]> AND Private Git Repository - dmems12.git/blobdiff - dmems12.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
description de l'appareillage
[dmems12.git] / dmems12.tex
index 806e5098f69359b8b9436f61f3f5cf542ffccab1..ed1709b970b6e5639bed275c3a350dcbbf4fdc23 100644 (file)
@@ -1,7 +1,9 @@
-\documentclass[12pt]{article}
+
+\documentclass[10pt, conference, compsocconf]{IEEEtran}
 %\usepackage{latex8}
 %\usepackage{times}
-\usepackage[latin1]{inputenc}
+\usepackage[utf8]{inputenc}
+%\usepackage[cyr]{aeguill}
 %\usepackage{pstricks,pst-node,pst-text,pst-3d}
 %\usepackage{babel}
 \usepackage{amsmath}
 \usepackage{fullpage}
 \usepackage{fancybox}
 
+\usepackage[ruled,lined,linesnumbered]{algorithm2e}
+
 %%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
 \newcommand{\noun}[1]{\textsc{#1}}
 
 \newcommand{\tab}{\ \ \ }
 
-%%%%%%%%%%%%%%%%%%%%%%%%%%%% my bib path.
+
+
+\begin{document}
+
+
+%% \author{\IEEEauthorblockN{Authors Name/s per 1st Affiliation (Author)}
+%% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\
+%% line 2: name of organization, acronyms acceptable\\
+%% line 3: City, Country\\
+%% line 4: Email: name@xyz.com}
+%% \and
+%% \IEEEauthorblockN{Authors Name/s per 2nd Affiliation (Author)}
+%% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\
+%% line 2: name of organization, acronyms acceptable\\
+%% line 3: City, Country\\
+%% line 4: Email: name@xyz.com}
+%% }
+
 
 
 \title{Using FPGAs for high speed and real time cantilever deflection estimation}
+\author{\IEEEauthorblockN{Raphaël Couturier\IEEEauthorrefmark{1}, Stéphane Domas\IEEEauthorrefmark{1}, Gwenhaël Goavec-Merou\IEEEauthorrefmark{2} and Michel Lenczner\IEEEauthorrefmark{2}}
+\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, DISC, University of Franche-Comte, Belfort, France\\
+\{raphael.couturier,stephane.domas\}@univ-fcomte.fr}
+\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Time-Frequency, University of Franche-Comte, Besançon, France\\
+\{michel.lenczner@utbm.fr,gwenhael.goavec@trabucayre.com}
+}
+
+
 
-\author{ Raphaël COUTURIER\\
-Laboratoire d'Informatique 
-de l'Universit\'e de  Franche-Comt\'e, \\
-BP 527, \\
-90016~Belfort CEDEX, France\\
- \and Stéphane Domas\\
-Laboratoire d'Informatique 
-de l'Universit\'e de  Franche-Comt\'e, \\
-BP 527, \\
-90016~Belfort CEDEX, France\\
- \and Gwenhaël Goavec\\
-??
-?? \\
-??, \\
-??\\}
 
 
-\begin{document}
 
 \maketitle
 
@@ -58,34 +71,89 @@ BP 527, \\
 
 \section{Introduction}
 
-%% blabla +
+Cantilevers  are  used  inside  atomic  force  microscope  which  provides  high
+resolution images of  surfaces.  Several technics have been  used to measure the
+displacement  of cantilevers  in litterature.   For example,  it is  possible to
+determine  accurately  the  deflection  with different  mechanisms. 
+In~\cite{CantiPiezzo01},   authors  used   piezoresistor  integrated   into  the
+cantilever.   Nevertheless this  approach  suffers from  the  complexity of  the
+microfabrication  process needed  to  implement the  sensor  in the  cantilever.
+In~\cite{CantiCapacitive03},  authors  have  presented an  cantilever  mechanism
+based on  capacitive sensing. This kind  of technic also  involves to instrument
+the cantiliver which result in a complex fabrication process.
+
+In this  paper our attention is focused  on a method based  on interferometry to
+measure cantilevers' displacements.  In  this method cantilevers are illuminated
+by  an optic  source. The  interferometry produces  fringes on  each cantilevers
+which enables to  compute the cantilever displacement.  In  order to analyze the
+fringes a  high speed camera  is used. Images  need to be processed  quickly and
+then  a estimation  method is  required to  determine the  displacement  of each
+cantilever.  In~\cite{AFMCSEM11},  the authors have  used an algorithm  based on
+spline to estimate the cantilevers' positions.
+%%RAPH : ce qui est génant c'est qu'ils ne parlent pas de spline dans ce papier...
+   The overall  process gives
+accurate results  but all the computation  are performed on  a standard computer
+using labview.  Consequently,  the main drawback of this  implementation is that
+the computer is a bootleneck in the overall process. In this paper we propose to
+use a  method based on least  square and to  implement all the computation  on a
+FGPA.
+
+The remainder  of the paper  is organized as  follows. Section~\ref{sec:measure}
+describes  more precisely  the measurement  process. Our  solution based  on the
+least  square   method  and   the  implementation  on   FPGA  is   presented  in
+Section~\ref{sec:solus}.       Experimentations      are       described      in
+Section~\ref{sec:results}.  Finally  a  conclusion  and  some  perspectives  are
+presented.
+
+
+
 %% quelques ref commentées sur les calculs basés sur l'interférométrie
 
-\section{Measurement architecture}
-\label{sec:measure-archi}
+\section{Measurement principles}
+\label{sec:measure}
 
-%% description de l'architecture générale de l'acquisition d'images
-%% avec au milieu une unité de traitement dont on ne précise pas ce
-%% qu'elle est.
+In order to develop simple,  cost effective and user-friendly cantilever arrays,
+authors   of    ~\cite{AFMCSEM11}   have   developped   a    system   based   of
+interferometry. In opposition to other optical based systems, using a laser beam
+deflection scheme and  sentitive to the angular displacement  of the cantilever,
+interferometry  is sensitive  to  the  optical path  difference  induced by  the
+vertical displacement of the cantilever.
+%%RAPH : est ce qu'on pique une image? génant ou non?
+The system build  by authors of~\cite{AFMCSEM11} has been  developped based on a
+Linnick interferomter~\cite{Sinclair:05}.   A laser beam is first  split (by the
+splitter) into  a reference beam  and a sample  beam that reachs  the cantilever
+array.  In  order to be able  to move the cantilever  array, it is  mounted on a
+translation  and rotational  stage with  five  degrees of  freedom. The  optical
+system is also fixed to the stage. Thus, the cantilever array is centered in the
+optical system which can be adjusted accurately.  The beam illuminates the array
+by a  microscope objective and the  light reflects on  the cantilevers. Likewise
+the reference beam reflects on a movable mirror.  A CMOS camera chip records the
+reference and  sample beams which  are recombined in  the beam splitter  and the
+interferogram. At the beginning of each experiment, the movable mirror is fitted
+manually in order to align the interferometric fringes approximately parallel to
+the  cantilevers. When  cantilevers  move due  to  the surface,  the bending  of
+cantilevers produce movements in the fringes  that can be detected with the CMOS
+camera.  Finally  the fringes  need  to  be  analyzed. In~\cite{AFMCSEM11},  the
+authors used  a LabView program to  compute the cantilevers'  movements from the
+fringes.
 
-%% image tirée des expériences.
 
-\section{Design goals}
-\label{sec:goals}
 
-%% objectifs en terme de rapidité et de précision, avec en vue l'ajout
-%% du contrôle => l'unité de traitement qui s'impose est un FPGA =>
-%% algo adapté au FPGA.
 
-%% peut etre que cette section peut être déplacée en intro ... à voir.
 
-\section{Proposed solution}
-\label{sec:solus}
+
+
+\subsection{Architecture}
+\label{sec:archi}
+%% description de l'architecture générale de l'acquisition d'images
+%% avec au milieu une unité de traitement dont on ne précise pas ce
+%% qu'elle est.
+
+%% image tirée des expériences.
 
 \subsection{Cantilever deflection estimation}
+\label{sec:deflest}
 
-%% => faire de l'interpolation de signal sinusoidal
-%% descriptif rapide des deux méthodes : splines et moindres carrés
 As shown on image \ref{img:img-xp}, each cantilever is covered by
 interferometric fringes. The fringes will distort when cantilevers are
 deflected. Estimating the deflection is done by computing this
@@ -113,19 +181,49 @@ where $x$ is the position of a pixel in its associated segment.
 
 The global method consists in two main sequences. The first one aims
 to determin the frequency $f$ of each profile with an algorithm based
-on spline interpolation (see below). It also computes the coefficient
-used for unwrapping the phase. The second one is the acquisition loop,
-while which images are taken at regular time steps. For each image,
-the phase $\theta$ of all profiles is computed to obtain, after
-unwrapping, the deflection of cantilevers.
-
-This phase computation is obviously the bottle-neck of the whole
-process. For example, if we consider the camera actually in use, an
-exposition time of 2.5ms for $1024\times 1204$ pixels seems the
-minimum that can be reached. For a $10\times 10$ cantilever array, if
-we neglect the time to extract pixels, it implies that computing the
-deflection of a single cantilever should take less than 25$µ$s, which is
-quite small.
+on spline interpolation (see section \ref{algo-spline}). It also
+computes the coefficient used for unwrapping the phase. The second one
+is the acquisition loop, while which images are taken at regular time
+steps. For each image, the phase $\theta$ of all profiles is computed
+to obtain, after unwrapping, the deflection of cantilevers.
+
+\subsection{Design goals}
+\label{sec:goals}
+
+If we put aside some hardware issues like the speed of the link
+between the camera and the computation unit, the time to deserialize
+pixels and to store them in memory, ... the phase computation is
+obviously the bottle-neck of the whole process. For example, if we
+consider the camera actually in use, an exposition time of 2.5ms for
+$1024\times 1204$ pixels seems the minimum that can be reached. For a
+$10\times 10$ cantilever array, if we neglect the time to extract
+pixels, it implies that computing the deflection of a single
+cantilever should take less than 25$\mu$s, thus 12.5$\mu$s by phase.\\
+
+In fact, this timing is a very hard constraint. Let consider a very
+small programm that initializes twenty million of doubles in memory
+and then does 1000000 cumulated sums on 20 contiguous values
+(experimental profiles have about this size). On an intel Core 2 Duo
+E6650 at 2.33GHz, this program reaches an average of 155Mflops. It
+implies that the phase computation algorithm should not take more than
+$240\times 12.5 = 1937$ floating operations. For integers, it gives
+$3000$ operations.
+
+%% to be continued ...
+
+%% � faire : timing de l'algo spline en C avec atan et tout le bordel.
+
+
+
+
+\section{Proposed solution}
+\label{sec:solus}
+
+
+\subsection{FPGA constraints}
+
+%% contraintes imposées par le FPGA : algo pipeline/parallele, pas d'op math complexe, ...
+
 
 \subsection{Considered algorithms}
 
@@ -137,7 +235,7 @@ classical least square method but suppose that frequency is already
 known.
 
 \subsubsection{Spline algorithm}
-
+\label{sec:algo-spline}
 Let consider a profile $P$, that is a segment of $M$ pixels with an
 intensity in gray levels. Let call $I(x)$ the intensity of profile in $x
 \in [0,M[$. 
@@ -228,20 +326,77 @@ computed.
 
 \end{itemize}
 
-\subsubsection{Comparison}
-
-\subsection{FPGA constraints}
+Finally, the whole summarizes in an algorithm (called LSQ in the following) in two parts, one before and one during the acquisition loop :
+\begin{algorithm}[h]
+\caption{LSQ algorithm - before acquisition loop.}
+\label{alg:lsq-before}
+
+   $M \leftarrow $ number of pixels of the profile\\
+   I[] $\leftarrow $ intensities of pixels\\
+   $f \leftarrow $ frequency of the profile\\
+   $s4i \leftarrow \sum_{i=0}^{M-1} sin(4\pi f.i)$\\
+   $c4i \leftarrow \sum_{i=0}^{M-1} cos(4\pi f.i)$\\
+   $nb_s \leftarrow $ number of discretization steps of $[-\pi,\pi]$\\
+
+   \For{$i=0$ to $nb_s $}{
+     $\theta  \leftarrow -\pi + 2\pi\times \frac{i}{nb_s}$\\
+     lut\_sin[$i$] $\leftarrow sin \theta$\\
+     lut\_cos[$i$] $\leftarrow cos \theta$\\
+     lut\_A[$i$] $\leftarrow cos 2 \theta \times s4i + sin 2 \theta \times c4i$\\
+     lut\_sinfi[$i$] $\leftarrow sin (2\pi f.i)$\\
+     lut\_cosfi[$i$] $\leftarrow cos (2\pi f.i)$\\
+   }
+\end{algorithm}
+
+\begin{algorithm}[h]
+\caption{LSQ algorithm - during acquisition loop.}
+\label{alg:lsq-during}
+
+   $\bar{x} \leftarrow \frac{M-1}{2}$\\
+   $\bar{y} \leftarrow 0$, $x_{var} \leftarrow 0$, $xy_{covar} \leftarrow 0$\\
+   \For{$i=0$ to $M-1$}{
+     $\bar{y} \leftarrow \bar{y} + $ I[$i$]\\
+     $x_{var} \leftarrow x_{var} + (i-\bar{x})^2$\\
+   }
+   $\bar{y} \leftarrow \frac{\bar{y}}{M}$\\
+   \For{$i=0$ to $M-1$}{
+     $xy_{covar} \leftarrow xy_{covar} + (i-\bar{x}) \times (I[i]-\bar{y})$\\
+   }
+   $slope \leftarrow \frac{xy_{covar}}{x_{var}}$\\
+   $start \leftarrow y_{moy} - slope\times \bar{x}$\\
+   \For{$i=0$ to $M-1$}{
+     $I[i] \leftarrow I[i] - start - slope\times i$\tcc*[f]{slope removal}\\
+   }
+   
+   $I_{max} \leftarrow max_i(I[i])$, $I_{min} \leftarrow min_i(I[i])$\\
+   $amp \leftarrow \frac{I_{max}-I_{min}}{2}$\\
+
+   $Is \leftarrow 0$, $Ic \leftarrow 0$\\
+   \For{$i=0$ to $M-1$}{
+     $Is \leftarrow Is + I[i]\times $ lut\_sinfi[$i$]\\
+     $Ic \leftarrow Ic + I[i]\times $ lut\_cosfi[$i$]\\
+   }
+
+   $\theta \leftarrow -\pi$\\
+   $val_1 \leftarrow 2\times \left[ Is.\cos(\theta) + Ic.\sin(\theta) \right] - amp\times \left[ c4i.\sin(2\theta) + s4i.\cos(2\theta) \right]$\\
+   \For{$i=1-n_s$ to $n_s$}{
+     $\theta \leftarrow \frac{i.\pi}{n_s}$\\
+     $val_2 \leftarrow 2\times \left[ Is.\cos(\theta) + Ic.\sin(\theta) \right] - amp\times \left[ c4i.\sin(2\theta) + s4i.\cos(2\theta) \right]$\\
+
+     \lIf{$val_1 < 0$ et $val_2 >= 0$}{
+       $\theta_s \leftarrow \theta - \left[ \frac{val_2}{val_2-val_1}\times \frac{\pi}{n_s} \right]$\\
+     }
+     $val_1 \leftarrow val_2$\\
+   }
+
+\end{algorithm}
 
-%% contraintes imposées par le FPGA : algo pipeline/parallele, pas d'op math complexe, ...
-
-\subsection{Least square algorithm}
 
-%% description précise
-%% avantage sur FPGA
+\subsubsection{Comparison}
 
-\subsection{VDHL design paradigms}
+\subsection{VHDL design paradigms}
 
-\subsection{VDHL implementation}
+\subsection{VHDL implementation}
 
 \section{Experimental results}
 \label{sec:results}