]> AND Private Git Repository - dmems12.git/blob - dmems12.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
a51313754361ffae82edc743e810be54fcb52a3e
[dmems12.git] / dmems12.tex
1
2 \documentclass[10pt, conference, compsocconf]{IEEEtran}
3 %\usepackage{latex8}
4 %\usepackage{times}
5 \usepackage[utf8]{inputenc}
6 %\usepackage[cyr]{aeguill}
7 %\usepackage{pstricks,pst-node,pst-text,pst-3d}
8 %\usepackage{babel}
9 \usepackage{amsmath}
10 \usepackage{url}
11 \usepackage{graphicx}
12 \usepackage{thumbpdf}
13 \usepackage{color}
14 \usepackage{moreverb}
15 \usepackage{commath}
16 \usepackage{subfigure}
17 %\input{psfig.sty}
18 \usepackage{fullpage}
19 \usepackage{fancybox}
20
21 \usepackage[ruled,lined,linesnumbered]{algorithm2e}
22
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
24 \newcommand{\noun}[1]{\textsc{#1}}
25
26 \newcommand{\tab}{\ \ \ }
27
28
29
30 \begin{document}
31
32
33 %% \author{\IEEEauthorblockN{Authors Name/s per 1st Affiliation (Author)}
34 %% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\
35 %% line 2: name of organization, acronyms acceptable\\
36 %% line 3: City, Country\\
37 %% line 4: Email: name@xyz.com}
38 %% \and
39 %% \IEEEauthorblockN{Authors Name/s per 2nd Affiliation (Author)}
40 %% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\
41 %% line 2: name of organization, acronyms acceptable\\
42 %% line 3: City, Country\\
43 %% line 4: Email: name@xyz.com}
44 %% }
45
46
47
48 \title{Using FPGAs for high speed and real time cantilever deflection estimation}
49 \author{\IEEEauthorblockN{Raphaël Couturier\IEEEauthorrefmark{1}, Stéphane Domas\IEEEauthorrefmark{1}, Gwenhaël Goavec-Merou\IEEEauthorrefmark{2} and Michel Lenczner\IEEEauthorrefmark{2}}
50 \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, DISC, University of Franche-Comte, Belfort, France\\
51 \{raphael.couturier,stephane.domas\}@univ-fcomte.fr}
52 \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Time-Frequency, University of Franche-Comte, Besançon, France\\
53 \{michel.lenczner@utbm.fr,gwenhael.goavec@trabucayre.com}
54 }
55
56
57
58
59
60
61 \maketitle
62
63 \thispagestyle{empty}
64
65 \begin{abstract}
66
67   
68
69 {\it keywords}: FPGA, cantilever, interferometry.
70 \end{abstract}
71
72 \section{Introduction}
73
74 Cantilevers  are  used  inside  atomic  force  microscope  which  provides  high
75 resolution images of  surfaces.  Several technics have been  used to measure the
76 displacement  of cantilevers  in litterature.   For example,  it is  possible to
77 determine  accurately   the  deflection  with   optic  interferometer~\cite{CantiOptic89},
78 pizeoresistor~\cite{CantiPiezzo01}                 or                 capacitive
79 sensing~\cite{CantiCapacitive03}.
80 %% blabla +
81 %% quelques ref commentées sur les calculs basés sur l'interférométrie
82
83 \section{Measurement principles}
84 \label{sec:measure}
85
86 \subsection{Architecture}
87 \label{sec:archi}
88 %% description de l'architecture générale de l'acquisition d'images
89 %% avec au milieu une unité de traitement dont on ne précise pas ce
90 %% qu'elle est.
91
92 %% image tirée des expériences.
93
94 \subsection{Cantilever deflection estimation}
95 \label{sec:deflest}
96
97 As shown on image \ref{img:img-xp}, each cantilever is covered by
98 interferometric fringes. The fringes will distort when cantilevers are
99 deflected. Estimating the deflection is done by computing this
100 distortion. For that, (ref A. Meister + M Favre) proposed a method
101 based on computing the phase of the fringes, at the base of each
102 cantilever, near the tip, and on the base of the array. They assume
103 that a linear relation binds these phases, which can be use to
104 "unwrap" the phase at the tip and to determine the deflection.\\
105
106 More precisely, segment of pixels are extracted from images taken by a
107 high-speed camera. These segments are large enough to cover several
108 interferometric fringes and are placed at the base and near the tip of
109 the cantilevers. They are called base profile and tip profile in the
110 following. Furthermore, a reference profile is taken on the base of
111 the cantilever array.
112
113 The pixels intensity $I$ (in gray level) of each profile is modelized by :
114
115 \begin{equation}
116 \label{equ:profile}
117 I(x) = ax+b+A.cos(2\pi f.x + \theta)
118 \end{equation}
119
120 where $x$ is the position of a pixel in its associated segment.
121
122 The global method consists in two main sequences. The first one aims
123 to determin the frequency $f$ of each profile with an algorithm based
124 on spline interpolation (see section \ref{algo-spline}). It also
125 computes the coefficient used for unwrapping the phase. The second one
126 is the acquisition loop, while which images are taken at regular time
127 steps. For each image, the phase $\theta$ of all profiles is computed
128 to obtain, after unwrapping, the deflection of cantilevers.
129
130 \subsection{Design goals}
131 \label{sec:goals}
132
133 If we put aside some hardware issues like the speed of the link
134 between the camera and the computation unit, the time to deserialize
135 pixels and to store them in memory, ... the phase computation is
136 obviously the bottle-neck of the whole process. For example, if we
137 consider the camera actually in use, an exposition time of 2.5ms for
138 $1024\times 1204$ pixels seems the minimum that can be reached. For a
139 $10\times 10$ cantilever array, if we neglect the time to extract
140 pixels, it implies that computing the deflection of a single
141 cantilever should take less than 25$\mu$s, thus 12.5$\mu$s by phase.\\
142
143 In fact, this timing is a very hard constraint. Let consider a very
144 small programm that initializes twenty million of doubles in memory
145 and then does 1000000 cumulated sums on 20 contiguous values
146 (experimental profiles have about this size). On an intel Core 2 Duo
147 E6650 at 2.33GHz, this program reaches an average of 155Mflops. It
148 implies that the phase computation algorithm should not take more than
149 $240\times 12.5 = 1937$ floating operations. For integers, it gives
150 $3000$ operations.
151
152 %% to be continued ...
153
154 %% � faire : timing de l'algo spline en C avec atan et tout le bordel.
155
156
157
158
159 \section{Proposed solution}
160 \label{sec:solus}
161
162
163 \subsection{FPGA constraints}
164
165 %% contraintes imposées par le FPGA : algo pipeline/parallele, pas d'op math complexe, ...
166
167
168 \subsection{Considered algorithms}
169
170 Two solutions have been studied to achieve phase computation. The
171 original one, proposed by A. Meister and M. Favre, is based on
172 interpolation by splines. It allows to compute frequency and
173 phase. The second one, detailed in this article, is based on a
174 classical least square method but suppose that frequency is already
175 known.
176
177 \subsubsection{Spline algorithm}
178 \label{sec:algo-spline}
179 Let consider a profile $P$, that is a segment of $M$ pixels with an
180 intensity in gray levels. Let call $I(x)$ the intensity of profile in $x
181 \in [0,M[$. 
182
183 At first, only $M$ values of $I$ are known, for $x = 0, 1,
184 \ldots,M-1$. A normalisation allows to scale known intensities into
185 $[-1,1]$. We compute splines that fit at best these normalised
186 intensities. Splines are used to interpolate $N = k\times M$ points
187 (typically $k=3$ is sufficient), within $[0,M[$. Let call $x^s$ the
188 coordinates of these $N$ points and $I^s$ their intensities.
189
190 In order to have the frequency, the mean line $a.x+b$ (see equation \ref{equ:profile}) of $I^s$ is
191 computed. Finding intersections of $I^s$ and this line allow to obtain
192 the period thus the frequency.
193
194 The phase is computed via the equation :
195 \begin{equation}
196 \theta = atan \left[ \frac{\sum_{i=0}^{N-1} sin(2\pi f x^s_i) \times I^s(x^s_i)}{\sum_{i=0}^{N-1} cos(2\pi f x^s_i) \times I^s(x^s_i)} \right]
197 \end{equation}
198
199 Two things can be noticed. Firstly, the frequency could also be
200 obtained using the derivates of spline equations, which only implies
201 to solve quadratic equations. Secondly, frequency of each profile is
202 computed a single time, before the acquisition loop. Thus, $sin(2\pi f
203 x^s_i)$ and $cos(2\pi f x^s_i)$ could also be computed before the loop, which leads to a
204 much faster computation of $\theta$.
205
206 \subsubsection{Least square algorithm}
207
208 Assuming that we compute the phase during the acquisition loop,
209 equation \ref{equ:profile} has only 4 parameters :$a, b, A$, and
210 $\theta$, $f$ and $x$ being already known. Since $I$ is non-linear, a
211 least square method based an Gauss-newton algorithm must be used to
212 determine these four parameters. Since it is an iterative process
213 ending with a convergence criterion, it is obvious that it is not
214 particularly adapted to our design goals.
215
216 Fortunatly, it is quite simple to reduce the number of parameters to
217 only $\theta$. Let $x^p$ be the coordinates of pixels in a segment of
218 size $M$. Thus, $x^p = 0, 1, \ldots, M-1$. Let $I(x^p)$ be their
219 intensity. Firstly, we "remove" the slope by computing :
220
221 \[I^{corr}(x^p) = I(x^p) - a.x^p - b\]
222
223 Since linear equation coefficients are searched, a classical least
224 square method can be used to determine $a$ and $b$ :
225
226 \[a = \frac{covar(x^p,I(x^p))}{var(x^p)} \]
227
228 Assuming an overlined symbol means an average, then :
229
230 \[b = \overline{I(x^p)} - a.\overline{{x^p}}\]
231
232 Let $A$ be the amplitude of $I^{corr}$, i.e. 
233
234 \[A = \frac{max(I^{corr}) - min(I^{corr})}{2}\]
235
236 Then, the least square method to find $\theta$ is reduced to search the minimum of :
237
238 \[\sum_{i=0}^{M-1} \left[ cos(2\pi f.i + \theta) - \frac{I^{corr}(i)}{A} \right]^2\]
239
240 It is equivalent to derivate this expression and to solve the following equation :
241
242 \begin{eqnarray*}
243 2\left[ cos\theta \sum_{i=0}^{M-1} I^{corr}(i).sin(2\pi f.i) + sin\theta \sum_{i=0}^{M-1} I^{corr}(i).cos(2\pi f.i)\right] \\
244 - A\left[ cos2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right]   = 0
245 \end{eqnarray*}
246
247 Several points can be noticed :
248 \begin{itemize}
249 \item As in the spline method, some parts of this equation can be
250   computed before the acquisition loop. It is the case of sums that do
251   not depend on $\theta$ :
252
253 \[ \sum_{i=0}^{M-1} sin(4\pi f.i), \sum_{i=0}^{M-1} cos(4\pi f.i) \] 
254
255 \item Lookup tables for $sin(2\pi f.i)$ and $cos(2\pi f.i)$ can also be
256 computed.
257
258 \item The simplest method to find the good $\theta$ is to discretize
259   $[-\pi,\pi]$ in $N$ steps, and to search which step leads to the
260   result closest to zero. By the way, three other lookup tables can
261   also be computed before the loop :
262
263 \[ sin \theta, cos \theta, \left[ cos 2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin 2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right] \]
264
265 \item This search can be very fast using a dichotomous process in $log_2(N)$ 
266
267 \end{itemize}
268
269 Finally, the whole summarizes in an algorithm (called LSQ in the following) in two parts, one before and one during the acquisition loop :
270 \begin{algorithm}[h]
271 \caption{LSQ algorithm - before acquisition loop.}
272 \label{alg:lsq-before}
273
274    $M \leftarrow $ number of pixels of the profile\\
275    I[] $\leftarrow $ intensities of pixels\\
276    $f \leftarrow $ frequency of the profile\\
277    $s4i \leftarrow \sum_{i=0}^{M-1} sin(4\pi f.i)$\\
278    $c4i \leftarrow \sum_{i=0}^{M-1} cos(4\pi f.i)$\\
279    $nb_s \leftarrow $ number of discretization steps of $[-\pi,\pi]$\\
280
281    \For{$i=0$ to $nb_s $}{
282      $\theta  \leftarrow -\pi + 2\pi\times \frac{i}{nb_s}$\\
283      lut\_sin[$i$] $\leftarrow sin \theta$\\
284      lut\_cos[$i$] $\leftarrow cos \theta$\\
285      lut\_A[$i$] $\leftarrow cos 2 \theta \times s4i + sin 2 \theta \times c4i$\\
286      lut\_sinfi[$i$] $\leftarrow sin (2\pi f.i)$\\
287      lut\_cosfi[$i$] $\leftarrow cos (2\pi f.i)$\\
288    }
289 \end{algorithm}
290
291 \begin{algorithm}[h]
292 \caption{LSQ algorithm - during acquisition loop.}
293 \label{alg:lsq-during}
294
295    $\bar{x} \leftarrow \frac{M-1}{2}$\\
296    $\bar{y} \leftarrow 0$, $x_{var} \leftarrow 0$, $xy_{covar} \leftarrow 0$\\
297    \For{$i=0$ to $M-1$}{
298      $\bar{y} \leftarrow \bar{y} + $ I[$i$]\\
299      $x_{var} \leftarrow x_{var} + (i-\bar{x})^2$\\
300    }
301    $\bar{y} \leftarrow \frac{\bar{y}}{M}$\\
302    \For{$i=0$ to $M-1$}{
303      $xy_{covar} \leftarrow xy_{covar} + (i-\bar{x}) \times (I[i]-\bar{y})$\\
304    }
305    $slope \leftarrow \frac{xy_{covar}}{x_{var}}$\\
306    $start \leftarrow y_{moy} - slope\times \bar{x}$\\
307    \For{$i=0$ to $M-1$}{
308      $I[i] \leftarrow I[i] - start - slope\times i$\tcc*[f]{slope removal}\\
309    }
310    
311    $I_{max} \leftarrow max_i(I[i])$, $I_{min} \leftarrow min_i(I[i])$\\
312    $amp \leftarrow \frac{I_{max}-I_{min}}{2}$\\
313
314    $Is \leftarrow 0$, $Ic \leftarrow 0$\\
315    \For{$i=0$ to $M-1$}{
316      $Is \leftarrow Is + I[i]\times $ lut\_sinfi[$i$]\\
317      $Ic \leftarrow Ic + I[i]\times $ lut\_cosfi[$i$]\\
318    }
319
320    $\theta \leftarrow -\pi$\\
321    $val_1 \leftarrow 2\times \left[ Is.\cos(\theta) + Ic.\sin(\theta) \right] - amp\times \left[ c4i.\sin(2\theta) + s4i.\cos(2\theta) \right]$\\
322    \For{$i=1-n_s$ to $n_s$}{
323      $\theta \leftarrow \frac{i.\pi}{n_s}$\\
324      $val_2 \leftarrow 2\times \left[ Is.\cos(\theta) + Ic.\sin(\theta) \right] - amp\times \left[ c4i.\sin(2\theta) + s4i.\cos(2\theta) \right]$\\
325
326      \lIf{$val_1 < 0$ et $val_2 >= 0$}{
327        $\theta_s \leftarrow \theta - \left[ \frac{val_2}{val_2-val_1}\times \frac{\pi}{n_s} \right]$\\
328      }
329      $val_1 \leftarrow val_2$\\
330    }
331
332 \end{algorithm}
333
334
335 \subsubsection{Comparison}
336
337 \subsection{VDHL design paradigms}
338
339 \subsection{VDHL implementation}
340
341 \section{Experimental results}
342 \label{sec:results}
343
344
345
346
347 \section{Conclusion and perspectives}
348
349
350 \bibliographystyle{plain}
351 \bibliography{biblio}
352
353 \end{document}