'il est connexe
beta = 1.3E-8
gamma = 55.54
delta = 0.2
-zeta = 0.1
amplifieur = 1
sigma2 = 3500
Bi = 5
#xpos = lambda x : x if x > 0 else -1
r = 0
if xr == POS :
- #print "strictement pos"
- #print "parametres passes a cobyla",xini,xpos,args,"consargs=(),rhoend=1E-5,iprint=0,maxfun=1000"
- r= opt.fmin_cobyla(f,xini,cons=[xpos],args=args,consargs=(),rhoend=1E-3,iprint=0,maxfun=nbiter)
- #print "le min str pos est",r
- #print "le min pos est", r,"avec xini",xini
+ r= opt.fmin_cobyla(f,xini,cons=[xpos],args=args,consargs=(),rhoend=errorD/100,iprint=0,maxfun=nbiter)
elif xr == POS_NUL :
- #print "pos ou nul"
- r = opt.fmin_cobyla(f,xini,[xposounul],args,consargs=(),rhoend=1E-3,iprint=0,maxfun=nbiter)
- # print "le min pos est", r
- #print "le min pos null est", r,"avec xini",xini
+ r = opt.fmin_cobyla(f,xini,[xposounul],args,consargs=(),rhoend=errorD/100,iprint=0,maxfun=nbiter)
elif xr == POSINF1:
- r = opt.fmin_cobyla(f,xini,[entre0et1],args,consargs=(),rhoend=1E-3,iprint=0,maxfun=nbiter)
- #print "le min pos inf 1 est", r,"avec xini",xini
+ r = opt.fmin_cobyla(f,xini,[entre0et1],args,consargs=(),rhoend=errorD/100,iprint=0,maxfun=nbiter)
return r
qp={}
- def f_q(qi,i):
+ def f_q(qi,*args):
fa = sum([a[i][l]*w[l] for l in L]) - la[i]*Bi
return qi*qi + qi*fa
+ tq,tqa = 0,0
for i in N:
if not ASYNC or random() < taux_succes:
+ n1 = dt.datetime.now()
c = -float(sum([a[i][l]*w[l] for l in L]) - la[i]*Bi)/(2*amplifieur)
+ n2 = dt.datetime.now()
+ cp = armin(f_q,q[i],POS,tuple([i]))
+ n3 = dt.datetime.now()
+ tq += (n2-n1).microseconds
+ tqa += (n3-n2).microseconds
rep = epsilon if c <= 0 else c
qp[i] = rep
else :
qp[i] = q[i]
-
-
+ tp,tpa = 0,0
Psp={}
- #print "maj des des Psh"
def f_Ps(psh,h):
- #print "ds f_ps",psh, v[h]* mt.log(float(sigma2)/D)/(gamma*((psh**2)**(float(2)/3))) +la[h]*psh
- return v[h]* mt.log(float(sigma2)/D)/(gamma*mt.pow(float(2)/3)) +la[h]*psh
+ try:
+ #print psh,(gamma*mt.pow(psh,float(2)/3))
+ res= v[h]* mt.log(float(sigma2)/D)/(gamma*mt.pow(psh,float(2)/3)) +la[h]*psh + delta*mt.pow(psh,float(8)/3)
+ return res
+ except :
+ return 0
for h in V:
- if not ASYNC or random() < taux_succes:
- """
- lah = 0.05 if la[h] == 0 else la[h]
- rep = mt.pow(float(2*v[h]*mt.log(float(sigma2)/D))/(3*gamma*lah),float(3)/5)
- Psp[h] = epsilon if rep <= 0 else rep
- """
- t= float(-3*la[h]+mt.sqrt(9*(la[h]**2)+64*zeta*v[h]*mt.log(float(sigma2)/D)/gamma))/(16*zeta)
- #print t
- rep = mt.pow(t,float(3)/5)
- Psp[h]=rep
- else :
+ if not ASYNC or random() < taux_succes:
+ n1 = dt.datetime.now()
+ t= float(-3*la[h]+mt.sqrt(9*(la[h]**2)+64*delta*v[h]*mt.log(float(sigma2)/D)/gamma))/(16*delta)
+ rep = mt.pow(t,float(3)/5)
+ n2 = dt.datetime.now()
+ cp = armin(f_Ps,Ps[h],POS,tuple([h]))
+ n3 = dt.datetime.now()
+ tp += (n2-n1).microseconds
+ tpa += (n3-n2).microseconds
+ Psp[h]=rep
+ else :
Psp[h] = Ps[h]
Rhp={}
+ tr,tra=0,0
def f_Rh(rh,h):
return delta*rh*rh-v[h]*rh-sum([u[(h,i)]*eta[(h,i)] for i in N])
-
for h in V:
if not ASYNC or random() < taux_succes:
rep = float(v[h])/(2*delta)
+ n1 = dt.datetime.now()
+ rep = float(v[h])/(2*delta)
+ n2 = dt.datetime.now()
+ cp = armin(f_Rh,Rh[h],POS_NUL,tuple([h]))
+ n3 = dt.datetime.now()
+ tr += (n2-n1).microseconds
+ tra += (n3-n2).microseconds
Rhp[h] = 0 if rep < 0 else rep
else :
Rhp[h] = Rh[h]
+
+
+
xp={}
+ tx,txa=0,0
def f_x(xhl,h,l):
r = delta*xhl*xhl + xhl*(cs[l]*sum([la[i]*aplus[i][l] for i in N]) +cr*sum([la[i]*amoins[i][l] for i in N])+sum([u[(h,i)]*a[i][l] for i in N]))
return r
-
for h in V:
for l in L:
if not ASYNC or random() < taux_succes:
+ n1 = dt.datetime.now()
rep = -float(cs[l]*sum([la[i]*aplus[i][l] for i in N]) +cr*sum([la[i]*amoins[i][l] for i in N])+sum([u[(h,i)]*a[i][l] for i in N]))/(2*delta)
+ n2 = dt.datetime.now()
+ cp = armin(f_x,x[(h,l)],POS_NUL,tuple([h,l]))
+ n3 = dt.datetime.now()
+ tx += (n2-n1).microseconds
+ txa += (n3-n2).microseconds
+
xp[(h,l)] = 0 if rep < 0 else rep
else :
xp[(h,l)] = x[(h,l)]
arret = abs(valeurFonctionDuale-valeurFonctionDualep)
- return (up,vp,lap,wp,thetap,etap,qp,Psp,Rhp,xp,valeurFonctionDualep,arret,mxg,smax)
+ return (up,vp,lap,wp,thetap,etap,qp,Psp,Rhp,xp,valeurFonctionDualep,arret,mxg,smax,tq+tp+tr+tx,tqa+tpa+tra+txa)
res = {}
m = []
itermax = 100000
-
+
def __maj_theta(k):
mem = []
om = omega/(mt.pow(k,0.75))
arret = False
sm = 0
err, ar = 0,0
+ dur,dura=0,0
while k < itermax and not arret :
- (u,v,la,w,theta,eta,q,Ps,Rh,x,valeurFonctionDuale,ar,mxg,smax)=maj(k,__maj_theta,mxg,idxexp)
+ print "ici"
+ (u,v,la,w,theta,eta,q,Ps,Rh,x,valeurFonctionDuale,ar,mxg,smax,ct,cta)=maj(k,__maj_theta,mxg,idxexp)
err = (max(q.values()) - min(q.values()))/min(q.values())
-
+ dur += ct
+ dura += cta
arret = err < errorq or ar < errorD
k+=1
variation = "+" if smax > sm else "-"
if out : print variation,
- if k%500 ==0 :
+ if k%10 ==0 :
print "k:", k,
"erreur sur q",
errorq, "erreur sur F", ar, "et q:", q
#print "#########\n",mem,"\#########\n"
if k%4600 == 0 :
- #print "#########\n",mem,"\#########\n"
+ #print "#########m\n",mem,"\#########\n"
"""
#print liste_arret
#print (min(m),max(m),float(sum(m))/nbexp,m),m
- return liste_arret
+ return (liste_arret,dur,dura)
def __une_seule_exp__(fichier_donees):
ASYNC = False
#__une_seule_exp__("config_initiale.py")
+#pour evaluerle test d'arret
+"""
listederes=[]
for k in list(np.logspace(-6, -3, num=15)):
errorD = k
listederes += __evalue_maj_theta__(5)
print listederes
+"""
+
+
+
+# pour evaluer argmin
+listederes=[]
+k=0
+for k in list(np.logspace(-5, -3, num=10)):
+ print "k",k
+ errorD = k
+ listederes += [(k,__evalue_maj_theta__(3))]
+ k+=1
+print listederes
+
+
+
+print"#######################"
+
+
#ASYNC = True
#taux_succes = 0.9
#__evalue_maj_theta__()