]> AND Private Git Repository - dmems12.git/blob - dmems12.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
11ème :
[dmems12.git] / dmems12.tex
1
2 \documentclass[10pt, peerreview, compsocconf]{IEEEtran}
3 %\usepackage{latex8}
4 %\usepackage{times}
5 \usepackage[utf8]{inputenc}
6 %\usepackage[cyr]{aeguill}
7 %\usepackage{pstricks,pst-node,pst-text,pst-3d}
8 %\usepackage{babel}
9 \usepackage{amsmath}
10 \usepackage{url}
11 \usepackage{graphicx}
12 \usepackage{thumbpdf}
13 \usepackage{color}
14 \usepackage{moreverb}
15 \usepackage{commath}
16 \usepackage{subfigure}
17 %\input{psfig.sty}
18 \usepackage{fullpage}
19 \usepackage{fancybox}
20
21 \usepackage[ruled,lined,linesnumbered]{algorithm2e}
22
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
24 \newcommand{\noun}[1]{\textsc{#1}}
25
26 \newcommand{\tab}{\ \ \ }
27
28
29 \begin{document}
30
31
32 %% \author{\IEEEauthorblockN{Authors Name/s per 1st Affiliation (Author)}
33 %% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\
34 %% line 2: name of organization, acronyms acceptable\\
35 %% line 3: City, Country\\
36 %% line 4: Email: name@xyz.com}
37 %% \and
38 %% \IEEEauthorblockN{Authors Name/s per 2nd Affiliation (Author)}
39 %% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\
40 %% line 2: name of organization, acronyms acceptable\\
41 %% line 3: City, Country\\
42 %% line 4: Email: name@xyz.com}
43 %% }
44
45
46
47 \title{A new approach based on least square methods to estimate in real time cantilevers deflection with a FPGA}
48 \author{\IEEEauthorblockN{Raphaël Couturier\IEEEauthorrefmark{1}, Stéphane Domas\IEEEauthorrefmark{1}, Gwenhaël Goavec-Merou\IEEEauthorrefmark{2} and Michel Lenczner\IEEEauthorrefmark{2}}
49 \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, DISC, University of Franche-Comte, Belfort, France\\
50 \{raphael.couturier,stephane.domas\}@univ-fcomte.fr}
51 \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Time-Frequency, University of Franche-Comte, Besançon, France\\
52 \{michel.lenczner@utbm.fr,gwenhael.goavec@trabucayre.com}
53 }
54
55
56
57
58
59
60 %\maketitle
61
62 \thispagestyle{empty}
63
64 \begin{abstract}
65
66   
67
68
69 \end{abstract}
70
71 \begin{IEEEkeywords}
72 FPGA, cantilever, interferometry.
73 \end{IEEEkeywords}
74
75
76 \IEEEpeerreviewmaketitle
77
78 \section{Introduction}
79
80 Cantilevers  are  used  inside  atomic  force  microscope (AFM) which  provides  high
81 resolution images of  surfaces.  Several technics have been  used to measure the
82 displacement  of cantilevers  in litterature.   For example,  it is  possible to
83 determine  accurately  the  deflection  with different  mechanisms. 
84 In~\cite{CantiPiezzo01},   authors  used   piezoresistor  integrated   into  the
85 cantilever.   Nevertheless this  approach  suffers from  the  complexity of  the
86 microfabrication  process needed  to  implement the  sensor  in the  cantilever.
87 In~\cite{CantiCapacitive03},  authors  have  presented an  cantilever  mechanism
88 based on  capacitive sensing. This kind  of technic also  involves to instrument
89 the cantiliver which result in a complex fabrication process.
90
91 In this  paper our attention is focused  on a method based  on interferometry to
92 measure cantilevers' displacements.  In  this method cantilevers are illuminated
93 by  an optic  source. The  interferometry produces  fringes on  each cantilever
94 which enables to  compute the cantilever displacement.  In  order to analyze the
95 fringes a  high speed camera  is used. Images  need to be processed  quickly and
96 then  a estimation  method is  required to  determine the  displacement  of each
97 cantilever.  In~\cite{AFMCSEM11},  authors have  used an algorithm  based on
98 spline to estimate the cantilevers' positions.
99
100 The overall process gives accurate results but all the computations
101 are performed on a standard computer using LabView.  Consequently, the
102 main drawback of this implementation is that the computer is a
103 bootleneck. In this paper we propose to use a method based on least
104 square and to implement all the computation on a FGPA.
105
106 The remainder  of the paper  is organized as  follows. Section~\ref{sec:measure}
107 describes  more precisely  the measurement  process. Our  solution based  on the
108 least  square   method  and   the  implementation  on   FPGA  is   presented  in
109 Section~\ref{sec:solus}.       Experimentations      are       described      in
110 Section~\ref{sec:results}.  Finally  a  conclusion  and  some  perspectives  are
111 presented.
112
113
114
115 %% quelques ref commentées sur les calculs basés sur l'interférométrie
116
117 \section{Measurement principles}
118 \label{sec:measure}
119
120 \subsection{Architecture}
121 \label{sec:archi}
122 %% description de l'architecture générale de l'acquisition d'images
123 %% avec au milieu une unité de traitement dont on ne précise pas ce
124 %% qu'elle est.
125
126 In order to develop simple,  cost effective and user-friendly cantilever arrays,
127 authors   of    ~\cite{AFMCSEM11}   have   developped   a    system   based   of
128 interferometry. In opposition to other optical based systems, using a laser beam
129 deflection scheme and  sentitive to the angular displacement  of the cantilever,
130 interferometry  is sensitive  to  the  optical path  difference  induced by  the
131 vertical displacement of the cantilever.
132
133 The system build by these authors is based on a Linnick
134 interferomter~\cite{Sinclair:05}.  It is illustrated in
135 Figure~\ref{fig:AFM}.  A laser diode is first split (by the splitter)
136 into a reference beam and a sample beam that reachs the cantilever
137 array.  In order to be able to move the cantilever array, it is
138 mounted on a translation and rotational hexapod stage with five
139 degrees of freedom. The optical system is also fixed to the stage.
140 Thus, the cantilever array is centered in the optical system which can
141 be adjusted accurately.  The beam illuminates the array by a
142 microscope objective and the light reflects on the cantilevers.
143 Likewise the reference beam reflects on a movable mirror.  A CMOS
144 camera chip records the reference and sample beams which are
145 recombined in the beam splitter and the interferogram.  At the
146 beginning of each experiment, the movable mirror is fitted manually in
147 order to align the interferometric fringes approximately parallel to
148 the cantilevers.  When cantilevers move due to the surface, the
149 bending of cantilevers produce movements in the fringes that can be
150 detected with the CMOS camera.  Finally the fringes need to be
151 analyzed. In~\cite{AFMCSEM11}, authors used a LabView program to
152 compute the cantilevers' deflections from the fringes.
153
154 \begin{figure}    
155 \begin{center}
156 \includegraphics[width=\columnwidth]{AFM}
157 \end{center}
158 \caption{schema of the AFM}
159 \label{fig:AFM}   
160 \end{figure}
161
162
163 %% image tirée des expériences.
164
165 \subsection{Cantilever deflection estimation}
166 \label{sec:deflest}
167
168 \begin{figure}    
169 \begin{center}
170 \includegraphics[width=\columnwidth]{lever-xp}
171 \end{center}
172 \caption{Portion of an image picked by the camera}
173 \label{fig:img-xp}   
174 \end{figure}
175
176 As shown on image \ref{fig:img-xp}, each cantilever is covered by
177 several interferometric fringes. The fringes will distort when
178 cantilevers are deflected. Estimating the deflection is done by
179 computing this distortion. For that, authors of \cite{AFMCSEM11}
180 proposed a method based on computing the phase of the fringes, at the
181 base of each cantilever, near the tip, and on the base of the
182 array. They assume that a linear relation binds these phases, which
183 can be use to "unwrap" the phase at the tip and to determine the deflection.\\
184
185 More precisely, segment of pixels are extracted from images taken by
186 the camera. These segments are large enough to cover several
187 interferometric fringes. As said above, they are placed at the base
188 and near the tip of the cantilevers. They are called base profile and
189 tip profile in the following. Furthermore, a reference profile is
190 taken on the base of the cantilever array.
191
192 The pixels intensity $I$ (in gray level) of each profile is modelized by:
193
194 \begin{equation}
195 \label{equ:profile}
196 I(x) = ax+b+A.cos(2\pi f.x + \theta)
197 \end{equation}
198
199 where $x$ is the position of a pixel in its associated segment.
200
201 The global method consists in two main sequences. The first one aims
202 to determin the frequency $f$ of each profile with an algorithm based
203 on spline interpolation (see section \ref{algo-spline}). It also
204 computes the coefficient used for unwrapping the phase. The second one
205 is the acquisition loop, while which images are taken at regular time
206 steps. For each image, the phase $\theta$ of all profiles is computed
207 to obtain, after unwrapping, the deflection of
208 cantilevers. Originally, this computation was also done with an
209 algorithm based on spline. This article proposes a new version based
210 on a least square method.
211
212 \subsection{Design goals}
213 \label{sec:goals}
214
215 The main goal is to implement a computing unit to estimate the
216 deflection of about $10\times10$ cantilevers, faster than the stream of
217 images coming from the camera. The accuracy of results must be close
218 to the maximum precision ever obtained experimentally on the
219 architecture, i.e. 0.3nm. Finally, the latency between an image
220 entering in the unit and the deflections must be as small as possible
221 (NB: future works plan to add some control on the cantilevers).\\
222
223 If we put aside some hardware issues like the speed of the link
224 between the camera and the computation unit, the time to deserialize
225 pixels and to store them in memory, ... the phase computation is
226 obviously the bottle-neck of the whole process. For example, if we
227 consider the camera actually in use, an exposition time of 2.5ms for
228 $1024\times 1204$ pixels seems the minimum that can be reached. For
229 100 cantilevers, if we neglect the time to extract pixels, it implies
230 that computing the deflection of a single
231 cantilever should take less than 25$\mu$s, thus 12.5$\mu$s by phase.\\
232
233 In fact, this timing is a very hard constraint. Let consider a very
234 small programm that initializes twenty million of doubles in memory
235 and then does 1000000 cumulated sums on 20 contiguous values
236 (experimental profiles have about this size). On an intel Core 2 Duo
237 E6650 at 2.33GHz, this program reaches an average of 155Mflops. 
238
239 %%Itimplies that the phase computation algorithm should not take more than
240 %%$155\times 12.5 = 1937$ floating operations. For integers, it gives $3000$ operations. 
241
242 Obviously, some cache effects and optimizations on
243 huge amount of computations can drastically increase these
244 performances: peak efficiency is about 2.5Gflops for the considered
245 CPU. But this is not the case for phase computation that used only few
246 tenth of values.\\
247
248 In order to evaluate the original algorithm, we translated it in C
249 language. As said further, for 20 pixels, it does about 1550
250 operations, thus an estimated execution time of $1550/155
251 =$10$\mu$s. For a more realistic evaluation, we constructed a file of
252 1Mo containing 200 profiles of 20 pixels, equally scattered. This file
253 is equivalent to an image stored in a device file representing the
254 camera. We obtained an average of 10.5$\mu$s by profile (including I/O
255 accesses). It is under are requirements but close to the limit. In
256 case of an occasional load of the system, it could be largely
257 overtaken. A solution would be to use a real-time operating system but
258 another one to search for a more efficient algorithm.
259
260 But the main drawback is the latency of such a solution: since each
261 profile must be treated one after another, the deflection of 100
262 cantilevers takes about $200\times 10.5 = 2.1$ms, which is inadequate
263 for an efficient control. An obvious solution is to parallelize the
264 computations, for example on a GPU. Nevertheless, the cost to transfer
265 profile in GPU memory and to take back results would be prohibitive
266 compared to computation time. It is certainly more efficient to
267 pipeline the computation. For example, supposing that 200 profiles of
268 20 pixels can be pushed sequentially in the pipelined unit cadenced at
269 a 100MHz (i.e. a pixel enters in the unit each 10ns), all profiles
270 would be treated in $200\times 20\times 10.10^{-9} =$ 40$\mu$s plus
271 the latency of the pipeline. This is about 500 times faster than
272 actual results.\\
273
274 For these reasons, an FPGA as the computation unit is the best choice
275 to achieve the required performance. Nevertheless, passing from
276 a C code to a pipelined version in VHDL is not obvious at all. As
277 explained in the next section, it can even be impossible because of
278 some hardware constraints specific to FPGAs.
279
280
281 \section{Proposed solution}
282 \label{sec:solus}
283
284 Project Oscar aims  to provide a hardware and  software architecture to estimate
285 and  control the  deflection of  cantilevers. The  hardware part  consists  in a
286 high-speed camera,  linked on an embedded  board hosting FPGAs. By  the way, the
287 camera output stream can be pushed  directly into the FPGA. The software part is
288 mostly the VHDL  code that deserializes the camera  stream, extracts profile and
289 computes  the deflection. Before  focusing on  our work  to implement  the phase
290 computation, we give some general information about FPGAs and the board we use.
291
292 \subsection{FPGAs}
293
294 A field-programmable gate  array (FPGA) is an integrated  circuit designed to be
295 configured by the customer. FGPAs are composed of programmable logic components,
296 called  configurable logic blocks  (CLB). These  blocks mainly  contains look-up
297 tables  (LUT), flip/flops (F/F)  and latches,  organized in  one or  more slices
298 connected together. Each CLB can be configured to perform simple (AND, XOR, ...)
299 or complex  combinational functions.  They are interconnected  by reconfigurable
300 links.  Modern FPGAs  contain memory  elements and  multipliers which  enable to
301 simplify the  design and  to increase the  performance. Nevertheless,  all other
302 complex  operations, like  division, trigonometric  functions, $\ldots$  are not
303 available  and  must  be  done  by   configuring  a  set  of  CLBs.  Since  this
304 configuration  is not  obvious at  all, it  can be  done via  a  framework, like
305 ISE~\cite{ISE}. Such  a software  can synthetize a  design written in  a hardware
306 description language  (HDL), map it onto  CLBs, place/route them  for a specific
307 FPGA, and finally  produce a bitstream that is used to  configre the FPGA. Thus,
308 from  the developper  point of  view,  the main  difficulty is  to translate  an
309 algorithm in HDL code, taking  account FPGA resources and constraints like clock
310 signals and I/O values that drive the FPGA.
311
312 Indeed, HDL programming is very different from classic languages like
313 C. A program can be seen as a state-machine, manipulating signals that
314 evolve from state to state. By the way, HDL instructions can execute
315 concurrently. Basic logic operations are used to agregate signals to
316 produce new states and assign it to another signal. States are mainly
317 expressed as arrays of bits. Fortunaltely, libraries propose some
318 higher levels representations like signed integers, and arithmetic
319 operations.
320
321 Furthermore, even if FPGAs are cadenced more slowly than classic
322 processors, they can perform pipeline as well as parallel
323 operations. A pipeline consists in cutting a process in sequence of
324 small tasks, taking the same execution time. It accepts a new data at
325 each clock top, thus, after a known latency, it also provides a result
326 at each clock top. However, using a pipeline consumes more logics
327 since the components of a task are not reusable by another
328 one. Nevertheless it is probably the most efficient technique on
329 FPGA. Because of its architecture, it is also very easy to process
330 several data concurrently. When it is possible, the best performance
331 is reached using parallelism to handle simultaneously several
332 pipelines in order to handle multiple data streams.
333
334 \subsection{The board}
335
336 The board we use is designed by the Armadeus compagny, under the name
337 SP Vision. It consists in a development board hosting a i.MX27 ARM
338 processor (from Freescale). The board includes all classical
339 connectors: USB, Ethernet, ... A Flash memory contains a Linux kernel
340 that can be launched after booting the board via u-Boot.
341
342 The processor is directly connected to a Spartan3A FPGA (from Xilinx)
343 via its special interface called WEIM. The Spartan3A is itself
344 connected to a Spartan6 FPGA. Thus, it is possible to develop programs
345 that communicate between i.MX and Spartan6, using Spartan3 as a
346 tunnel. By default, the WEIM interface provides a clock signal at
347 100MHz that is connected to dedicated FPGA pins.
348
349 The Spartan6 is an LX100 version. It has 15822 slices, each slice
350 containing 4 LUTs and 8 flip/flops. It is equivalent to 101261 logic
351 cells. There are 268 internal block RAM of 18Kbits, and 180 dedicated
352 multiply-adders (named DSP48), which is largely enough for our
353 project.
354
355 Some I/O pins of Spartan6 are connected to two $2\times 17$ headers
356 that can be used as user wants. For the project, they will be
357 connected to the interface card of the camera.
358
359 \subsection{Considered algorithms}
360
361 Two solutions have been studied to achieve phase computation. The
362 original one, proposed by A. Meister and M. Favre, is based on
363 interpolation by splines. It allows to compute frequency and
364 phase. The second one, detailed in this article, is based on a
365 classical least square method but suppose that frequency is already
366 known.
367
368 \subsubsection{Spline algorithm (SPL)}
369 \label{sec:algo-spline}
370 Let consider a profile $P$, that is a segment of $M$ pixels with an
371 intensity in gray levels. Let call $I(x)$ the intensity of profile in $x
372 \in [0,M[$. 
373
374 At first, only $M$ values of $I$ are known, for $x = 0, 1,
375 \ldots,M-1$. A normalisation allows to scale known intensities into
376 $[-1,1]$. We compute splines that fit at best these normalised
377 intensities. Splines are used to interpolate $N = k\times M$ points
378 (typically $k=4$ is sufficient), within $[0,M[$. Let call $x^s$ the
379 coordinates of these $N$ points and $I^s$ their intensities.
380
381 In order to have the frequency, the mean line $a.x+b$ (see equation \ref{equ:profile}) of $I^s$ is
382 computed. Finding intersections of $I^s$ and this line allow to obtain
383 the period thus the frequency.
384
385 The phase is computed via the equation:
386 \begin{equation}
387 \theta = atan \left[ \frac{\sum_{i=0}^{N-1} sin(2\pi f x^s_i) \times I^s(x^s_i)}{\sum_{i=0}^{N-1} cos(2\pi f x^s_i) \times I^s(x^s_i)} \right]
388 \end{equation}
389
390 Two things can be noticed:
391 \begin{itemize}
392 \item the frequency could also be obtained using the derivates of
393   spline equations, which only implies to solve quadratic equations.
394 \item frequency of each profile is computed a single time, before the
395   acquisition loop. Thus, $sin(2\pi f x^s_i)$ and $cos(2\pi f x^s_i)$
396   could also be computed before the loop, which leads to a much faster
397   computation of $\theta$.
398 \end{itemize}
399
400 \subsubsection{Least square algorithm (LSQ)}
401
402 Assuming that we compute the phase during the acquisition loop,
403 equation \ref{equ:profile} has only 4 parameters: $a, b, A$, and
404 $\theta$, $f$ and $x$ being already known. Since $I$ is non-linear, a
405 least square method based on a Gauss-newton algorithm can be used to
406 determine these four parameters. Since it is an iterative process
407 ending with a convergence criterion, it is obvious that it is not
408 particularly adapted to our design goals.
409
410 Fortunatly, it is quite simple to reduce the number of parameters to
411 only $\theta$. Let $x^p$ be the coordinates of pixels in a segment of
412 size $M$. Thus, $x^p = 0, 1, \ldots, M-1$. Let $I(x^p)$ be their
413 intensity. Firstly, we "remove" the slope by computing:
414
415 \[I^{corr}(x^p) = I(x^p) - a.x^p - b\]
416
417 Since linear equation coefficients are searched, a classical least
418 square method can be used to determine $a$ and $b$:
419
420 \[a = \frac{covar(x^p,I(x^p))}{var(x^p)} \]
421
422 Assuming an overlined symbol means an average, then:
423
424 \[b = \overline{I(x^p)} - a.\overline{{x^p}}\]
425
426 Let $A$ be the amplitude of $I^{corr}$, i.e. 
427
428 \[A = \frac{max(I^{corr}) - min(I^{corr})}{2}\]
429
430 Then, the least square method to find $\theta$ is reduced to search the minimum of:
431
432 \[\sum_{i=0}^{M-1} \left[ cos(2\pi f.i + \theta) - \frac{I^{corr}(i)}{A} \right]^2\]
433
434 It is equivalent to derivate this expression and to solve the following equation:
435
436 \begin{eqnarray*}
437 2\left[ cos\theta \sum_{i=0}^{M-1} I^{corr}(i).sin(2\pi f.i) + sin\theta \sum_{i=0}^{M-1} I^{corr}(i).cos(2\pi f.i)\right] \\
438 - A\left[ cos2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right]   = 0
439 \end{eqnarray*}
440
441 Several points can be noticed:
442 \begin{itemize}
443 \item As in the spline method, some parts of this equation can be
444   computed before the acquisition loop. It is the case of sums that do
445   not depend on $\theta$:
446
447 \[ \sum_{i=0}^{M-1} sin(4\pi f.i), \sum_{i=0}^{M-1} cos(4\pi f.i) \] 
448
449 \item Lookup tables for $sin(2\pi f.i)$ and $cos(2\pi f.i)$ can also be
450 computed.
451
452 \item The simplest method to find the good $\theta$ is to discretize
453   $[-\pi,\pi]$ in $nb_s$ steps, and to search which step leads to the
454   result closest to zero. By the way, three other lookup tables can
455   also be computed before the loop:
456
457 \[ sin \theta, cos \theta, \]
458
459 \[ \left[ cos 2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin 2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right] \]
460
461 \item This search can be very fast using a dichotomous process in $log_2(nb_s)$ 
462
463 \end{itemize}
464
465 Finally, the whole summarizes in an algorithm (called LSQ in the following) in two parts, one before and one during the acquisition loop:
466 \begin{algorithm}[htbp]
467 \caption{LSQ algorithm - before acquisition loop.}
468 \label{alg:lsq-before}
469
470    $M \leftarrow $ number of pixels of the profile\\
471    I[] $\leftarrow $ intensities of pixels\\
472    $f \leftarrow $ frequency of the profile\\
473    $s4i \leftarrow \sum_{i=0}^{M-1} sin(4\pi f.i)$\\
474    $c4i \leftarrow \sum_{i=0}^{M-1} cos(4\pi f.i)$\\
475    $nb_s \leftarrow $ number of discretization steps of $[-\pi,\pi]$\\
476
477    \For{$i=0$ to $nb_s $}{
478      $\theta  \leftarrow -\pi + 2\pi\times \frac{i}{nb_s}$\\
479      lut$_s$[$i$] $\leftarrow sin \theta$\\
480      lut$_c$[$i$] $\leftarrow cos \theta$\\
481      lut$_A$[$i$] $\leftarrow cos 2 \theta \times s4i + sin 2 \theta \times c4i$\\
482      lut$_{sfi}$[$i$] $\leftarrow sin (2\pi f.i)$\\
483      lut$_{cfi}$[$i$] $\leftarrow cos (2\pi f.i)$\\
484    }
485 \end{algorithm}
486
487 \begin{algorithm}[htbp]
488 \caption{LSQ algorithm - during acquisition loop.}
489 \label{alg:lsq-during}
490
491    $\bar{x} \leftarrow \frac{M-1}{2}$\\
492    $\bar{y} \leftarrow 0$, $x_{var} \leftarrow 0$, $xy_{covar} \leftarrow 0$\\
493    \For{$i=0$ to $M-1$}{
494      $\bar{y} \leftarrow \bar{y} + $ I[$i$]\\
495      $x_{var} \leftarrow x_{var} + (i-\bar{x})^2$\\
496    }
497    $\bar{y} \leftarrow \frac{\bar{y}}{M}$\\
498    \For{$i=0$ to $M-1$}{
499      $xy_{covar} \leftarrow xy_{covar} + (i-\bar{x}) \times (I[i]-\bar{y})$\\
500    }
501    $slope \leftarrow \frac{xy_{covar}}{x_{var}}$\\
502    $start \leftarrow y_{moy} - slope\times \bar{x}$\\
503    \For{$i=0$ to $M-1$}{
504      $I[i] \leftarrow I[i] - start - slope\times i$\\
505    }
506    
507    $I_{max} \leftarrow max_i(I[i])$, $I_{min} \leftarrow min_i(I[i])$\\
508    $amp \leftarrow \frac{I_{max}-I_{min}}{2}$\\
509
510    $Is \leftarrow 0$, $Ic \leftarrow 0$\\
511    \For{$i=0$ to $M-1$}{
512      $Is \leftarrow Is + I[i]\times $ lut$_{sfi}$[$i$]\\
513      $Ic \leftarrow Ic + I[i]\times $ lut$_{cfi}$[$i$]\\
514    }
515
516    $\delta \leftarrow \frac{nb_s}{2}$, $b_l \leftarrow 0$, $b_r \leftarrow \delta$\\
517    $v_l \leftarrow -2.I_s - amp.$lut$_A$[$b_l$]\\
518
519    \While{$\delta >= 1$}{
520
521      $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\
522
523      \If{$!(v_l < 0$ and $v_r >= 0)$}{
524        $v_l \leftarrow v_r$ \\
525        $b_l \leftarrow b_r$ \\
526      }
527      $\delta \leftarrow \frac{\delta}{2}$\\
528      $b_r \leftarrow b_l + \delta$\\
529    }
530    \uIf{$!(v_l < 0$ and $v_r >= 0)$}{
531      $v_l \leftarrow v_r$ \\
532      $b_l \leftarrow b_r$ \\
533      $b_r \leftarrow b_l + 1$\\
534      $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\
535    }
536    \Else {
537      $b_r \leftarrow b_l + 1$\\
538    }
539
540    \uIf{$ abs(v_l) < v_r$}{
541      $b_{\theta} \leftarrow b_l$ \\
542    }
543    \Else {
544      $b_{\theta} \leftarrow b_r$ \\
545    }
546    $\theta \leftarrow \pi\times \left[\frac{2.b_{ref}}{nb_s}-1\right]$\\
547
548 \end{algorithm}
549
550 \subsubsection{Comparison}
551
552 We compared the two algorithms on the base of three criteria:
553 \begin{itemize}
554 \item precision of results on a cosinus profile, distorted with noise,
555 \item number of operations,
556 \item complexity to implement an FPGA version.
557 \end{itemize}
558
559 For the first item, we produced a matlab version of each algorithm,
560 running with double precision values. The profile was generated for
561 about 34000 different values of period ($\in [3.1, 6.1]$, step = 0.1),
562 phase ($\in [-3.1 , 3.1]$, step = 0.062) and slope ($\in [-2 , 2]$,
563 step = 0.4). For LSQ, $nb_s = 1024$, which leads to a maximal error of
564 $\frac{\pi}{1024}$ on phase computation. Current A. Meister and
565 M. Favre experiments show a ratio of 50 between variation of phase and
566 the deflection of a lever. Thus, the maximal error due to
567 discretization correspond to an error of 0.15nm on the lever
568 deflection, which is smaller than the best precision they achieved,
569 i.e. 0.3nm.
570
571 For each test, we add some noise to the profile: each group of two
572 pixels has its intensity added to a random number picked in $[-N,N]$
573 (NB: it should be noticed that picking a new value for each pixel does
574 not distort enough the profile). The absolute error on the result is
575 evaluated by comparing the difference between the reference and
576 computed phase, out of $2\pi$, expressed in percents. That is: $err =
577 100\times \frac{|\theta_{ref} - \theta_{comp}|}{2\pi}$.
578
579 Table \ref{tab:algo_prec} gives the maximum and average error for the two algorithms and increasing values of $N$.
580
581 \begin{table}[ht]
582   \begin{center}
583     \begin{tabular}{|c|c|c|c|c|}
584       \hline
585   & \multicolumn{2}{c|}{SPL} & \multicolumn{2}{c|}{LSQ} \\ \cline{2-5}
586   noise & max. err. & aver. err. & max. err. & aver. err. \\ \hline
587   0 & 2.46 & 0.58 & 0.49 & 0.1 \\ \hline
588   2.5 & 2.75 & 0.62 & 1.16 & 0.22 \\ \hline
589   5 & 3.77 & 0.72 & 2.47 & 0.41 \\ \hline
590   7.5 & 4.72 & 0.86 & 3.33 & 0.62 \\ \hline
591   10 & 5.62 & 1.03 & 4.29 & 0.81 \\ \hline
592   15 & 7.96 & 1.38 & 6.35 & 1.21 \\ \hline
593   30 & 17.06 & 2.6 & 13.94 & 2.45 \\ \hline
594
595 \end{tabular}
596 \caption{Error (in \%) for cosinus profiles, with noise.}
597 \label{tab:algo_prec}
598 \end{center}
599 \end{table}
600
601 These results show that the two algorithms are very close, with a
602 slight advantage for LSQ. Furthemore, both behave very well against
603 noise. Assuming the experimental ratio of 50 (see above), an error of
604 1 percent on phase correspond to an error of 0.5nm on the lever
605 deflection, which is very close to the best precision.
606
607 Obviously, it is very hard to predict which level of noise will be
608 present in real experiments and how it will distort the
609 profiles. Nevertheless, we can see on figure \ref{fig:noise20} the
610 profile with $N=10$ that leads to the biggest error. It is a bit
611 distorted, with pikes and straight/rounded portions, and relatively
612 close to most of that come from experiments. Figure \ref{fig:noise60}
613 shows a sample of worst profile for $N=30$. It is completly distorted,
614 largely beyond the worst experimental ones. 
615
616 \begin{figure}[ht]
617 \begin{center}
618   \includegraphics[width=\columnwidth]{intens-noise20}
619 \end{center}
620 \caption{Sample of worst profile for N=10}
621 \label{fig:noise20}
622 \end{figure}
623
624 \begin{figure}[ht]
625 \begin{center}
626   \includegraphics[width=\columnwidth]{intens-noise60}
627 \end{center}
628 \caption{Sample of worst profile for N=30}
629 \label{fig:noise60}
630 \end{figure}
631
632 The second criterion is relatively easy to estimate for LSQ and harder
633 for SPL because of $atan$ operation. In both cases, it is proportional
634 to numbers of pixels $M$. For LSQ, it also depends on $nb_s$ and for
635 SPL on $N = k\times M$, i.e. the number of interpolated points. 
636
637 We assume that $M=20$, $nb_s=1024$, $k=4$, all possible parts are
638 already in lookup tables and a limited set of operations (+, -, *, /,
639 $<$, $>$) is taken account. Translating the two algorithms in C code, we
640 obtain about 430 operations for LSQ and 1550 (plus few tenth for
641 $atan$) for SPL. This result is largely in favor of LSQ. Nevertheless,
642 considering the total number of operations is not really pertinent for
643 an FPGA implementation: it mainly depends on the type of operations
644 and their
645 ordering. The final decision is thus driven by the third criterion.\\
646
647 The Spartan 6 used in our architecture has a hard constraint: it has no built-in
648 floating  point  units.   Obviously,  it  is  possible  to   use  some  existing
649 "black-boxes"  for double  precision  operations.  But they  have  a quite  long
650 latency. It is much simpler to  exclusively use integers, with a quantization of
651 all double  precision values. Obviously,  this quantization should  not decrease
652 too much the  precision of results. Furthermore, it should not  lead to a design
653 with  a huge  latency because  of operations  that could  not complete  during a
654 single or few clock cycles. Divisions  are in this case and, moreover, they need
655 a varying  number of  clock cycles  to complete. Even  multiplications can  be a
656 problem:  DSP48 take  inputs of  18  bits maximum.  For larger  multiplications,
657 several DSP must be combined, increasing the latency.
658
659 Nevertheless, the hardest constraint does not come from the FPGA characteristics
660 but from the algorithms. Their VHDL  implentation will be efficient only if they
661 can be fully (or near) pipelined. By the way, the choice is quickly done: only a
662 small  part of  SPL  can be.   Indeed,  the computation  of spline  coefficients
663 implies to solve  a tridiagonal system $A.m =  b$. Values in $A$ and  $b$ can be
664 computed from  incoming pixels intensity  but after, the back-solve  starts with
665 the  lastest  values,  which  breaks  the  pipeline.  Moreover,  SPL  relies  on
666 interpolating far more points than profile size. Thus, the end of SPL works on a
667 larger amount of data than the beginning, which also breaks the pipeline.
668
669 LSQ has  not this problem: all parts  except the dichotomial search  work on the
670 same  amount  of  data, i.e.  the  profile  size.  Furthermore, LSQ  needs  less
671 operations than SPL, implying a  smaller output latency. Consequently, it is the
672 best candidate for phase  computation. Nevertheless, obtaining a fully pipelined
673 version supposes that  operations of different parts complete  in a single clock
674 cycle. It is  the case for simulations but it completely  fails when mapping and
675 routing the design  on the Spartan6. By the way,  extra-latency is generated and
676 there must be idle times between two profiles entering into the pipeline.
677
678 %%Before obtaining the least bitstream, the crucial question is: how to
679 %%translate the C code the LSQ into VHDL ?
680
681
682 %\subsection{VHDL design paradigms}
683
684 \section{Experimental tests}
685
686 In this section we explain what  we have done yet. Until now, we could not perform
687 real experiments  since we just have  received the FGPA  board. Nevertheless, we
688 will include real experiments in the final version of this paper.
689
690 \subsection{VHDL implementation}
691
692
693
694 % - ecriture d'un code en C avec integer
695 % - calcul de la taille max en bit de chaque variable en fonction de la quantization.
696 % - tests de quantization : équilibre entre précision et contraintes FPGA
697 % - en parallèle : simulink et VHDL à la main
698
699
700 From the LSQ algorithm, we have written a C program that uses only
701 integer values. We use a very simple quantization by multiplying
702 double precision values by a power of two, keeping the integer
703 part. For example, all values stored in lut$_s$, lut$_c$, $\ldots$ are
704 scaled by 1024.  Since LSQ also computes average, variance, ... to
705 remove the slope, the result of implied euclidian divisions may be
706 relatively wrong. To avoid that, we also scale the pixel intensities
707 by a power of two. Futhermore, assuming $nb_s$ is fixed, these
708 divisions have a knonw denominator. Thus, they can be replaced by
709 their multiplication/shift counterpart. Finally, all other
710 multiplications or divisions by a power of two have been replaced by
711 left or right bit shifts. By the way, the code only contains
712 additions, substractions and multiplications of signed integers, which
713 is perfectly adapted to FGPAs.
714
715 As said above, hardware constraints have a great influence on the VHDL
716 implementation. Consequently, we searched the maximum value of each
717 variable as a function of the different scale factors and the size of
718 profiles, which gives their maximum size in bits. That size determines
719 the maximum scale factors that allow to use the least possible RAMs
720 and DSPs. Actually, we implemented our algorithm with this maximum
721 size but current works study the impact of quantization on the results
722 precision and design complexity. We have compared the result of the
723 LSQ version using integers and doubles and observed that the precision
724 of both were similar.
725
726 Then we built two versions of VHDL codes: one directly by hand coding
727 and the other with Matlab using the Simulink HDL coder
728 feature~\cite{HDLCoder}. Although the approach is completely different
729 we obtained VHDL codes that are quite comparable. Each approach has
730 advantages and drawbacks.  Roughly speaking, hand coding provides
731 beautiful and much better structured code while Simulink allows to
732 produce a code faster.  In terms of throughput and latency,
733 simulations shows that the two approaches are close with a slight
734 advantage for hand coding.  We hope that real experiments will confirm
735 that.
736
737 \subsection{Simulation}
738
739 Currently, we have only simulated our VHDL codes with GHDL and GTKWave (two free
740 tools with linux).  Both approaches led to correct results.  At the beginning of
741 our simulations, our  pipiline could compute a new phase each  33 cycles and the
742 length of the  pipeline was equal to  95 cycles.  When we tried  to generate the
743 corresponding bitsream  with ISE environment  we had many problems  because many
744 stages required  more than the  10$n$s required by  the clock frequency.   So we
745 needed to decompose  some part of the  pipeline in order to add  some cycles and
746 simplify some parts between a clock top.
747 % ghdl + gtkwave
748 % au mieux : une phase tous les 33 cycles, latence de 95 cycles.
749 % mais routage/placement impossible.
750 \subsection{Bitstream creation}
751
752 Currently both  approaches provide synthesable  bitstreams with ISE.   We expect
753 that the  pipeline will  have a latency  of 112  cycles, i.e. 1.12$\mu$s  and it
754 could accept new profiles of pixel each 48 cycles, i.e. 480$n$s.
755
756 % pas fait mais prévision d'une sortie tous les 480ns avec une latence de 1120
757
758 \label{sec:results}
759
760
761
762
763 \section{Conclusion and perspectives}
764
765
766 \bibliographystyle{plain}
767 \bibliography{biblio}
768
769 \end{document}