]> AND Private Git Repository - dmems12.git/blob - dmems12.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[dmems12.git] / dmems12.tex
1 %\usepackage{latex8}
2 %\usepackage{times}
3 %\usepackage[cyr]{aeguill}
4 %\usepackage{pstricks,pst-node,pst-text,pst-3d}
5 %\usepackage{babel}
6 %\input{psfig.sty}
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
8
9
10 \documentclass[10pt, peerreview, compsocconf]{IEEEtran}
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 \usepackage[utf8]{inputenc}
13 \usepackage{amsmath}
14 \usepackage{url}
15 \usepackage{graphicx}
16 \usepackage{thumbpdf}
17 \usepackage{color}
18 \usepackage{moreverb}
19 \usepackage{commath}
20 \usepackage{subfigure}
21 \usepackage{fullpage}
22 \usepackage{fancybox}
23 \usepackage[ruled,lined,linesnumbered]{algorithm2e}
24
25 \setcounter{MaxMatrixCols}{10}
26 %TCIDATA{OutputFilter=LATEX.DLL}
27 %TCIDATA{Version=5.50.0.2953}
28 %TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
29 %TCIDATA{BibliographyScheme=BibTeX}
30 %TCIDATA{LastRevised=Wednesday, October 26, 2011 09:49:54}
31 %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
32
33 \newcommand{\noun}[1]{\textsc{#1}}
34 \newcommand{\tab}{\ \ \ }
35
36
37 \begin{document}
38
39 \title{A new approach based on a least square method for real-time estimation of cantilever array deflections with a FPGA}
40 \author{\IEEEauthorblockN{Raphaël Couturier\IEEEauthorrefmark{1}, Stéphane
41 Domas\IEEEauthorrefmark{1}, Gwenhaël Goavec-Merou\IEEEauthorrefmark{2} and
42 Michel Lenczner\IEEEauthorrefmark{2}} 
43 \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, DISC, University of Franche-Comte, Belfort, France \and 
44 \{raphael.couturier,stephane.domas\}@univ-fcomte.fr} 
45 \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Time-Frequency, University of Franche-Comte, Besançon, France \and 
46 \{michel.lenczner@utbm.fr,gwenhael.goavec@trabucayre.com} }
47
48 \begin{abstract}
49 Atomic force microscopes (AFM) provide high resolution images of surfaces.
50 In this paper, we focus our attention on an interferometry method for
51 deflection estimation of cantilever arrays in quasi-static regime. In its
52 original form, spline interpolation was used to determine interference
53 fringe phase, and thus the deflections. Computations were performed on a PC.
54 Here, we propose a new complete solution with a least square based algorithm
55 and an optimized FPGA implementation. Simulations and real tests showed very
56 good results and open perspective for real-time estimation and control of
57 cantilever arrays in the dynamic regime.
58 \end{abstract}
59
60 %% \author{\IEEEauthorblockN{Authors Name/s per 1st Affiliation (Author)}
61 %% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\
62 %% line 2: name of organization, acronyms acceptable\\
63 %% line 3: City, Country\\
64 %% line 4: Email: name@xyz.com}
65 %% \and
66 %% \IEEEauthorblockN{Authors Name/s per 2nd Affiliation (Author)}
67 %% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\
68 %% line 2: name of organization, acronyms acceptable\\
69 %% line 3: City, Country\\
70 %% line 4: Email: name@xyz.com}
71 %% }
72
73 %\maketitle
74
75 \thispagestyle{empty}
76
77 \begin{IEEEkeywords}
78 FPGA, cantilever arrays, interferometry.
79 \end{IEEEkeywords}
80
81 \IEEEpeerreviewmaketitle
82
83 \section{Introduction}
84
85 Cantilevers are used in atomic force microscopes (AFM) which provide high
86 resolution surface images. Several techniques have been reported in
87 literature for cantilever displacement measurement. In~\cite{CantiPiezzo01},
88 authors have shown how a piezoresistor can be integrated into a cantilever
89 for deflection measurement. Nevertheless this approach suffers from the
90 complexity of the microfabrication process needed to implement the sensor.
91 In~\cite{CantiCapacitive03}, authors have presented a cantilever mechanism
92 based on capacitive sensing. These techniques require cantilever
93 instrumentation resulting in\ complex fabrication processes.
94
95 In this paper  our attention is focused on a method  based on interferometry for
96 cantilever  displacement  measurement in  quasi-static  regime. Cantilevers  are
97 illuminated  by an  optical  source.  Interferometry  produces fringes  enabling
98 cantilever displacement computation. A high  speed camera is used to analyze the
99 fringes. In view of real time  applications, images need to be processed quickly
100 and then a  fast estimation method is required to  determine the displacement of
101 each  cantilever. In~\cite{AFMCSEM11},  an algorithm  based on  spline  has been
102 introduced  for  cantilever  position  estimation.  The  overall  process  gives
103 accurate results  but computations  are performed on  a standard  computer using
104 LabView      \textsuperscript{\textregistered}     \textsuperscript{\copyright}.
105 Consequently, the main drawback of this implementation is that the computer is a
106 bottleneck. In this  paper we pose the problem  of real-time cantilever position
107 estimation and  bring a  hardware/software solution. It  includes a  fast method
108 based on least squares and its FPGA implementation.
109
110 The remainder of the paper is organized as follows. Section~\ref{sec:measure}
111 describes the measurement process. Our solution based on the least square
112 method and its implementation on a FPGA is presented in Section~\ref{sec:solus}. Numerical experimentations are described in Section~\ref{sec:results}. Finally a conclusion and some perspectives are drawn.
113
114 \section{Architecture and goals}
115
116 \label{sec:measure}
117
118 In order to build simple, cost effective and user-friendly cantilever
119 arrays, authors of ~\cite{AFMCSEM11} have developed a system based on
120 interferometry.
121
122 \subsection{Experimental setup}
123
124 \label{sec:archi}
125
126 In opposition to other optical based system\textbf{s u}sing a laser beam
127 deflection scheme and sensitive to the angular displacement of the
128 cantilever, interferometry is sensitive to the optical path difference
129 induced by the vertical displacement of the cantilever.
130
131 The system is based on a Linnick interferometer~\cite{Sinclair:05}.
132 It is illustrated in Figure~\ref{fig:AFM} \footnote{by courtesy of
133   CSEM}. A laser diode is first split (by the splitter) into a
134 reference beam and a sample beam both reaching the cantilever array.
135 The complete system including a cantilever array\ and the optical
136 system can be moved thanks to a translation and rotational hexapod
137 stage with five degrees of freedom. Thus, the cantilever array is
138 centered in the optical system which can be adjusted accurately.  The
139 beam illuminates the array by a microscope objective and the light
140 reflects on the cantilevers. Likewise the reference beam reflects on a
141 movable mirror. A CMOS camera chip records the reference and sample
142 beams which are recombined in the beam splitter and the
143 interferogram. At the beginning of each experiment, the movable mirror
144 is fitted manually in order to align the interferometric fringes
145 approximately parallel to the cantilevers. Then, cantilever motion in
146 the transverse direction produces movements in the fringes. They are
147 detected with the CMOS camera which images are analyzed by a Labview
148 program to recover the cantilever deflections.
149
150 \begin{figure}[tbp]
151 \begin{center}
152 \includegraphics[width=\columnwidth]{AFM}
153 \end{center}
154 \caption{AFM Setup}
155 \label{fig:AFM}
156 \end{figure}
157
158 %% image tirée des expériences.
159
160 \subsection{Inteferometric based cantilever deflection estimation}
161
162 \label{sec:deflest}
163
164 \begin{figure}[tbp]
165 \begin{center}
166 \includegraphics[width=\columnwidth]{lever-xp}
167 \end{center}
168 \caption{Portion of a camera image showing moving interferometric fringes in
169 cantilevers}
170 \label{fig:img-xp}
171 \end{figure}
172
173 As shown in Figure \ref{fig:img-xp} \footnote{by courtesy of CSEM}, each
174 cantilever is covered by several interferometric fringes. The fringes
175 distort when cantilevers are deflected.  In \cite{AFMCSEM11}, a novel
176 method for interferometric based cantilever deflection measurement was
177 reported. For each cantilever, the method uses three segments of pixels,
178 parallel to its section, to determine phase shifts.  The first is
179 located just above the AFM tip (tip profile), it provides the phase
180 shift modulo $2\pi $. The second one is close to the base junction
181 (base profile) and is used to determine the exact multiple of $2\pi $
182 through an operation called unwrapping where it is assumed that the
183 deflection means along the two measurement segments are linearly
184 dependent.  The third is on the base and provides a reference for
185 noise suppression.  Finally, deflections are simply derived from phase
186 shifts.
187
188 The pixel gray-level intensity $I$ of each profile is modelized by%
189 \begin{equation}
190 I(x)=A\text{ }\cos (2\pi fx+\theta )+ax+b  \label{equ:profile}
191 \end{equation}%
192 where $x$ denotes the position of a pixel in a segment, $A$, $f$ and $\theta 
193 $ are the amplitude, the frequency and the phase of the light signal when
194 the affine function $ax+b$ corresponds to the cantilever array surface tilt
195 with respect to the light source. 
196
197 The method consists in two main sequences.  In the first one
198 corresponding to precomputation, the frequency $f$ of each profile is
199 determined using a spline interpolation (see section \ref%
200 {sec:algo-spline}) and the coefficient used for phase unwrapping is
201 computed. The second one, that we call the \textit{acquisition loop,}
202 is done after images have been taken at regular time steps. For each
203 image, the phase $\theta $ of all profiles is computed to obtain,
204 after unwrapping, the cantilever deflection. The phase determination
205 in \cite{AFMCSEM11} is achieved by a spline based algorithm which is
206 the most consuming part of the computation. In this article, we
207 propose an alternate version based on the least square method which is
208 faster and better suited for FPGA implementation.
209
210 \subsection{Computation design goals}
211
212 \label{sec:goals}
213
214 To evaluate the solution performances, we choose a goal which consists
215 in designing a computing unit able to estimate the deflections of
216 a $10\times 10$%
217 -cantilever array, faster than the camera image stream. In addition,
218 the result accuracy must be close to 0.3nm, the maximum precision
219 reached in \cite{AFMCSEM11}. Finally, the latency between the entrance
220 of the first pixel of an image and the end of deflection computation
221 must be as small as possible. All these requirement are
222 stated in the perspective of implementing real-time active control for
223 each cantilever, see~\cite{LencznerChap10,Hui11}.
224
225 If we put aside other hardware issues like the speed of the link
226 between the camera and the computation unit, the time to deserialize
227 pixels and to store them in memory, the phase computation is the
228 bottleneck of the whole process. For example, the camera in the setup
229 of \cite{AFMCSEM11} provides $%
230 1024\times 1204$ pixels with an exposition time of 2.5ms. Thus, if we
231 the pixel extraction time is neglected, each phase calculation of a
232 100-cantilever array should take no more than 12.5$\mu$s. 
233
234 In fact, this timing is a very hard constraint. To illustrate this point, we
235 consider a very small program that initializes twenty million of doubles in
236 memory and then does 1,000,000 cumulated sums on 20 contiguous values
237 (experimental profiles have about this size). On an intel Core 2 Duo E6650
238 at 2.33GHz, this program reaches an average of 155Mflops. 
239 Obviously, some cache effects and optimizations on huge amount of
240 computations can drastically increase these performances: peak efficiency is
241 about 2.5Gflops for the considered CPU. But this is not the case for phase
242 computation that is using only a few tenth of values.
243
244 In order to evaluate the original algorithm, we translated it in C language.
245 As stated before, for 20 pixels, it does about 1,550 operations, thus an
246 estimated execution time of $1,550/155=$10$\mu $s. For a more realistic
247 evaluation, we constructed a file of 1Mo containing 200 profiles of 20
248 pixels, equally scattered. This file is equivalent to an image stored in a
249 device file representing the camera. We obtained an average of 10.5$\mu$s
250 by profile (including I/O accesses). It is under our requirements but close
251 to the limit. In case of an occasional load of the system, it could be
252 largely overtaken. Solutions would be to use a real-time operating system or
253 to search for a more efficient algorithm.
254
255 However, the main drawback is the latency of such a solution because each
256 profile must be treated one after another and the deflection of 100
257 cantilevers takes about $200\times 10.5=2.1$ms. This would be inadequate
258 for real-time requirements as for individual cantilever active control. An
259 obvious solution is to parallelize the computations, for example on a GPU.
260 Nevertheless, the cost of transferring profile in GPU memory and of taking
261 back results would be prohibitive compared to computation time.
262
263 We remark that when possible, it is more efficient to pipeline the
264 computation. For example, supposing that 200 profiles of 20 pixels
265 could be pushed sequentially in a pipelined unit cadenced at a 100MHz
266 (i.e. a pixel enters in the unit each 10ns), all profiles would be
267 treated in $200\times 20\times 10.10^{-9}=$ 40$\mu$s plus the latency
268 of the pipeline. Such a solution would be meeting our requirements and
269 would be 50 times faster than our C code, and even more compared to
270 the LabView version use in \cite{AFMCSEM11}. FPGAs are appropriate for
271 such implementation, so they turn out to be the computation units of
272 choice to reach our performance requirements. Nevertheless, passing
273 from a C code to a pipelined version in VHDL is not obvious at all. It
274 can even be impossible because of FPGA hardware constraints. All these
275 points are discussed in the following sections.
276
277 \section{An hardware/software solution}
278
279 \label{sec:solus}
280
281 In  this  section we  present  parts  of the  computing  solution  to the  above
282 requirements. The  hardware part consists in  a high-speed camera,  linked on an
283 embedded board hosting  two FPGAs. In this way, the camera  output stream can be
284 pushed directly  into the FPGA. The software  part is mostly the  VHDL code that
285 deserializes the camera stream, extracts profiles and computes the deflection.
286
287 We first give some general information about FPGAs, then we
288 describe the FPGA board we use for implementation and finally the two
289 algorithms for phase computation are detailed. Presentation of VHDL
290 implementations is postponned until Section \ref{Experimental tests}. 
291
292
293
294 \subsection{Elements of FPGA architecture and programming}
295
296 A field-programmable gate array (FPGA) is an integrated circuit designed to
297 be configured by the customer. FGPAs are composed of programmable logic
298 components, called configurable logic blocks (CLB). These blocks mainly
299 contain look-up tables (LUT), flip/flops (F/F) and latches, organized in one
300 or more slices connected together. Each CLB can be configured to perform
301 simple (AND, XOR, ...) or complex combinational functions. They are
302 interconnected by reconfigurable links. Modern FPGAs contain memory elements
303 and multipliers which enable to simplify the design and to increase the
304 performance. Nevertheless, all other complex operations like division and
305 other functions like trigonometric functions are not available and must be
306 built by configuring a set of CLBs. Since this is not an obvious task at
307 all, tools like ISE~\cite{ISE} have been built to do this operation. Such a
308 software can synthetize a design written in a hardware description language
309 (HDL), maps it onto CLBs, place/route them for a specific FPGA, and finally
310 produces a bitstream that is used to configure the FPGA. Thus, from the
311 developer's point of view, the main difficulty is to translate an algorithm
312 into HDL code, taking into account FPGA resources and constraints like clock
313 signals and I/O values that drive the FPGA.
314
315 Indeed, HDL programming is very different from classic languages like
316 C. A program can be seen as a state-machine, manipulating signals that
317 evolve from state to state. Moreover, HDL instructions can be executed
318 concurrently. Signals may be combined with basic logic operations to
319 produce new states that are assigned to another signal. States are mainly expressed as
320 arrays of bits.  Fortunately, libraries propose some higher levels
321 representations like signed integers, and arithmetic operations.
322
323 Furthermore, even if FPGAs are cadenced more slowly than classic processors,
324 they can perform pipelines as well as parallel operations. A pipeline
325 consists in cutting a process in a sequence of small tasks, taking the same
326 execution time. It accepts a new data at each clock top, thus, after a known
327 latency, it also provides a result at each clock top. We observe that the
328 components of a task are not reusable by another one. Nevertheless, this is
329 the most efficient technique on FPGAs. Because of their architecture, it is
330 also very easy to process several data concurrently. Finally, the best
331 performance can be reached when several pipelines are operating on multiple
332 data streams in parallel.
333
334 \subsection{The FPGA board}
335
336 The architecture we use is designed by the Armadeus Systems
337 company. It consists in a development board called APF27 \textsuperscript{\textregistered}, hosting a
338 i.MX27 ARM processor (from Freescale) and a Spartan3A (from
339 XIlinx). This board includes all classical connectors as USB and
340 Ethernet for instance. A Flash memory contains a Linux kernel that can
341 be launched after booting the board via u-Boot. The processor is
342 directly connected to the Spartan3A via its special interface called
343 WEIM. The Spartan3A is itself connected to an extension board called
344 SP Vision \textsuperscript{\textregistered}, that hosts a Spartan6 FPGA. Thus, it is
345 possible to develop programs that communicate between i.MX and
346 Spartan6, using Spartan3 as a tunnel. A clock signal at 100MHz (by
347 default) is delivered to dedicated FPGA pins. The Spartan6 of our
348 board is an LX100 version. It has 15,822 slices, each slice containing
349 4 LUTs and 8 flip/flops. It is equivalent to 101,261 logic
350 cells. There are 268 internal block RAM of 18Kbits, and 180 dedicated
351 multiply-adders (named DSP48), which is largely enough for our
352 project. Some I/O pins of Spartan6 are connected to two $2\times 17$
353 headers that can be used for any purpose as to be connected to the
354 interface of a camera.
355
356 \subsection{Two algorithms for phase computation}
357
358 In \cite{AFMCSEM11}, $f$ the frequency and $\theta $\ the phase of the
359 light wave are computed thanks to spline interpolation. As said in
360 section \ref{sec:deflest}, $f$ is computed only once time but the
361 phase needs to be computed for each image. This is why, in this paper,
362 we focus on its computation.
363
364 \subsubsection{Spline algorithm (SPL)}
365
366 \label{sec:algo-spline}
367
368 We denote by $M$ the number of pixels in a segment used for phase
369 computation. For the sake of simplicity of the notations, we consider
370 the light intensity $I$ to be a mapping of the physical segment in the
371 interval $[0,M[$. The pixels are assumed to be regularly spaced and
372 centered at the positions $x^{p}\in\{0,1,\ldots,M-1\}.$ We use the simplest
373 definition of a pixel, namely the value of $I$ at its center. The
374 pixel intensities are considered as pre-normalized so that their
375 minimum and maximum have been resized to $-1$ and $1$. 
376
377 The first step consists in computing the cubic spline interpolation of
378 the intensities. This allows for interpolating $I$ at a larger number
379 $L=k\times M$ of points (typically $k=4$ is sufficient) $%
380 x^{s}$ in the interval $[0,M[$. During the precomputation sequence,
381 the second step is to determin the afine part $a.x+b$ of $I$. It is
382 found with an ordinary least square method, taking account the $L$
383 points. Values of $I$ in $x^s$ are used to compute its intersections
384 with $a.x+b$. The period of $I$ (and thus its frequency) is deduced
385 from the number of intersections and the distance between the first
386 and last.
387
388 During the acquisition loop, the second step is the phase computation, with
389 \begin{equation}
390 \theta =atan\left[ \frac{\sum_{i=0}^{N-1}\text{sin}(2\pi fx_{i}^{s})\times
391 I(x_{i}^{s})}{\sum_{i=0}^{N-1}\text{cos}(2\pi fx_{i}^{s})\times I(x_{i}^{s})}%
392 \right] .
393 \end{equation}
394
395 \textit{Remarks: }
396
397 \begin{itemize}
398 \item The frequency could also be obtained using the derivates of spline
399 equations, which only implies to solve quadratic equations but certainly
400 yields higher errors.
401
402 \item Profile frequency are computed during the precomputation step,
403   thus the values sin$(2\pi fx_{i}^{s})$ and cos$(2\pi fx_{i}^{s})$
404   can be determined once for all.
405 \end{itemize}
406
407 \subsubsection{Least square algorithm (LSQ)}
408
409 Assuming that we compute the phase during the acquisition loop, equation \ref%
410 {equ:profile} has only 4 parameters: $a,b,A$, and $\theta $, $f$ and $x$
411 being already known. Since $I$ is non-linear, a least square method based on
412 a Gauss-newton algorithm can be used to determine these four parameters.
413 This kind of iterative process ends with a convergence criterion, so it is
414 not suited to our design goals. Fortunately, it is quite simple to reduce
415 the number of parameters to only $\theta $. Firstly, the afine part $ax+b$
416 is estimated from the $M$ values $I(x^{p})$ to determine the rectified
417 intensities,%
418 \begin{equation*}
419 I^{corr}(x^{p})\approx I(x^{p})-a.x^{p}-b.
420 \end{equation*}%
421 To find $a$ and $b$ we apply an ordinary least square method (as in SPL but on $M$ points)%
422 \begin{equation*}
423 a=\frac{covar(x^{p},I(x^{p}))}{\text{var}(x^{p})}\text{ and }b=\overline{%
424 I(x^{p})}-a.\overline{{x^{p}}}
425 \end{equation*}%
426 where overlined symbols represent average. Then the amplitude $A$ is
427 approximated by%
428 \begin{equation*}
429 A\approx \frac{\text{max}(I^{corr})-\text{min}(I^{corr})}{2}.
430 \end{equation*}%
431 Finally, the problem of approximating $\theta $ is reduced to minimizing%
432 \begin{equation*}
433 \min_{\theta \in \lbrack -\pi ,\pi ]}\sum_{i=0}^{M-1}\left[ \text{cos}(2\pi
434 f.i+\theta )-\frac{I^{corr}(i)}{A}\right] ^{2}.
435 \end{equation*}%
436 An optimal value $\theta ^{\ast }$ of the minimization problem is a zero of
437 the first derivative of the above argument,%\begin{eqnarray*}{l}
438 \begin{equation*}
439 2\left[ \text{cos}\theta ^{\ast }\sum_{i=0}^{M-1}I^{corr}(i).\text{sin}(2\pi
440 f.i)\right.
441 \end{equation*}%
442 \begin{equation*}
443 \left. +\text{sin}\theta ^{\ast }\sum_{i=0}^{M-1}I^{corr}(i).\text{cos}(2\pi
444 f.i)\right] -
445 \end{equation*}%
446 \begin{equation*}
447 A\left[ \text{cos}2\theta ^{\ast }\sum_{i=0}^{M-1}\sin (4\pi f.i)+\text{sin}%
448 2\theta ^{\ast }\sum_{i=0}^{M-1}\cos (4\pi f.i)\right] =0
449 \end{equation*}%
450 %
451 %\end{eqnarray*}
452
453 Several points can be noticed:
454
455 \begin{itemize}
456 \item The terms $\sum_{i=0}^{M-1}$sin$(4\pi f.i)$ and$\sum_{i=0}^{M-1}$cos$%
457 (4\pi f.i)$ are independent of $\theta $, they can be precomputed.
458
459 \item Lookup tables (namely lut$_{sfi}$ and lut$_{cfi}$ in the following algorithms) can be
460   set with the $2.M$ values $\sin (2\pi f.i)$ and $\cos (2\pi f.i)$.
461
462 \item A simple method to find a zero $\theta ^{\ast }$ of the optimality
463 condition is to discretize the range $[-\pi ,\pi ]$ with a large number $%
464 nb_{s}$ of nodes and to find which one is a minimizer in the absolute value
465 sense. Hence, three other lookup tables (lut$_{s}$, lut$_{c}$ and lut$_{A}$) can be set with the $%
466 3\times nb_{s}$ values $\sin \theta ,$ $\cos \theta ,$ 
467 \begin{equation*}
468 \left[ cos2\theta \sum_{i=0}^{M-1}sin(4\pi f.i)+sin2\theta
469 \sum_{i=0}^{M-1}cos(4\pi f.i)\right] .
470 \end{equation*}
471
472 \item The search algorithm can be very fast using a dichotomous process in $%
473 log_{2}(nb_{s}).$
474 \end{itemize}
475
476 The overall method is synthetized in an algorithm (called LSQ in the
477 following) divided into the precomputing part and the acquisition loop:
478
479 \begin{algorithm}[htbp]
480 \caption{LSQ algorithm - before acquisition loop.}
481 \label{alg:lsq-before}
482
483    $M \leftarrow $ number of pixels of the profile\\
484    I[] $\leftarrow $ intensity of pixels\\
485    $f \leftarrow $ frequency of the profile\\
486    $s4i \leftarrow \sum_{i=0}^{M-1} sin(4\pi f.i)$\\
487    $c4i \leftarrow \sum_{i=0}^{M-1} cos(4\pi f.i)$\\
488    $nb_s \leftarrow $ number of discretization steps of $[-\pi,\pi]$\\
489
490    \For{$i=0$ to $nb_s $}{
491      $\theta  \leftarrow -\pi + 2\pi\times \frac{i}{nb_s}$\\
492      lut$_s$[$i$] $\leftarrow sin \theta$\\
493      lut$_c$[$i$] $\leftarrow cos \theta$\\
494      lut$_A$[$i$] $\leftarrow cos 2 \theta \times s4i + sin 2 \theta \times c4i$\\
495      lut$_{sfi}$[$i$] $\leftarrow sin (2\pi f.i)$\\
496      lut$_{cfi}$[$i$] $\leftarrow cos (2\pi f.i)$\\
497    }
498 \end{algorithm}
499
500 \begin{algorithm}[htbp]
501 \caption{LSQ algorithm - during acquisition loop.}
502 \label{alg:lsq-during}
503
504    $\bar{x} \leftarrow \frac{M-1}{2}$\\
505    $\bar{y} \leftarrow 0$, $x_{var} \leftarrow 0$, $xy_{covar} \leftarrow 0$\\
506    \For{$i=0$ to $M-1$}{
507      $\bar{y} \leftarrow \bar{y} + $ I[$i$]\\
508      $x_{var} \leftarrow x_{var} + (i-\bar{x})^2$\\
509    }
510    $\bar{y} \leftarrow \frac{\bar{y}}{M}$\\
511    \For{$i=0$ to $M-1$}{
512      $xy_{covar} \leftarrow xy_{covar} + (i-\bar{x}) \times (I[i]-\bar{y})$\\
513    }
514    $slope \leftarrow \frac{xy_{covar}}{x_{var}}$\\
515    $start \leftarrow y_{moy} - slope\times \bar{x}$\\
516    \For{$i=0$ to $M-1$}{
517      $I[i] \leftarrow I[i] - start - slope\times i$\\
518    }
519
520    $I_{max} \leftarrow max_i(I[i])$, $I_{min} \leftarrow min_i(I[i])$\\
521    $amp \leftarrow \frac{I_{max}-I_{min}}{2}$\\
522
523    $Is \leftarrow 0$, $Ic \leftarrow 0$\\
524    \For{$i=0$ to $M-1$}{
525      $Is \leftarrow Is + I[i]\times $ lut$_{sfi}$[$i$]\\
526      $Ic \leftarrow Ic + I[i]\times $ lut$_{cfi}$[$i$]\\
527    }
528
529    $\delta \leftarrow \frac{nb_s}{2}$, $b_l \leftarrow 0$, $b_r \leftarrow \delta$\\
530    $v_l \leftarrow -2.I_s - amp.$lut$_A$[$b_l$]\\
531
532    \While{$\delta >= 1$}{
533
534      $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\
535
536      \If{$!(v_l < 0$ and $v_r >= 0)$}{
537        $v_l \leftarrow v_r$ \\
538        $b_l \leftarrow b_r$ \\
539      }
540      $\delta \leftarrow \frac{\delta}{2}$\\
541      $b_r \leftarrow b_l + \delta$\\
542    }
543    \uIf{$!(v_l < 0$ and $v_r >= 0)$}{
544      $v_l \leftarrow v_r$ \\
545      $b_l \leftarrow b_r$ \\
546      $b_r \leftarrow b_l + 1$\\
547      $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\
548    }
549    \Else {
550      $b_r \leftarrow b_l + 1$\\
551    }
552
553    \uIf{$ abs(v_l) < v_r$}{
554      $b_{\theta} \leftarrow b_l$ \\
555    }
556    \Else {
557      $b_{\theta} \leftarrow b_r$ \\
558    }
559    $\theta \leftarrow \pi\times \left[\frac{2.b_{ref}}{nb_s}-1\right]$\\
560
561 \end{algorithm}
562
563 \subsubsection{Algorithm comparison}
564
565 We compared the two algorithms on the base of three criteria:
566
567 \begin{itemize}
568 \item precision of results on a cosines profile, distorted by noise,
569
570 \item number of operations,
571
572 \item complexity of FPGA implementation
573 \end{itemize}
574
575 For the first item, we produced a matlab version of each algorithm,
576 running in double precision. The profile was generated for about
577 34,000 different quadruplets of periods ($\in \lbrack 3.1,6.1]$, step
578 = 0.1), phases ($\in \lbrack -3.1,3.1]$, steps = 0.062) and slope
579 ($\in \lbrack -2,2]$, step = 0.4). Obviously, the discretization of
580 $[-\pi ,\pi ]$ introduces an error in the phase estimation. It is at
581 most equal to $\frac{\pi}{nb_s}$. From some experiments on a $17\times
582 4$ array, authors of \cite{AFMCSEM11} noticed a average ratio of 50
583 between phase variation in radians and lever end position in
584 nanometers. Assuming such a ratio and $nb_s = 1024$, the maximum lever
585 deflection error would be 0.15nm which is smaller than 0.3nm, the best
586 precision achieved with the setup used in \cite{AFMCSEM11}. 
587
588 Moreover, pixels have been paired and the paired intensities have been
589 perturbed by addition of a random number uniformly picked in
590 $[-N,N]$. Notice that we have observed that perturbing each pixel
591 independently yields too weak profile distortion. We report
592 percentages of errors between the reference and the computed phases
593 out of $2\pi ,$%
594 \begin{equation*}
595 err=100\times \frac{|\theta _{ref}-\theta _{comp}|}{2\pi }.
596 \end{equation*}%
597 Table \ref{tab:algo_prec} gives the maximum and the average errors for both
598 algorithms and for increasing values of $N$ the noise parameter.
599
600 \begin{table}[ht]
601 \begin{center}
602 \begin{tabular}{|c|c|c|c|c|}
603 \hline
604 & \multicolumn{2}{c|}{SPL} & \multicolumn{2}{c|}{LSQ} \\ \cline{2-5}
605 noise (N)& max. err. & aver. err. & max. err. & aver. err. \\ \hline
606 0 & 2.46 & 0.58 & 0.49 & 0.1 \\ \hline
607 2.5 & 2.75 & 0.62 & 1.16 & 0.22 \\ \hline
608 5 & 3.77 & 0.72 & 2.47 & 0.41 \\ \hline
609 7.5 & 4.72 & 0.86 & 3.33 & 0.62 \\ \hline
610 10 & 5.62 & 1.03 & 4.29 & 0.81 \\ \hline
611 15 & 7.96 & 1.38 & 6.35 & 1.21 \\ \hline
612 30 & 17.06 & 2.6 & 13.94 & 2.45 \\ \hline
613 \end{tabular}%
614 \end{center}
615 \caption{Error (in \%) for cosines profiles, with noise.}
616 \label{tab:algo_prec}
617 \end{table}
618
619 The results show that the two algorithms yield close results, with a slight
620 advantage for LSQ. Furthermore, both behave very well against noise.
621 Assuming an average ratio of 50 (see above), an error of 1 percent on
622 the phase corresponds to an error of 0.5nm on the lever deflection, which is
623 very close to the best precision.
624
625 It is very hard to predict which level of noise will be present in
626 real experiments and how it will distort the profiles. Authors of
627 \cite{AFMCSEM11} gave us the authorization to exploit some of their
628 results on a $17\times 4$ array. It allowed us to compare experimental
629 profiles to simulated ones. We can see on figure \ref{fig:noise20} the
630 profile with $N=10$ that leads to the biggest error. It is a bit
631 distorted, with pikes and straight/rounded portions. In fact, it is
632 very close to some of the worst experimental profiles. Figure
633 \ref{fig:noise60} shows a sample of worst profile for $N=30$. It is
634 completely distorted, largely beyond any experimental ones. Obviously,
635 these comparisons are a bit subjectives and experimental profiles
636 could also be completly distorted on other experiments. Nevertheless,
637 they give an idea about the possible error.
638
639 \begin{figure}[ht]
640 \begin{center}
641 \includegraphics[width=\columnwidth]{intens-noise20}
642 \end{center}
643 \caption{Sample of worst profile for N=10}
644 \label{fig:noise20}
645 \end{figure}
646
647 \begin{figure}[ht]
648 \begin{center}
649 \includegraphics[width=\columnwidth]{intens-noise60}
650 \end{center}
651 \caption{Sample of worst profile for N=30}
652 \label{fig:noise60}
653 \end{figure}
654
655 The second criterion is relatively easy to estimate for LSQ and harder for
656 SPL because of the use of the arctangent function. In both cases, the number
657 of operation is proportional to $M$ the numbers of pixels. For LSQ, it also
658 depends on $nb_{s}$ and for SPL on $L=k\times M$ the number of interpolated
659 points. We assume that $M=20$, $nb_{s}=1024$ and $k=4$, that all possible
660 parts are already in lookup tables and that a limited set of operations (+,
661 -, *, /, $<$, $>$) is taken into account. Translating both algorithms in C
662 code, we obtain about 430 operations for LSQ and 1,550 (plus a few tenth for 
663 $atan$) for SPL. This result is largely in favor of LSQ. Nevertheless,
664 considering the total number of operations is not fully relevant for FPGA
665 implementation which time and space consumption depends not only on the type
666 of operations but also of their ordering. The final evaluation is thus very
667 much driven by the third criterion.
668
669 The Spartan 6 used in our architecture has a hard constraint since it
670 has no built-in floating point units. Obviously, it is possible to use
671 some existing "black-boxes" for double precision operations. But they
672 require a lot of clock cycles to complete. It is much simpler to
673 exclusively use integers, with a quantization of all double precision
674 values. It should be chosen in a manner that does not alterate result
675 precision. Furthermore, it should not lead to a design with a huge
676 latency because of operations that could not complete during a single
677 or few clock cycles. Divisions fall into that category and, moreover,
678 they need a varying number of clock cycles to complete. Even
679 multiplications can be a problem since a DSP48 takes inputs of 18 bits
680 maximum. So, for larger multiplications, several DSP must be combined
681 which increases the overall latency.
682
683 In the present algorithms, the hardest constraint does not come from the
684 FPGA characteristics but from the algorithms. Their VHDL implementation can
685 be efficient only if they can be fully (or near) pipelined. We observe that
686 only a small part of SPL can be pipelined, indeed, the computation of spline
687 coefficients implies to solve a linear tridiagonal system which matrix and
688 right-hand side are computed from incoming pixels intensity but after, the
689 back-solve starts with the latest values, which breaks the pipeline.
690 Moreover, SPL relies on interpolating far more points than profile size.
691 Thus, the end of SPL works on a larger amount of data than at the beginning,
692 which also breaks the pipeline.
693
694 LSQ has not this problem since all parts, except the dichotomic search, work
695 on the same amount of data, i.e. the profile size. Furthermore, LSQ requires
696 less operations than SPL, implying a smaller output latency. In total, LSQ
697 turns out to be the best candidate for phase computation on any architecture
698 including FPGA.
699
700 \section{VHDL implementation and experimental tests}
701
702 \label{Experimental tests} 
703
704 \subsection{VHDL implementation}
705
706 From the LSQ algorithm, we have written a C program that uses only
707 integer values. We used a very simple quantization which consists in
708 multiplying each double precision value by a factor power of two and
709 by keeping the integer part. For an accurate evaluation of the
710 division in the computation of $a$ the slope coefficient, we also
711 scaled the pixel intensities by another power of two. The main problem
712 was to determin these factors. Most of the time, they are chosen to
713 minimize the error induced by the quantization. But in our case, we
714 also have some hardware constraints, for example the size and depth of
715 RAMs or the input size of DSPs. Thus, having a maximum of values that
716 fit in these sizes is a very important criterion to choose the scaling
717 factors.
718
719 Consequently, we have determined the maximum value of each variable as
720 a function of the scale factors and the profile size involved in the
721 algorithm. It gave us the the maximum number of bits necessary to code
722 them. We have chosen the scale factors so that any variable (except
723 the covariance) fits in 18 bits, which is the maximum input size of
724 DSPs. In this way, all multiplications, except one, could be done with
725 a single DSP, in a single clock cycle. Moreover, assuming that $nb_s =
726 1024$, all LUTs could fit in the 18Kbits RAMs. Finally, we compared
727 the double and integer versions of LSQ and found a nearly perfect
728 agreement between their results.
729
730 As mentionned above, some operations like divisions must be
731 avoided. But when the denominator is fixed, a division can be replaced
732 by its multiplication/shift counterpart. This is always the case in
733 LSQ. For example, assuming that $M$ is fixed, $x_{var}$ is known and
734 fixed. Thus, $\frac{xy_{covar}}{x_{var}}$ can be replaced by
735
736 \[ (xy_{covar}\times \left \lfloor\frac{2^n}{x_{var}} \right \rfloor) \gg n\]
737
738 where $n$ depends on the desired precision (in our case $n=24$).
739
740 Obviously, multiplications and divisions by a power of two can be
741 replaced by left or right bit shifts. Finally, the code only contains
742 shifts, additions, subtractions and multiplications of signed integers, which
743 are perfectly adapted to FGPAs.
744
745
746 We built two versions of VHDL codes, namely one directly by hand
747 coding and the other with Matlab using the Simulink HDL coder feature~\cite%
748 {HDLCoder}. Although the approaches are completely different we obtained
749 quite comparable VHDL codes. Each approach has advantages and drawbacks.
750 Roughly speaking, hand coding provides beautiful and much better structured
751 code while Simulind HDL coder produces allows for fast code production. In
752 terms of throughput and latency, simulations show that the two approaches
753 yield close results with a slight advantage for hand coding.
754
755 \subsection{Simulation}
756
757 Before experimental tests on the FPGA board, we simulated our two VHDL
758 codes with GHDL and GTKWave (two free tools with linux). We built a
759 testbench based on experimental profiles and compared the results to
760 values given by the SPL algorithm. Both versions lead to correct
761 results. Our first codes were highly optimized, indeed the pipeline
762 could compute a new phase each 33 cycles and its latency was equal to
763 95 cycles. Since the Spartan6 is clocked at 100MHz, estimating the
764 deflection of 100 cantilevers would take about $%
765 (95+200\times 33).10=66.95\mu $s, i.e. nearly 15,000 estimations by
766 second.
767
768 \subsection{Bitstream creation}
769
770 In order to test our code on the SP Vision board, the design was
771 extended with a component that keeps profiles in RAM, flushes them in
772 the phase computation component and stores its output in another
773 RAM. We also added a wishbone, a component that can "drive" signals to
774 communicate between i.MX and other components. It is mainly used to
775 start to flush profiles and to retrieve the computed phases in
776 RAM. Unfortunately, the first designs could not be placed and routed
777 with ISE on the Spartan6 with a 100MHz clock. The main problems were
778 encountered with series of arthmetic operations and more especially
779 with RAM outputs used in DSPs. So, we needed to decompose some parts
780 of the pipeline, which added few clock cycles. Finally, we obtained a
781 bitstream that has been successfully tested on the board.
782
783 Its latency is of 112 cycles and computes a new phase every 40
784 cycles. For 100 cantilevers, it takes $(112+200\times 40).10=81.12\mu
785 $s to compute their deflection. It corresponds to about 12300 images
786 per second, which is largely beyond the camera capacities and the
787 possibility to extract a new profile from an image every 40
788 cycles. Nevertheless, it also largely fits our design goals.
789
790 \label{sec:results}
791
792 \section{Conclusion and perspectives}
793
794 In this paper we have presented a full hardware/software solution for
795 real-time cantilever deflection computation from interferometry images.
796 Phases are computed thanks to a new algorithm based on the least square
797 method. It has been quantized and pipelined to be mapped into a FPGA, the
798 architecture of our solution. Performances have been analyzed through
799 simulations and real experiments on a Spartan6 FPGA. The results meet our
800 initial requirements. In future work, the algorithm quantization will be
801 better analyzed and an high speed camera will be introduced in the
802 processing chain so that to process real images. Finally, we will address
803 real-time filtering and control problems for AFM arrays in dynamic regime.
804
805 \section{Acknowledgments}
806 We would like to thank A. Meister and M. Favre, from CSEM, for sharing all the
807 material we used to write this article and for the time they spent to
808 explain us their approach.
809
810 \bibliographystyle{plain}
811 \bibliography{biblio}
812
813 \end{document}