]> AND Private Git Repository - dmems12.git/blob - dmems12.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
qlq modifs
[dmems12.git] / dmems12.tex
1
2 \documentclass[10pt, peerreview, compsocconf]{IEEEtran}
3 %\usepackage{latex8}
4 %\usepackage{times}
5 \usepackage[utf8]{inputenc}
6 %\usepackage[cyr]{aeguill}
7 %\usepackage{pstricks,pst-node,pst-text,pst-3d}
8 %\usepackage{babel}
9 \usepackage{amsmath}
10 \usepackage{url}
11 \usepackage{graphicx}
12 \usepackage{thumbpdf}
13 \usepackage{color}
14 \usepackage{moreverb}
15 \usepackage{commath}
16 \usepackage{subfigure}
17 %\input{psfig.sty}
18 \usepackage{fullpage}
19 \usepackage{fancybox}
20
21 \usepackage[ruled,lined,linesnumbered]{algorithm2e}
22
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
24 \newcommand{\noun}[1]{\textsc{#1}}
25
26 \newcommand{\tab}{\ \ \ }
27
28
29
30 \begin{document}
31
32
33 %% \author{\IEEEauthorblockN{Authors Name/s per 1st Affiliation (Author)}
34 %% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\
35 %% line 2: name of organization, acronyms acceptable\\
36 %% line 3: City, Country\\
37 %% line 4: Email: name@xyz.com}
38 %% \and
39 %% \IEEEauthorblockN{Authors Name/s per 2nd Affiliation (Author)}
40 %% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\
41 %% line 2: name of organization, acronyms acceptable\\
42 %% line 3: City, Country\\
43 %% line 4: Email: name@xyz.com}
44 %% }
45
46
47
48 \title{Using FPGAs for high speed and real time cantilever deflection estimation}
49 \author{\IEEEauthorblockN{Raphaël Couturier\IEEEauthorrefmark{1}, Stéphane Domas\IEEEauthorrefmark{1}, Gwenhaël Goavec-Merou\IEEEauthorrefmark{2} and Michel Lenczner\IEEEauthorrefmark{2}}
50 \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, DISC, University of Franche-Comte, Belfort, France\\
51 \{raphael.couturier,stephane.domas\}@univ-fcomte.fr}
52 \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Time-Frequency, University of Franche-Comte, Besançon, France\\
53 \{michel.lenczner@utbm.fr,gwenhael.goavec@trabucayre.com}
54 }
55
56
57
58
59
60
61 %\maketitle
62
63 \thispagestyle{empty}
64
65 \begin{abstract}
66
67   
68
69
70 \end{abstract}
71
72 \begin{IEEEkeywords}
73 FPGA, cantilever, interferometry.
74 \end{IEEEkeywords}
75
76
77 \IEEEpeerreviewmaketitle
78
79 \section{Introduction}
80
81 Cantilevers  are  used  inside  atomic  force  microscope (AFM) which  provides  high
82 resolution images of  surfaces.  Several technics have been  used to measure the
83 displacement  of cantilevers  in litterature.   For example,  it is  possible to
84 determine  accurately  the  deflection  with different  mechanisms. 
85 In~\cite{CantiPiezzo01},   authors  used   piezoresistor  integrated   into  the
86 cantilever.   Nevertheless this  approach  suffers from  the  complexity of  the
87 microfabrication  process needed  to  implement the  sensor  in the  cantilever.
88 In~\cite{CantiCapacitive03},  authors  have  presented an  cantilever  mechanism
89 based on  capacitive sensing. This kind  of technic also  involves to instrument
90 the cantiliver which result in a complex fabrication process.
91
92 In this  paper our attention is focused  on a method based  on interferometry to
93 measure cantilevers' displacements.  In  this method cantilevers are illuminated
94 by  an optic  source. The  interferometry produces  fringes on  each cantilevers
95 which enables to  compute the cantilever displacement.  In  order to analyze the
96 fringes a  high speed camera  is used. Images  need to be processed  quickly and
97 then  a estimation  method is  required to  determine the  displacement  of each
98 cantilever.  In~\cite{AFMCSEM11},  the authors have  used an algorithm  based on
99 spline to estimate the cantilevers' positions.
100
101    The overall  process gives
102 accurate results  but all the computation  are performed on  a standard computer
103 using labview.  Consequently,  the main drawback of this  implementation is that
104 the computer is a bootleneck in the overall process. In this paper we propose to
105 use a  method based on least  square and to  implement all the computation  on a
106 FGPA.
107
108 The remainder  of the paper  is organized as  follows. Section~\ref{sec:measure}
109 describes  more precisely  the measurement  process. Our  solution based  on the
110 least  square   method  and   the  implementation  on   FPGA  is   presented  in
111 Section~\ref{sec:solus}.       Experimentations      are       described      in
112 Section~\ref{sec:results}.  Finally  a  conclusion  and  some  perspectives  are
113 presented.
114
115
116
117 %% quelques ref commentées sur les calculs basés sur l'interférométrie
118
119 \section{Measurement principles}
120 \label{sec:measure}
121
122
123
124
125
126
127
128
129 \subsection{Architecture}
130 \label{sec:archi}
131 %% description de l'architecture générale de l'acquisition d'images
132 %% avec au milieu une unité de traitement dont on ne précise pas ce
133 %% qu'elle est.
134
135 In order to develop simple,  cost effective and user-friendly cantilever arrays,
136 authors   of    ~\cite{AFMCSEM11}   have   developped   a    system   based   of
137 interferometry. In opposition to other optical based systems, using a laser beam
138 deflection scheme and  sentitive to the angular displacement  of the cantilever,
139 interferometry  is sensitive  to  the  optical path  difference  induced by  the
140 vertical displacement of the cantilever.
141
142 The system build  by authors of~\cite{AFMCSEM11} has been  developped based on a
143 Linnick     interferomter~\cite{Sinclair:05}.    It     is     illustrated    in
144 Figure~\ref{fig:AFM}.  A  laser diode  is first split  (by the splitter)  into a
145 reference beam and a sample beam  that reachs the cantilever array.  In order to
146 be  able to  move  the cantilever  array, it  is  mounted on  a translation  and
147 rotational hexapod  stage with  five degrees of  freedom. The optical  system is
148 also fixed to the stage.  Thus,  the cantilever array is centered in the optical
149 system which  can be adjusted accurately.   The beam illuminates the  array by a
150 microscope objective  and the  light reflects on  the cantilevers.  Likewise the
151 reference beam  reflects on a  movable mirror.  A  CMOS camera chip  records the
152 reference and  sample beams which  are recombined in  the beam splitter  and the
153 interferogram.   At the  beginning of  each  experiment, the  movable mirror  is
154 fitted  manually in  order to  align the  interferometric  fringes approximately
155 parallel  to the cantilevers.   When cantilevers  move due  to the  surface, the
156 bending of  cantilevers produce  movements in the  fringes that can  be detected
157 with    the    CMOS    camera.     Finally    the    fringes    need    to    be
158 analyzed. In~\cite{AFMCSEM11}, the authors used a LabView program to compute the
159 cantilevers' movements from the fringes.
160
161 \begin{figure}    
162 \begin{center}
163 \includegraphics[width=\columnwidth]{AFM}
164 \end{center}
165 \caption{schema of the AFM}
166 \label{fig:AFM}   
167 \end{figure}
168
169
170 %% image tirée des expériences.
171
172 \subsection{Cantilever deflection estimation}
173 \label{sec:deflest}
174
175 As shown on image \ref{img:img-xp}, each cantilever is covered by
176 interferometric fringes. The fringes will distort when cantilevers are
177 deflected. Estimating the deflection is done by computing this
178 distortion. For that, (ref A. Meister + M Favre) proposed a method
179 based on computing the phase of the fringes, at the base of each
180 cantilever, near the tip, and on the base of the array. They assume
181 that a linear relation binds these phases, which can be use to
182 "unwrap" the phase at the tip and to determine the deflection.\\
183
184 More precisely, segment of pixels are extracted from images taken by a
185 high-speed camera. These segments are large enough to cover several
186 interferometric fringes and are placed at the base and near the tip of
187 the cantilevers. They are called base profile and tip profile in the
188 following. Furthermore, a reference profile is taken on the base of
189 the cantilever array.
190
191 The pixels intensity $I$ (in gray level) of each profile is modelized by :
192
193 \begin{equation}
194 \label{equ:profile}
195 I(x) = ax+b+A.cos(2\pi f.x + \theta)
196 \end{equation}
197
198 where $x$ is the position of a pixel in its associated segment.
199
200 The global method consists in two main sequences. The first one aims
201 to determin the frequency $f$ of each profile with an algorithm based
202 on spline interpolation (see section \ref{algo-spline}). It also
203 computes the coefficient used for unwrapping the phase. The second one
204 is the acquisition loop, while which images are taken at regular time
205 steps. For each image, the phase $\theta$ of all profiles is computed
206 to obtain, after unwrapping, the deflection of
207 cantilevers. Originally, this computation was also done with an
208 algorithm based on spline. This article proposes a new version based
209 on a least square method.
210
211 \subsection{Design goals}
212 \label{sec:goals}
213
214 The main goal is to implement a computing unit to estimate the
215 deflection of about $10\times10$ cantilevers, faster than the stream of
216 images coming from the camera. The accuracy of results must be close
217 to the maximum precision ever obtained experimentally on the
218 architecture, i.e. 0.3nm. Finally, the latency between an image
219 entering in the unit and the deflections must be as small as possible
220 (NB : future works plan to add some control on the cantilevers).\\
221
222 If we put aside some hardware issues like the speed of the link
223 between the camera and the computation unit, the time to deserialize
224 pixels and to store them in memory, ... the phase computation is
225 obviously the bottle-neck of the whole process. For example, if we
226 consider the camera actually in use, an exposition time of 2.5ms for
227 $1024\times 1204$ pixels seems the minimum that can be reached. For
228 100 cantilevers, if we neglect the time to extract pixels, it implies
229 that computing the deflection of a single
230 cantilever should take less than 25$\mu$s, thus 12.5$\mu$s by phase.\\
231
232 In fact, this timing is a very hard constraint. Let consider a very
233 small programm that initializes twenty million of doubles in memory
234 and then does 1000000 cumulated sums on 20 contiguous values
235 (experimental profiles have about this size). On an intel Core 2 Duo
236 E6650 at 2.33GHz, this program reaches an average of 155Mflops. 
237
238 %%Itimplies that the phase computation algorithm should not take more than
239 %%$155\times 12.5 = 1937$ floating operations. For integers, it gives $3000$ operations. 
240
241 Obviously, some cache effects and optimizations on
242 huge amount of computations can drastically increase these
243 performances : peak efficiency is about 2.5Gflops for the considered
244 CPU. But this is not the case for phase computation that used only few
245 tenth of values.\\
246
247 In order to evaluate the original algorithm, we translated it in C
248 language. Profiles are read from a 1Mo file, as if it was an image
249 stored in a device file representing the camera. The file contains 100
250 profiles of 21 pixels, equally scattered in the file. We obtained an
251 average of 10.5$\mu$s by profile (including I/O accesses). It is under
252 are requirements but close to the limit. In case of an occasional load
253 of the system, it could be largely overtaken. A solution would be to
254 use a real-time operating system but another one to search for a more
255 efficient algorithm.
256
257 But the main drawback is the latency of such a solution : since each
258 profile must be treated one after another, the deflection of 100
259 cantilevers takes about $200\times 10.5 = 2.1$ms, which is inadequate
260 for an efficient control. An obvious solution is to parallelize the
261 computations, for example on a GPU. Nevertheless, the cost to transfer
262 profile in GPU memory and to take back results would be prohibitive
263 compared to computation time. It is certainly more efficient to
264 pipeline the computation. For example, supposing that 200 profiles of
265 20 pixels can be pushed sequentially in the pipelined unit cadenced at
266 a 100MHz (i.e. a pixel enters in the unit each 10ns), all profiles
267 would be treated in $200\times 20\times 10.10^{-9} =$ 40$\mu$s plus
268 the latency of the pipeline. This is about 500 times faster than
269 actual results.\\
270
271 For these reasons, an FPGA as the computation unit is the best choice
272 to achieve the required performance. Nevertheless, passing from
273 a C code to a pipelined version in VHDL is not obvious at all. As
274 explained in the next section, it can even be impossible because of
275 some hardware constraints specific to FPGAs.
276
277
278 \section{Proposed solution}
279 \label{sec:solus}
280
281 Project Oscar aims  to provide a hardware and  software architecture to estimate
282 and  control the  deflection of  cantilevers. The  hardware part  consists  in a
283 high-speed camera,  linked on an embedded  board hosting FPGAs. By  the way, the
284 camera output stream can be pushed  directly into the FPGA. The software part is
285 mostly the VHDL  code that deserializes the camera  stream, extracts profile and
286 computes  the deflection. Before  focusing on  our work  to implement  the phase
287 computation, we give some general information about FPGAs and the board we use.
288
289 \subsection{FPGAs}
290
291 A field-programmable gate  array (FPGA) is an integrated  circuit designed to be
292 configured by  the customer.  A hardware  description language (HDL)  is used to
293 configure a  FPGA. FGPAs are  composed of programmable logic  components, called
294 logic blocks.  These blocks can be  configured to perform simple (AND, XOR, ...)
295 or  complex  combinational  functions.    Logic  blocks  are  interconnected  by
296 reconfigurable links. Modern FPGAs contain memory elements and multipliers which
297 enable to  simplify the design  and to increase  the speed. As the  most complex
298 operation  on  FGPAs  is the  multiplier,  design  of  FGPAs should  use  simple
299 operations. For example,  a divider is not an operation available and it should
300 be programmed using simplest operations.
301
302 FGPAs programming  is very different  from classic processors  programming. When
303 logic blocks are  programmed and linked to perform an  operation, they cannot be
304 reused anymore.  FPGAs are cadenced more slowly than classic processors but they
305 can perform pipeline  as well as parallel operations. A  pipeline provides a way
306 to  manipulate  data  quickly  since  at   each  clock  top  it  handles  a  new
307 data. However, using  a pipeline consumes more logics  and components since they
308 are not  reusable. Nevertheless it is  probably the most  efficient technique on
309 FPGA.   Parallel operations  can be  used in  order to  manipulate  several data
310 simultaneously. When  it is  possible, using  a pipeline is  a good  solution to
311 manipulate  new  data  at  each  clock  top  and  using  parallelism  to  handle
312 simultaneously several pipelines in order to handle multiple data streams.
313
314 %% parler du VHDL, synthèse et bitstream
315 \subsection{The board}
316
317 The board we use is designed by the Armadeus compagny, under the name
318 SP Vision. It consists in a development board hosting a i.MX27 ARM
319 processor (from Freescale). The board includes all classical
320 connectors : USB, Ethernet, ... A Flash memory contains a Linux kernel
321 that can be launched after booting the board via u-Boot.
322
323 The processor is directly connected to a Spartan3A FPGA (from Xilinx)
324 via its special interface called WEIM. The Spartan3A is itself
325 connected to a Spartan6 FPGA. Thus, it is possible to develop programs
326 that communicate between i.MX and Spartan6, using Spartan3 as a
327 tunnel. By default, the WEIM interface provides a clock signal at
328 100MHz that is connected to dedicated FPGA pins.
329
330 The Spartan6 is an LX100 version. It has 15822 slices, equivalent to
331 101261 logic cells. There are 268 internal block RAM of 18Kbits, and
332 180 dedicated multiply-adders (named DSP48), which is largely enough
333 for our project.
334
335 Some I/O pins of Spartan6 are connected to two $2\times 17$ headers
336 that can be used as user wants. For the project, they will be
337 connected to the interface card of the camera.
338
339 \subsection{Considered algorithms}
340
341 Two solutions have been studied to achieve phase computation. The
342 original one, proposed by A. Meister and M. Favre, is based on
343 interpolation by splines. It allows to compute frequency and
344 phase. The second one, detailed in this article, is based on a
345 classical least square method but suppose that frequency is already
346 known.
347
348 \subsubsection{Spline algorithm}
349 \label{sec:algo-spline}
350 Let consider a profile $P$, that is a segment of $M$ pixels with an
351 intensity in gray levels. Let call $I(x)$ the intensity of profile in $x
352 \in [0,M[$. 
353
354 At first, only $M$ values of $I$ are known, for $x = 0, 1,
355 \ldots,M-1$. A normalisation allows to scale known intensities into
356 $[-1,1]$. We compute splines that fit at best these normalised
357 intensities. Splines are used to interpolate $N = k\times M$ points
358 (typically $k=4$ is sufficient), within $[0,M[$. Let call $x^s$ the
359 coordinates of these $N$ points and $I^s$ their intensities.
360
361 In order to have the frequency, the mean line $a.x+b$ (see equation \ref{equ:profile}) of $I^s$ is
362 computed. Finding intersections of $I^s$ and this line allow to obtain
363 the period thus the frequency.
364
365 The phase is computed via the equation :
366 \begin{equation}
367 \theta = atan \left[ \frac{\sum_{i=0}^{N-1} sin(2\pi f x^s_i) \times I^s(x^s_i)}{\sum_{i=0}^{N-1} cos(2\pi f x^s_i) \times I^s(x^s_i)} \right]
368 \end{equation}
369
370 Two things can be noticed :
371 \begin{itemize}
372 \item the frequency could also be obtained using the derivates of
373   spline equations, which only implies to solve quadratic equations.
374 \item frequency of each profile is computed a single time, before the
375   acquisition loop. Thus, $sin(2\pi f x^s_i)$ and $cos(2\pi f x^s_i)$
376   could also be computed before the loop, which leads to a much faster
377   computation of $\theta$.
378 \end{itemize}
379
380 \subsubsection{Least square algorithm}
381
382 Assuming that we compute the phase during the acquisition loop,
383 equation \ref{equ:profile} has only 4 parameters :$a, b, A$, and
384 $\theta$, $f$ and $x$ being already known. Since $I$ is non-linear, a
385 least square method based an Gauss-newton algorithm must be used to
386 determine these four parameters. Since it is an iterative process
387 ending with a convergence criterion, it is obvious that it is not
388 particularly adapted to our design goals.
389
390 Fortunatly, it is quite simple to reduce the number of parameters to
391 only $\theta$. Let $x^p$ be the coordinates of pixels in a segment of
392 size $M$. Thus, $x^p = 0, 1, \ldots, M-1$. Let $I(x^p)$ be their
393 intensity. Firstly, we "remove" the slope by computing :
394
395 \[I^{corr}(x^p) = I(x^p) - a.x^p - b\]
396
397 Since linear equation coefficients are searched, a classical least
398 square method can be used to determine $a$ and $b$ :
399
400 \[a = \frac{covar(x^p,I(x^p))}{var(x^p)} \]
401
402 Assuming an overlined symbol means an average, then :
403
404 \[b = \overline{I(x^p)} - a.\overline{{x^p}}\]
405
406 Let $A$ be the amplitude of $I^{corr}$, i.e. 
407
408 \[A = \frac{max(I^{corr}) - min(I^{corr})}{2}\]
409
410 Then, the least square method to find $\theta$ is reduced to search the minimum of :
411
412 \[\sum_{i=0}^{M-1} \left[ cos(2\pi f.i + \theta) - \frac{I^{corr}(i)}{A} \right]^2\]
413
414 It is equivalent to derivate this expression and to solve the following equation :
415
416 \begin{eqnarray*}
417 2\left[ cos\theta \sum_{i=0}^{M-1} I^{corr}(i).sin(2\pi f.i) + sin\theta \sum_{i=0}^{M-1} I^{corr}(i).cos(2\pi f.i)\right] \\
418 - A\left[ cos2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right]   = 0
419 \end{eqnarray*}
420
421 Several points can be noticed :
422 \begin{itemize}
423 \item As in the spline method, some parts of this equation can be
424   computed before the acquisition loop. It is the case of sums that do
425   not depend on $\theta$ :
426
427 \[ \sum_{i=0}^{M-1} sin(4\pi f.i), \sum_{i=0}^{M-1} cos(4\pi f.i) \] 
428
429 \item Lookup tables for $sin(2\pi f.i)$ and $cos(2\pi f.i)$ can also be
430 computed.
431
432 \item The simplest method to find the good $\theta$ is to discretize
433   $[-\pi,\pi]$ in $nb_s$ steps, and to search which step leads to the
434   result closest to zero. By the way, three other lookup tables can
435   also be computed before the loop :
436
437 \[ sin \theta, cos \theta, \]
438
439 \[ \left[ cos 2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin 2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right] \]
440
441 \item This search can be very fast using a dichotomous process in $log_2(nb_s)$ 
442
443 \end{itemize}
444
445 Finally, the whole summarizes in an algorithm (called LSQ in the following) in two parts, one before and one during the acquisition loop :
446 \begin{algorithm}[h]
447 \caption{LSQ algorithm - before acquisition loop.}
448 \label{alg:lsq-before}
449
450    $M \leftarrow $ number of pixels of the profile\\
451    I[] $\leftarrow $ intensities of pixels\\
452    $f \leftarrow $ frequency of the profile\\
453    $s4i \leftarrow \sum_{i=0}^{M-1} sin(4\pi f.i)$\\
454    $c4i \leftarrow \sum_{i=0}^{M-1} cos(4\pi f.i)$\\
455    $nb_s \leftarrow $ number of discretization steps of $[-\pi,\pi]$\\
456
457    \For{$i=0$ to $nb_s $}{
458      $\theta  \leftarrow -\pi + 2\pi\times \frac{i}{nb_s}$\\
459      lut$_s$[$i$] $\leftarrow sin \theta$\\
460      lut$_c$[$i$] $\leftarrow cos \theta$\\
461      lut$_A$[$i$] $\leftarrow cos 2 \theta \times s4i + sin 2 \theta \times c4i$\\
462      lut$_{sfi}$[$i$] $\leftarrow sin (2\pi f.i)$\\
463      lut$_{cfi}$[$i$] $\leftarrow cos (2\pi f.i)$\\
464    }
465 \end{algorithm}
466
467 \begin{algorithm}[ht]
468 \caption{LSQ algorithm - during acquisition loop.}
469 \label{alg:lsq-during}
470
471    $\bar{x} \leftarrow \frac{M-1}{2}$\\
472    $\bar{y} \leftarrow 0$, $x_{var} \leftarrow 0$, $xy_{covar} \leftarrow 0$\\
473    \For{$i=0$ to $M-1$}{
474      $\bar{y} \leftarrow \bar{y} + $ I[$i$]\\
475      $x_{var} \leftarrow x_{var} + (i-\bar{x})^2$\\
476    }
477    $\bar{y} \leftarrow \frac{\bar{y}}{M}$\\
478    \For{$i=0$ to $M-1$}{
479      $xy_{covar} \leftarrow xy_{covar} + (i-\bar{x}) \times (I[i]-\bar{y})$\\
480    }
481    $slope \leftarrow \frac{xy_{covar}}{x_{var}}$\\
482    $start \leftarrow y_{moy} - slope\times \bar{x}$\\
483    \For{$i=0$ to $M-1$}{
484      $I[i] \leftarrow I[i] - start - slope\times i$\\
485    }
486    
487    $I_{max} \leftarrow max_i(I[i])$, $I_{min} \leftarrow min_i(I[i])$\\
488    $amp \leftarrow \frac{I_{max}-I_{min}}{2}$\\
489
490    $Is \leftarrow 0$, $Ic \leftarrow 0$\\
491    \For{$i=0$ to $M-1$}{
492      $Is \leftarrow Is + I[i]\times $ lut$_{sfi}$[$i$]\\
493      $Ic \leftarrow Ic + I[i]\times $ lut$_{cfi}$[$i$]\\
494    }
495
496    $\delta \leftarrow \frac{nb_s}{2}$, $b_l \leftarrow 0$, $b_r \leftarrow \delta$\\
497    $v_l \leftarrow -2.I_s - amp.$lut$_A$[$b_l$]\\
498
499    \While{$\delta >= 1$}{
500
501      $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\
502
503      \If{$!(v_l < 0$ and $v_r >= 0)$}{
504        $v_l \leftarrow v_r$ \\
505        $b_l \leftarrow b_r$ \\
506      }
507      $\delta \leftarrow \frac{\delta}{2}$\\
508      $b_r \leftarrow b_l + \delta$\\
509    }
510    \uIf{$!(v_l < 0$ and $v_r >= 0)$}{
511      $v_l \leftarrow v_r$ \\
512      $b_l \leftarrow b_r$ \\
513      $b_r \leftarrow b_l + 1$\\
514      $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\
515    }
516    \Else {
517      $b_r \leftarrow b_l + 1$\\
518    }
519
520    \uIf{$ abs(v_l) < v_r$}{
521      $b_{\theta} \leftarrow b_l$ \\
522    }
523    \Else {
524      $b_{\theta} \leftarrow b_r$ \\
525    }
526    $\theta \leftarrow \pi\times \left[\frac{2.b_{ref}}{nb_s}-1\right]$\\
527
528 \end{algorithm}
529
530 \subsubsection{Comparison}
531
532 We compared the two algorithms on the base of three criterions :
533 \begin{itemize}
534 \item precision of results on a cosinus profile, distorted with noise,
535 \item number of operations,
536 \item complexity to implement an FPGA version.
537 \end{itemize}
538
539 For the first item, we produced a matlab version of each algorithm,
540 running with double precision values. The profile was generated for
541 about 34000 different values of period ($\in [3.1, 6.1]$, step = 0.1),
542 phase ($\in [-3.1 , 3.1]$, step = 0.062) and slope ($\in [-2 , 2]$,
543 step = 0.4). For LSQ, $nb_s = 1024$, which leads to a maximal error of
544 $\frac{\pi}{1024}$ on phase computation. Current A. Meister and
545 M. Favre experiments show a ratio of 50 between variation of phase and
546 the deflection of a lever. Thus, the maximal error due to
547 discretization correspond to an error of 0.15nm on the lever
548 deflection, which is smaller than the best precision they achieved,
549 i.e. 0.3nm.
550
551 For each test, we add some noise to the profile : each group of two
552 pixels has its intensity added to a random number picked in $[-N,N]$
553 (NB: it should be noticed that picking a new value for each pixel does
554 not distort enough the profile). The absolute error on the result is
555 evaluated by comparing the difference between the reference and
556 computed phase, out of $2\pi$, expressed in percents. That is : $err =
557 100\times \frac{|\theta_{ref} - \theta_{comp}|}{2\pi}$.
558
559 Table \ref{tab:algo_prec} gives the maximum and average error for the two algorithms and increasing values of $N$.
560
561 \begin{table}[ht]
562   \begin{center}
563     \begin{tabular}{|c|c|c|c|c|}
564       \hline
565   & \multicolumn{2}{c|}{SPL} & \multicolumn{2}{c|}{LSQ} \\ \cline{2-5}
566   noise & max. err. & aver. err. & max. err. & aver. err. \\ \hline
567   0 & 2.46 & 0.58 & 0.49 & 0.1 \\ \hline
568   2.5 & 2.75 & 0.62 & 1.16 & 0.22 \\ \hline
569   5 & 3.77 & 0.72 & 2.47 & 0.41 \\ \hline
570   7.5 & 4.72 & 0.86 & 3.33 & 0.62 \\ \hline
571   10 & 5.62 & 1.03 & 4.29 & 0.81 \\ \hline
572   15 & 7.96 & 1.38 & 6.35 & 1.21 \\ \hline
573   30 & 17.06 & 2.6 & 13.94 & 2.45 \\ \hline
574
575 \end{tabular}
576 \caption{Error (in \%) for cosinus profiles, with noise.}
577 \label{tab:algo_prec}
578 \end{center}
579 \end{table}
580
581 These results show that the two algorithms are very close, with a
582 slight advantage for LSQ. Furthemore, both behave very well against
583 noise. Assuming the experimental ratio of 50 (see above), an error of
584 1 percent on phase correspond to an error of 0.5nm on the lever
585 deflection, which is very close to the best precision.
586
587 Obviously, it is very hard to predict which level of noise will be
588 present in real experiments and how it will distort the
589 profiles. Nevertheless, we can see on figure \ref{fig:noise20} the
590 profile with $N=10$ that leads to the biggest error. It is a bit
591 distorted, with pikes and straight/rounded portions, and relatively
592 close to most of that come from experiments. Figure \ref{fig:noise60}
593 shows a sample of worst profile for $N=30$. It is completly distorted,
594 largely beyond the worst experimental ones. 
595
596 \begin{figure}[ht]
597 \begin{center}
598   \includegraphics[width=9cm]{intens-noise20-spl}
599 \end{center}
600 \caption{Sample of worst profile for N=10}
601 \label{fig:noise20}
602 \end{figure}
603
604 \begin{figure}[ht]
605 \begin{center}
606   \includegraphics[width=9cm]{intens-noise60-lsq}
607 \end{center}
608 \caption{Sample of worst profile for N=30}
609 \label{fig:noise60}
610 \end{figure}
611
612 The second criterion is relatively easy to estimate for LSQ and harder
613 for SPL because of $atan$ operation. In both cases, it is proportional
614 to numbers of pixels $M$. For LSQ, it also depends on $nb_s$ and for
615 SPL on $N = k\times M$, i.e. the number of interpolated points. 
616
617 We assume that $M=20$, $nb_s=1024$, $k=4$, all possible parts are
618 already in lookup tables and a limited set of operations (+, -, *, /,
619 <, >) is taken account. Translating the two algorithms in C code, we
620 obtain about 430 operations for LSQ and 1550 (plus few tenth for
621 $atan$) for SPL. This result is largely in favor of LSQ. Nevertheless,
622 considering the total number of operations is not really pertinent for
623 an FPGA implementation : it mainly depends on the type of operations
624 and their
625 ordering. The final decision is thus driven by the third criterion.\\
626
627 The Spartan 6 used in our architecture has hard constraint : it has no
628 built-in floating point units. Obviously, it is possible to use some
629 existing "black-boxes" for double precision operations. But they have
630 a quite long latency. It is much simpler to exclusively use integers,
631 with a quantization of all double precision values. Obviously, this
632 quantization should not decrease too much the precision of
633 results. Furthermore, it should not lead to a design with a huge
634 latency because of operations that could not complete during a single
635 or few clock cycles. Divisions are in this case and, moreover, they
636 need an varying number of clock cycles to complete. Even
637 multiplications can be a problem : DSP48 take inputs of 18 bits
638 maximum. For larger multiplications, several DSP must be combined,
639 increasing the latency.
640
641 Nevertheless, the hardest constraint does not come from the FPGA
642 characteristics but from the algorithms. Their VHDL implentation will
643 be efficient only if they can be fully (or near) pipelined. By the
644 way, the choice is quickly done : only a small part of SPL can be.
645 Indeed, the computation of spline coefficients implies to solve a
646 tridiagonal system $A.m = b$. Values in $A$ and $b$ can be computed
647 from incoming pixels intensity but after, the back-solve starts with
648 the lastest values, which breaks the pipeline. Moreover, SPL relies on
649 interpolating far more points than profile size. Thus, the end
650 of SPL works on a larger amount of data than the beginning, which
651 also breaks the pipeline.
652
653 LSQ has not this problem : all parts except the dichotomial search
654 work on the same amount of data, i.e. the profile size. Furthermore,
655 LSQ needs less operations than SPL, implying a smaller output
656 latency. Consequently, it is the best candidate for phase
657 computation. Nevertheless, obtaining a fully pipelined version
658 supposes that operations of different parts complete in a single clock
659 cycle. It is the case for simulations but it completely fails when
660 mapping and routing the design on the Spartan6. By the way,
661 extra-latency is generated and there must be idle times between two
662 profiles entering into the pipeline.
663
664 %%Before obtaining the least bitstream, the crucial question is : how to
665 %%translate the C code the LSQ into VHDL ?
666
667
668 %\subsection{VHDL design paradigms}
669
670 \section{Experimental tests}
671
672 \subsection{VHDL implementation}
673
674 % - ecriture d'un code en C avec integer
675 % - calcul de la taille max en bit de chaque variable en fonction de la quantization.
676 % - tests de quantization : équilibre entre précision et contraintes FPGA
677 % - en parallèle : simulink et VHDL à la main
678 %
679 \subsection{Simulation}
680
681 % ghdl + gtkwave
682 % au mieux : une phase tous les 33 cycles, latence de 95 cycles.
683 % mais routage/placement impossible.
684 \subsection{Bitstream creation}
685
686 % pas fait mais prévision d'une sortie tous les 480ns avec une latence de 1120
687
688 \label{sec:results}
689
690
691
692
693 \section{Conclusion and perspectives}
694
695
696 \bibliographystyle{plain}
697 \bibliography{biblio}
698
699 \end{document}