2 %%Creator: dvips(k) 5.95b Copyright 2005 Radical Eye Software
3 %%Title: D:/Texte/Sensors/Fusion/Fusion-chapitre/Fusion-chapter.dvi
4 %%CreationDate: Tue Jun 30 21:21:13 2009
7 %%BoundingBox: 0 0 595 842
8 %%DocumentFonts: Times-Bold Times-Roman CMMI7 CMSY8 Times-Italic CMSY10
9 %%+ Times-BoldItalic CMMI10 CMR10 MSBM10 CMEX10 CMR7 CMSY7 CMMI5 CMMI8
10 %%+ CMR8 CMMI6 MSBM7 CMSY6 CMR6 MSAM10 CMR5 CMSY5 Helvetica
11 %%DocumentPaperSizes: a4
13 %DVIPSWebPage: (www.radicaleye.com)
14 %DVIPSCommandLine: "C:\Program Files\MiKTeX 2.5\miktex\bin\dvips.exe"
15 %+ D:/Texte/Sensors/Fusion/Fusion-chapitre/Fusion-chapter.dvi
16 %DVIPSParameters: dpi=600
17 %DVIPSSource: TeX output 2009.06.30:2121
18 %%BeginProcSet: tex.pro 0 0
20 /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
21 N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
22 mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
23 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
24 landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
25 mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
26 matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
27 exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
28 statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
29 N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
30 /FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
31 /BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
32 array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
33 df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
34 definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
35 }B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
36 B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
37 1 add N}if}B/CharBuilder{save 3 1 roll S A/base get 2 index get S
38 /BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy
39 setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]{Ci}imagemask
40 restore}B/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
41 /BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
42 }if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
43 bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
44 mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
45 SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
46 userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
47 1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
48 index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
49 /p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
50 /Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
51 (LaserWriter 16/600)]{A length product length le{A length product exch 0
52 exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
53 end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
54 grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
55 imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
56 exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
57 fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
58 delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
59 B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
60 p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
61 rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
64 %%BeginProcSet: 8r.enc 0 0
65 % File 8r.enc TeX Base 1 Encoding Revision 2.0 2002-10-30
68 % author = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry,
69 % W. Schmidt, P. Lehman",
72 % filename = "8r.enc",
73 % email = "tex-fonts@@tug.org",
74 % docstring = "This is the encoding vector for Type1 and TrueType
75 % fonts to be used with TeX. This file is part of the
76 % PSNFSS bundle, version 9"
79 % The idea is to have all the characters normally included in Type 1 fonts
80 % available for typesetting. This is effectively the characters in Adobe
81 % Standard encoding, ISO Latin 1, Windows ANSI including the euro symbol,
82 % MacRoman, and some extra characters from Lucida.
84 % Character code assignments were made as follows:
86 % (1) the Windows ANSI characters are almost all in their Windows ANSI
87 % positions, because some Windows users cannot easily reencode the
88 % fonts, and it makes no difference on other systems. The only Windows
89 % ANSI characters not available are those that make no sense for
90 % typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen
91 % (173). quotesingle and grave are moved just because it's such an
92 % irritation not having them in TeX positions.
94 % (2) Remaining characters are assigned arbitrarily to the lower part
95 % of the range, avoiding 0, 10 and 13 in case we meet dumb software.
97 % (3) Y&Y Lucida Bright includes some extra text characters; in the
98 % hopes that other PostScript fonts, perhaps created for public
99 % consumption, will include them, they are included starting at 0x12.
100 % These are /dotlessj /ff /ffi /ffl.
102 % (4) hyphen appears twice for compatibility with both ASCII and Windows.
104 % (5) /Euro was assigned to 128, as in Windows ANSI
106 % (6) Missing characters from MacRoman encoding incorporated as follows:
108 % PostScript MacRoman TeXBase1
109 % -------------- -------------- --------------
112 % /lessequal 178 0x18
113 % /greaterequal 179 0x19
114 % /partialdiff 182 0x1A
115 % /summation 183 0x1B
121 % /approxequal 197 0x8F
127 /.notdef /dotaccent /fi /fl
128 /fraction /hungarumlaut /Lslash /lslash
129 /ogonek /ring /.notdef /breve
130 /minus /.notdef /Zcaron /zcaron
132 /caron /dotlessi /dotlessj /ff
133 /ffi /ffl /notequal /infinity
134 /lessequal /greaterequal /partialdiff /summation
135 /product /pi /grave /quotesingle
137 /space /exclam /quotedbl /numbersign
138 /dollar /percent /ampersand /quoteright
139 /parenleft /parenright /asterisk /plus
140 /comma /hyphen /period /slash
142 /zero /one /two /three
143 /four /five /six /seven
144 /eight /nine /colon /semicolon
145 /less /equal /greater /question
154 /X /Y /Z /bracketleft
155 /backslash /bracketright /asciicircum /underscore
165 /bar /braceright /asciitilde /.notdef
167 /Euro /integral /quotesinglbase /florin
168 /quotedblbase /ellipsis /dagger /daggerdbl
169 /circumflex /perthousand /Scaron /guilsinglleft
170 /OE /Omega /radical /approxequal
172 /.notdef /.notdef /.notdef /quotedblleft
173 /quotedblright /bullet /endash /emdash
174 /tilde /trademark /scaron /guilsinglright
175 /oe /Delta /lozenge /Ydieresis
177 /.notdef /exclamdown /cent /sterling
178 /currency /yen /brokenbar /section
179 /dieresis /copyright /ordfeminine /guillemotleft
180 /logicalnot /hyphen /registered /macron
182 /degree /plusminus /twosuperior /threesuperior
183 /acute /mu /paragraph /periodcentered
184 /cedilla /onesuperior /ordmasculine /guillemotright
185 /onequarter /onehalf /threequarters /questiondown
187 /Agrave /Aacute /Acircumflex /Atilde
188 /Adieresis /Aring /AE /Ccedilla
189 /Egrave /Eacute /Ecircumflex /Edieresis
190 /Igrave /Iacute /Icircumflex /Idieresis
192 /Eth /Ntilde /Ograve /Oacute
193 /Ocircumflex /Otilde /Odieresis /multiply
194 /Oslash /Ugrave /Uacute /Ucircumflex
195 /Udieresis /Yacute /Thorn /germandbls
197 /agrave /aacute /acircumflex /atilde
198 /adieresis /aring /ae /ccedilla
199 /egrave /eacute /ecircumflex /edieresis
200 /igrave /iacute /icircumflex /idieresis
202 /eth /ntilde /ograve /oacute
203 /ocircumflex /otilde /odieresis /divide
204 /oslash /ugrave /uacute /ucircumflex
205 /udieresis /yacute /thorn /ydieresis
210 %%BeginProcSet: texps.pro 0 0
212 TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2
213 index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll
214 exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]/Metrics
215 exch def dict begin Encoding{exch dup type/integertype ne{pop pop 1 sub
216 dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get div def}
217 ifelse}forall Metrics/Metrics currentdict end def[2 index currentdict
218 end definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{
219 dup sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1
220 roll mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def
221 dup[exch{dup CharStrings exch known not{pop/.notdef/Encoding true def}
222 if}forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def}
226 %%BeginProcSet: special.pro 0 0
228 TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
229 /vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
230 /rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
231 /@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
232 /hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
233 X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
234 /@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
235 /urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
236 {userdict/md get type/dicttype eq{userdict begin md length 10 add md
237 maxlength ge{/md md dup length 20 add dict copy def}if end md begin
238 /letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
239 atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
240 itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
241 transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
242 curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
243 pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
244 if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
245 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
246 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
247 yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
248 neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
249 noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
250 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
251 neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
252 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
253 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
254 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
255 TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
256 Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
257 }if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
258 save N userdict maxlength dict begin/magscale true def normalscale
259 currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
260 /psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
261 psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
262 psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
263 TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
264 psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
265 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
266 moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
267 begin/SpecialSave save N gsave normalscale currentpoint TR
268 @SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
269 CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
270 closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
271 sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
272 }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
273 CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
274 lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
275 /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
276 repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
277 /@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
278 currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
279 moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
280 /yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
281 1 startangle endangle arc savematrix setmatrix}N end
285 %!PS-AdobeFont-1.1: CMEX10 1.00
286 %%CreationDate: 1992 Jul 23 21:22:48
287 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
289 /FontInfo 7 dict dup begin
290 /version (1.00) readonly def
291 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
292 /FullName (CMEX10) readonly def
293 /FamilyName (Computer Modern) readonly def
294 /Weight (Medium) readonly def
296 /isFixedPitch false def
298 /FontName /CMEX10 def
301 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
303 0 1 255 {1 index exch /.notdef put} for
304 dup 0 /parenleftbig put
305 dup 1 /parenrightbig put
306 dup 8 /braceleftbig put
307 dup 9 /bracerightbig put
308 dup 16 /parenleftBig put
309 dup 17 /parenrightBig put
310 dup 18 /parenleftbigg put
311 dup 19 /parenrightbigg put
312 dup 26 /braceleftbigg put
313 dup 32 /parenleftBigg put
314 dup 33 /parenrightBigg put
315 dup 48 /parenlefttp put
316 dup 49 /parenrighttp put
317 dup 56 /bracelefttp put
318 dup 58 /braceleftbt put
319 dup 60 /braceleftmid put
320 dup 64 /parenleftbt put
321 dup 65 /parenrightbt put
322 dup 80 /summationtext put
323 dup 83 /uniontext put
324 dup 88 /summationdisplay put
326 /FontBBox{-24 -2960 1454 772}readonly def
329 D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
330 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
331 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
332 D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
333 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
334 2BDBF16FBC7512FAA308A093FE5CF5B8CAC6A7BEB5D02276E511FFAF2AE11910
335 DE076F24311D94D07CACC323F360887F1EA11BDDA7927FF3325986FDB0ABDFC8
336 8E4B40E7988921D551EC0867EBCA44C05657F0DC913E7B3004A5F3E1337B6987
337 FEBC45F989C8DC6DC0AD577E903F05D0D54208A0AE7F28C734F130C133B48422
338 BED48639A2B74E4C08F2E710E24A99F347E0F4394CE64EACB549576E89044E52
339 EABE595BC964156D9D8C2BAB0F49664E951D7C1A3D1789C47F03C7051A63D5E8
340 DF04FAAC47351E82CAE0794AA9692C6452688A74A7A6A7AD09B8A9783C235EC1
341 EA2156261B8FB331827145DE315B6EC1B3D8B67B3323F761EAF4C223BB214C4C
342 6B062D1B281F5041D068319F4911058376D8EFBA59884BA3318C5BC95684F281
343 E0591BC0D1B2A4592A137FF301610019B8AC46AE6E48BC091E888E4487688350
344 E9AD5074EE4848271CE4ACC38D8CBC8F3DB32813DDD5B341AF9A6601281ABA38
345 4A978B98483A63FCC458D0E3BCE6FD830E7E09B0DB987A6B63B74638FC9F21A5
346 8C68479E1A85225670D79CDDE5AC0B77F5A994CA700B5F0FF1F97FC63EFDE023
347 8135F04A9D20C31998B12AE06676C362141AAAA395CDEF0A49E0141D335965F2
348 FB4198499799CECCC8AA5D255264784CD30A3E8295888EFBC2060ADDD7BAC45A
349 EEEECDFF7A47A88E69D84C9E572616C1AC69A34B5F0D0DE8EE4EDF9F4ADE0387
350 680924D8D5B73EF04EAD7F45977CA8AD73D4DD45DE1966A3B8251C0386164C35
351 5880DD2609C80E96D1AB861C9259748E98F6711D4E241A269ED51FF328344664
352 3AF9F18DCE671611DB2F5D3EA77EE734D2BED623F973E6840B8DAD1E2C3C2666
353 DD4DD1C1C82AC22700F059ED0B61444FD899D2E5C1362757233ED25226A374DB
354 DEB02FDFA39FAA62C7103BBD658B0C380FBAB50705F749A6A3103C287C45F92B
355 8F852A714DB0989FAEAE42BF55F317B8B0567FA278467F30AC5AE86765A1F4A9
356 326299383B56A2D52368F3A15B22E755EF4FB0A0B5DA96F210484F3548C6E7B2
357 A907927C5F77451F5842609DDBE28CDD0BEA393CBA0DAC84EE51A1530F48A296
358 4EA735EFF9348071315BD7114A79B722254FF02C8704EA365EA26114CBD1BA0B
359 3E9143239551DC2DFFF65CD96CB970CA4243E524386D994824BA652DF5C7A899
360 F9FFDC763E96B85E947AE27F83D58E2DBAA3288FAA81CD7BA68B5D884FC84E6B
361 63AF61F15BF09F9CEC5506D987311C81D3729D2CC3D95817D35B5117DEE54C88
362 47AD0325B429CA487345139A32BF5AE9FCA1E27EA475C7670D833193B7777096
363 F11FDD14D91C37E9134395BC85D5F22C6D9F990892E2DC6A78E0CAB6B3BFAA32
364 835BE39AE8D06A9C737F224B1698FAECFBA0C059CFE989958958DD5125784AD8
365 E3A2CAB256E4BD7D52CB57958F2155E74F08C83C8302CC0B8B8BFB0131C42637
366 F2189487FB6A7E7F802CE1B724FE84D62C0403AD0383BB68B336CE4BABB5E123
367 19EAFAEB98B38BC928A09DEC9325C7B9C89B3B3A28EDF01015D6816F5FF8E8B5
368 3F8795594488552D10DBEB9FDB7262BA332367C6D6A5B7D761E89E0470A020DA
369 FCB20402DD772E5CA372EC7665534D34AEEBFC14237127CC79850D65716007D8
370 63408E53E13A65BE34D1FB68829C88FA20C174BDF30155CFC33F06944E7263C8
371 2EEA6C618A9E51217D330F1CAF2551CC09D7230EFC38DDFD93BBC6B83A1856C4
372 90537D8735B9D9E97001979A83E88FB49C5FFFCC58BE83CC5C721AC4AF71B82E
373 E41298899DE9D1EB7607E37D6BE7788BDA1761AB39F0D31906079C95FBAA75F0
374 5C9FAC005DAC85B9CB6F312ACDD7BDA6248BD6C9D669FD17DD7D5486ECE392F2
375 5633ED27F5C25D63BE46BA0B2AB837E89891DFAD2B41DB0C3BF290F8F98384E2
376 BD2DB5F80A05BA32F9C42BD592A82D8A3A46CC3C568F75BDA6878E531F4F0F4E
377 42B28F6B14A44173BA5BBAB22AEA338FCFB5B008D7E1B3759B519B660B0D13BF
378 FD32D7D1CA71DE0F41146ED9859BF8275FC09E1AB9829E8CDFA4D90AB4B04328
379 86641236E5D9F98677766B9FC0ACF1A5FC70E212FA976024E0FF7700CDA067D5
380 C0F43559B11C6FC41E29922A805BD7AFB33F2C99896AEB036FE62AA6BE7ABC19
381 EE13304574E48798F67322998C662E2AC9E8A8BD6104E45D6919FD1250EC3697
382 4EC4FCDC79F1FEA48FA431B774FD28E74503E3EFF8B334007C07A354672EDD43
383 C8E4C094F3C47FDBB2FF9067266661008AA7AAEB42159AC509D615A6E2CEF184
384 D189609DE05F7C50766156DF1EBE2617AE6B2CAA4ACF11423F35360B5829588E
385 2396BB2D0CBE8A05CFF92FCC3D9D6D21A00F28AA9126F400954BDC4A999B751E
386 5B71B7E80979B729475024E966965E01D1398A12712BEFE723CBCE35160D855E
387 6718FE89971CDB525907764997DA16922AB51D316BA7EFE6C5111AC5FF6D7129
388 20F34F6B8996981B2B119EB3138FD7F176FE209A2324D0873D59D8EB801A69A4
389 5E399C1814047418B0127101FCD4F617891946C983440FE180E3B109E6F18AFA
390 AB62309BFD236AA4D0B25F9FE4789FD71A76A0E3D87C4393E13959F2B34C7139
391 F53CB3AD2F81B747E8F17D324A1EDBB5DF7F86CCB6F94C54C9034613A475CCD2
392 DA3E68DB2C15CB0E32C9698CDC1AF99A98CA2902667AAB8D26CBDCA7E3BD4EA5
393 1A205DE4441FFC0413818D5628F1B2F65D51585F34DAF1B6A34EA0AADD3DF965
394 EA3B725E83C22B196A5B39C4CCBBB7960A3E73B081228A2AE3217F4941F32DA7
395 3E81D55089683D436A7E8C3280F8532A4C8083CF170678A9D3F625B51A1E0B62
396 C3CABCA195D3C8E1FC799DB26DD9B4995236960C1FEAE3ABF457279C4BFB9FCF
397 C568F50D289490A91120C2F4033DC241874E968D9FEFCEED55C2C1AD36C7D84B
398 985F6B47F16BFA8A4E59C4F6548D6EE6FB287678C2C6010F5D26D51687BA208E
399 75A4DA595C5732949E8E49AFC653AD17C714ED1977B120522C3E46B92FDE73C0
400 2553144C6B4305D9A98C62734247518350DDD28B24E832B2BD294C40ECB93E66
401 0A1ACFDA178DBAA5D9375FA5237FB84AAA7FD656C0DF8BDD94E33DC10F0F4FAF
402 4C788227BE77BDBD08C12CEBACC9FBCD04094FC0F1C26CCCB15054287E23221B
403 26D0C1FBBFA35559275780E02DA955A3024EAC2DE4D1DDDF2961F86A08127E87
404 3A470868DEA26FEAA63D8A0B016787EE1D205AA3D6459D91F6E3A20E14D29AE8
405 394EA46F82E1AE284BE0A03383FDD062541AC923D5C107DAFBDAA9508A7AF797
406 82E319F4B4BF74E41862B22E2AF5BC2098EAAFB34F3644202537CF9F9B1600ED
407 CC8E4EB9AD080A04587D5CBA945773489442AFEC8BD1E28C29C273C7FF08A89E
408 85681EF5E7A193F6F1B2343AA67BE97334C18937C260D8F6F9923A57A667ECE7
409 FC30F59FEB258CC2EA7845EA59D53ECFEACE6D3933A7DB6F27CD0C9F1815101E
410 C2A6CB63F59DD61C210613663EC664562C049490E8627B02616E2E428291E542
411 A385A508387A34403013666BF2E7E01267FADB8C20739CFA86F1B834A0270629
412 2A6E44CD5ABFBFF84EF88A00D02826CCA09875381EAE5AC0D076D265A00D4A3D
413 EC4DCC270F2069D8CB84F088D4FE648F7168F75A2449A85141793DC2E3BFB4A4
414 7353C8DF3F277100A5FFEDD4C5873B746DCEC559D13F1CCE0F1DA1889F3030DA
415 59C129DDF372E3666E8645B763187D4CC84E4433F5C1FD517480D7069F42E9C4
416 D6E9AA82B8CCC6DEB32CABAC209A928F0BD52BB76BECB0F351A583025B37B0B6
417 29146E1D55A9A34D53E59DFA45797DEF0ED2E22F1CDC8276D799559968F8625F
418 DD171A68DB520BD02DDAFC4D8E5EDECBE976AA45488B1FCE5A4963AC6DE30FF5
419 AAD06C4869727383C013C43DF2B399BAF49240A4D7DAB532BDDE4595220D6A8C
420 CBC36CAC03D6C3D27FC3549E30B9BF97493DE922810DDB6F4AA3482B26EA95AD
421 436B4CDB3CEC449CEFDC841A95849A26B0EB658EE7AAD9673CC19686E42C2F48
422 C88D50F9C05900D7536211FC0B94A9F4C4456F38889E0EF8F2FE36999B58E627
423 290CAF623116AFA1B75FF487079EEAF945BD907A612E7F2E931D83972D8D5A04
424 1009693D949F427B1F3E59B08CF38B8C93638DD322C272065BED9B8330A04D8B
425 FF359D355EA8D859D4D0D30F02AA4EF54CBE4A73FAABB7F2628B11F0A2BAE147
426 40F0352550738478A418136593ABB317B6EC86A932CC700571475451361D304F
427 5230406434BA54A273D02CB2BFB2B1742D43347E2D9920680963193D527A575A
428 14503046529A3BEBD9F2B2D82D4C772D6B36B204AF1D9D2D827D74F06396D770
429 823A9600CD8FDEFF10DD077B3723694E1B3D2F59026A572E07C7277B9ADD8082
430 4733DB75FB37EE586D8D085947102E992E423D2E71023BDDB4B20FB2DD89CDA4
431 D006CB376F9CA5E0672600FCA76649DE67CE2298BDA6961E132A6DC9F700FE49
432 37D189C9E7EE2C064AB4A8427D7B11EA839674695629891507AE51D24F2D7F50
433 BD8D7F32D0A066566BA02DDB3BD30841992CB7ACCB15853C6C783A6B7636DEB3
434 E0C0F3FC5BFEEBB84AFC0F3ECA0BCBC2C72E16940D612FA35207496B892C4030
435 470C659488F7D75B5EBF165A030C3398F900A408B511B724694FC7280722742D
436 9BA88EDBCCABC1F69AF8C782168E183767755B0DB0030BBED66C8A25FC09E003
437 CB5F25235572F44751B34ED8A33C220AEBE4298DB09D494F87CB693D89138AEA
438 8AAE674F53BDDD0A5D54B0C5C5A686D6C4321BDEC80455F16708FBAB0E5A8AB4
439 32A279C6780DAD7B636193086C316F2A64DA2D3E52F894DB2FD8E7F5D8243BAE
440 98FC851C25AD5870222F655CCBBE0D3FED575FC5533EE54BF62A926BD20B0919
441 ECDA438E3771592DB0680ED11596DCF8ACCBB794B5AD094001F5CCBF93EDCA54
442 4999D36F2E22F791846E2010530DF646E4BB09E23C414E2FCD08C13E36BE5F2C
443 0AE96BB3698E9F01468EC5E23C6D1BB9FC44D5D352E761EB50E264B120AD90AA
444 4A202942207823C1B4311F7533AFB4DFAB70D8821723C3525A23BD6466921BA6
445 88875D08A0122AB492455B6D90FE15BE4830C879F298F66A9EBE44C5BBAB5266
446 BF0FB3D1B963268BF9952D8C19ADF21E60F8D06A279D0719AB3F4466186EF06D
447 7373D5CF8C626BAF1937E246752486746674B5372D40F95C2A5772F3BE49E080
448 C6DB891F40DA9EB3219C43A10D3947C537C1CCE8B1677C96D1D13BCA8DAB6BE3
449 A59806A953523E22E64E2B471FB46C405346870C4E7968987CA6243EE14CA35B
450 3F9CE97BD096366DE32768A5EC58077AA97117ADA747211512F1FBBBD704FD93
451 DA6229603FED0979D87C64F5D36C316DFA91F98AB1D55D06DD7B1F7D51AF277A
452 FF664B10DD3042F2D183B958F2714295D51D6E1DB85D071BFA544C4802AB4537
453 0B17A665C703FD2851343003039F2251C2ADDFF4BFBF8D625C87119101E6718D
454 6EADA1A2D4D4F9917D1CCAC71AACBEB66FE5A9ED13201A544B127114B95DB20C
455 59756DD68993754AE72EC12A3879476C51CEFC0FD1A095116A5D63AEB3E64FF5
456 2A90EA74B7B5AED8157B6CA1B78E3FE0C3544CD0F6DE38B0E12265124A64E120
457 921310B40BE68631EBD0368D4572709032E69D1C964EED7246DA3729584F165C
458 1548074357F771546AD8F134E40068367FD33FBBE76EF3BFCDE364D4CE7ADADB
459 DF2B6B7EB349BB563DC7D42EFD0159C37517D94770918758D434477D3DC5583B
460 6325C41BB9FAAD37207EC71F6C492EF0039A3813773C4B6848ABB9E96055F432
461 C32AFEBAF21EF58E1DD3DD6378A208D816F3BE7E
462 0000000000000000000000000000000000000000000000000000000000000000
463 0000000000000000000000000000000000000000000000000000000000000000
464 0000000000000000000000000000000000000000000000000000000000000000
465 0000000000000000000000000000000000000000000000000000000000000000
466 0000000000000000000000000000000000000000000000000000000000000000
467 0000000000000000000000000000000000000000000000000000000000000000
468 0000000000000000000000000000000000000000000000000000000000000000
469 0000000000000000000000000000000000000000000000000000000000000000
473 %!PS-AdobeFont-1.1: CMSY5 1.0
474 %%CreationDate: 1991 Aug 15 07:21:16
475 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
477 /FontInfo 7 dict dup begin
478 /version (1.0) readonly def
479 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
480 /FullName (CMSY5) readonly def
481 /FamilyName (Computer Modern) readonly def
482 /Weight (Medium) readonly def
483 /ItalicAngle -14.035 def
484 /isFixedPitch false def
489 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
491 0 1 255 {1 index exch /.notdef put} for
493 dup 3 /asteriskmath put
494 dup 54 /negationslash put
496 /FontBBox{21 -944 1448 791}readonly def
499 D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964
500 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4
501 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85
502 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A
503 221A37D9A807DD01161779DDE7D5FC1B2109839E5B52DFBAF552B11EFFB6A16C
504 F03FB920C15AE724EFDF0CCBF00A838D34440FF9FED532F44036AD22561184C5
505 283722DDFA7285E62754372D716D704AC0E00B2F6AB67154241C7449AA047833
506 94CEDB08E8C92907FE72A0B05AE36A7B9226ACD6E7890A0B528FDDE84A950FC6
507 801DE75CF2E739E9121149CCB8B1C87A106822648D84A3D3FBF295EE6C4BF403
508 BBE9A1C1F6DAEDD1E642ACC486E609703D7612BFFD10C324F5DC710811F7F614
509 3691B400E3773987424C0D2B0D8A736873C6371DDB2442F05E018A2B5CA9A4AA
510 17AABB95D09E5890CFFFED5AC01495D89A53D3CEB6E0F620D2A75CB26E31E1FD
511 557B4C4A08F62668770C8BE63D101DB2855E6EE41C21A7EC6A61FAFC6ECC5AE3
512 AAAD9BF81CBE3446C7B97DF168DA97FD62D7624466B71DEC005100D9A9E96639
513 5D681ABD5C673876B65E5CDA906D4950EB1B40C47DFD9BCF198D7AAF69608C0C
514 F2E8D8277402CCADBB663813DD60A089594BB10D56DEC9DCC9E89CB253F58CEE
515 FC570B8A5F8B89E0C4A302DF19E296F0793EFA5507D8D7E2E51EBEA0D9696541
516 AC24DACD40760D63AB92FAB1349335C832AA4CE4CE25D3D9EE2BEAF2E5F8D06D
517 7B08C203EA99C65EFAB0275C7E67A26060A302E1AF9D754B8A3B8F99C5D08BD2
518 9DC4B91ECCDED59EC130D23879D661D6A88A1E4C9F1B8016677E9862207CD130
519 82EAD659F71962275FF7FD327D060189598AF43EE08B0B3F59BEEDA85D669388
520 54AD47864979967289ABF1BFD965EEB0709BD424D81911042305F9D016A9919F
521 006068063E85E7D500860B84C3775A79E432E5504E7F9DB79F2210AEDAA599FD
522 92A117C7DF17AF424DE6F15D852479ED82B14DC553C33CD3A5A1CBFBB82A4D7D
523 00B5D21DA064B209BDB93761D773A7B528AC1B167B522E55049DCB932A19D753
524 F8D75D35D31A4E582A2758E566394CFB2D479C4C3D10EDEB4ED3832C358BFF2C
525 4E21E6F3784952F7DD66D38141DA12292E5D8BA1D369C208C283161D02E577B5
526 EDAD1FDFB896119EA9F763EF3EA93A92AF0BDAF63DFFACD5B23461E1F8FBFB66
527 A0365FCE1F6F823C405959D53E
528 0000000000000000000000000000000000000000000000000000000000000000
529 0000000000000000000000000000000000000000000000000000000000000000
530 0000000000000000000000000000000000000000000000000000000000000000
531 0000000000000000000000000000000000000000000000000000000000000000
532 0000000000000000000000000000000000000000000000000000000000000000
533 0000000000000000000000000000000000000000000000000000000000000000
534 0000000000000000000000000000000000000000000000000000000000000000
535 0000000000000000000000000000000000000000000000000000000000000000
539 %!PS-AdobeFont-1.1: CMR5 1.00B
540 %%CreationDate: 1992 Feb 19 19:55:02
541 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
543 /FontInfo 7 dict dup begin
544 /version (1.00B) readonly def
545 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
546 /FullName (CMR5) readonly def
547 /FamilyName (Computer Modern) readonly def
548 /Weight (Medium) readonly def
550 /isFixedPitch false def
555 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
557 0 1 255 {1 index exch /.notdef put} for
565 /FontBBox{-341 -250 1304 965}readonly def
568 D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
569 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
570 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
571 D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
572 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
573 2BDBF16FBC7512FAA308A093FE5CF7158F1163BC1F3352E22A1452E73FECA8A4
574 87100FB1FFC4C8AF409B2067537220E605DA0852CA49839E1386AF9D7A1A455F
575 D1F017CE45884D76EF2CB9BC5821FD25365DDEA1F9B0FF4CFF25B8E64D0747A3
576 7CAD14E0DBA3E3CA95F10F24B7D5D75451845F1FB7221D7794A860756CFBB3E7
577 704A52A22448C34812C3DBEDD41892577AABA7D555E9298C1A0F7DA638078167
578 F56E29672683C51CF1C003764A8E7AD9D8ADE77B4983F56FE2D12723AAD8BF36
579 682CFBB71B1D12210144D39DD841A971F71DB82AC6CD815987CDCF29ABC3CC96
580 5EEBD5D661F452C6E0C74F9ED8D0C5B3755551A172E0FE31EA02344176E32666
581 14B6853A1C303A5E818C2E455A6CF8FC9A66DC6E279101D61C523BD9DB8EB82F
582 EAF4D7FDF6372383C0794C4568D079648689A199D4B65BA646CF95B7647E4BEC
583 83856C27A8EF177B3A686EDA6354FE9573E123C12EC4BA56A7E8BFB8F9B75147
584 9DD79A743968F36F7D0D479FA610F0816E6267E5CE327686A5485AB72201525C
585 FB3B7CA10E1BF26E44C24E1696CB089CB0055BD692C89B237CF269F77A31DC81
586 0F4B75C8400ABCFDCEC6443CD0E81871CD71AA3064ABDE882C4C52322C27FA8B
587 41C689F827FB0F8AAF8022CF3C1F41C0B45601190C1328831857CBF9B1E7D1AA
588 246117E56D6B7938488055F4E63E2A1C8D57C17D213729C68349FEC2C3466F41
589 171E00413D39DF1F67BC15912F30775AFDF7FB3312587E20A68CF77AD3906040
590 842D63C45E19278622DD228C18ABDD024DD9613CDC0B109095DB0ADC3A3C0CB5
591 AB597D490189EA81239E39202CBC7A829EB9B313A8F962F7879D374ADF529BD0
592 5533EF977142F647AD2F5975BA7E340419116099B19ACCCC37C551215F95BB1E
593 F7F5CE777B793F81BBD695D7862EC0B69F926F9A86C5917EA882629C25DA56FE
594 F992F1E8194EF0A4BB389A18FAC96E294D0724A431AF70FC1DC09D5C1485B413
595 6A9EAFF96BD5096A84D88ED750E9A76B0203817C64D1A5AE26833EC72A3FD987
596 198B788BA8F5B3FAF3F1D7C7E6CE2D0B518936CAA12E25F32C13FCB7F105E815
597 BD670D0A4ECC9916AF3CB33A6694C1614371C674BAA401C552B6982C61344614
598 F26390D4F983A7B66A57079C2C6954EE9602B44D7B65F3B0FD98879D74FFE26A
599 0CA78061BB0465354B76DE1980FD81410FDC6B18E92A4876B7BC36F06A1546AC
600 0D967C58B3CAD756410D6F34F6CEB9A7550DB7DC639B4FB27508E1E8472DB30C
601 F4DCA3B3FB0DC5BFDBDD061D13D4CCBEB458EAFF9CE68A5A76A6C3FCE4DC1C03
602 ADFE8FB2ED57419FCA02536BECC4437730B8DD1817F91A9E2D75861049FBB71A
603 1E32BA6DB96D4C6C56A3C9715E798F7838F698F22E38164E32F82701D95A01FF
604 75B63EB2446373ECADF88FFD96602F096D31B52C4F19A2F11869DC40D8915B95
605 6D3588887D1191689605C6FF32E8DBE65FCA9B287F121851BF9D7E6E23FA1A3C
606 93A1F68811B0115ECDA9E2B21E24B37D73B486F8C5DD30DD12792295867D9BFB
607 7F1EE7998523EA2C8FB19EFE4ED89F9C476A965C8AEF923762F5D6422D736073
608 9CA2E2F74A82DE980A1625B603929BD7971E55FAA5DAC4738770DD79372E73BD
609 C601B4801004E5293649D3BAFFAA70427AC19087D279ED81EAFB747CAAF33B3A
610 3DE8F6900B3BCAAB6F40853D02B7A7AA08E8A65905583E45EF901944E61EFFE0
611 2DA1D0E8FC1857750C4A86447CA83765C0F0D9BE6161D26113A4663326D41CD0
612 021249A9A99A693FE560F6B8F9824934261D3C85DB3E81F57032B4A01DFC89D7
613 7D8420AF1B0E8F9016C3CE2C04F9D6180B7C9BC97A05304100A627485C11A642
614 10986FDB1C2484EFFB0B9EF691EE4F25A337C0FC494A876FEFFE9C4E374330EA
615 FF5E38711111BA05AD784E5F46C1FFD4BBFD440BBE44870FDC5A63FDBCAB5E9E
616 1C4DB0C0B5DF6D05A69F117F850D26D70F75A754A68A2343B6AA2DBCD01589A6
617 9FCD39D5AEB4620A1E76F5E92A056B45F18FA2E619D52499800713ECC7D1061E
618 A093ACB9ED05000284C51C7D3C74C965331A16EC8CF1E90F5C36DE4A8501550A
619 7EEA807F9B4881DDEC7865CF36993D4A21C9A381F3F7FFE7CA6EB909EAE3D68B
620 59989A7351425FB5899089D78203CA73FA2B90165D60F1E316147EA115D2DB47
621 1C304181D4E4C48B537AC92A69B51A93B4396555D989120A0B0C81C1F10B7B1B
622 FB267022B927E04CAE7D6F0626D65DE0AA8DB01D7D12433CA55FE9C45C7A45E9
623 A778FCCC7BA020A70DC6AFDD761F181C61EE72E04A29CD9991F1
624 0000000000000000000000000000000000000000000000000000000000000000
625 0000000000000000000000000000000000000000000000000000000000000000
626 0000000000000000000000000000000000000000000000000000000000000000
627 0000000000000000000000000000000000000000000000000000000000000000
628 0000000000000000000000000000000000000000000000000000000000000000
629 0000000000000000000000000000000000000000000000000000000000000000
630 0000000000000000000000000000000000000000000000000000000000000000
631 0000000000000000000000000000000000000000000000000000000000000000
635 %!PS-AdobeFont-1.1: MSAM10 2.1
636 %%CreationDate: 1993 Sep 17 09:05:00
637 % Math Symbol fonts were designed by the American Mathematical Society.
638 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
640 /FontInfo 7 dict dup begin
641 /version (2.1) readonly def
642 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
643 /FullName (MSAM10) readonly def
644 /FamilyName (Euler) readonly def
645 /Weight (Medium) readonly def
647 /isFixedPitch false def
649 /FontName /MSAM10 def
652 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
654 0 1 255 {1 index exch /.notdef put} for
655 dup 62 /greaterorequalslant put
657 /FontBBox{8 -463 1331 1003}readonly def
660 D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
661 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
662 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
663 D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
664 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
665 2BDBF16FBC7512FAA308A093FE5CF7158F1163BC1C87678CE98C24B934A76220
666 4DD9B2FF3A49786028E35DDE10AD2C926BD30AD47015FFE9469DE1F793D1C53A
667 C8812CBCD402444EAEA7A50EC5FD93D6A04C2783B50EA48059E3E7407537CB8D
668 4C206846EF0764C05289733920E2399E58AD8F137C229F3CE3E34D2D1EAB2D53
669 20D44EFAC8EFA4D14A2EFE389D952527F98D0E49BD5BD2C8D58FF9CB9C78D974
670 75C2AB5467D73D2B5E277A3FDC35909938A9DF0EB91BD9159D3437BE22EE4544
671 3429AC8E2BFBE34AE54D3BA3AD04BDF3F4F43A2B43992DF88678681B3AB32CFD
672 A23E2C98D1AF00AB206AC95B78BBE6316F7A0AB6BD3236C28C76288B3C25D1EB
673 E9ABB3576C5EC15A71D26177F5883E9B48293D59015615E2EEAF2E9BA04151ED
674 5497B9A1C41CBA44BAFF13EA218F5EAC11952EE336AD1DBE6CE92F002EAA3B3D
675 3BE4C3792F3405763C4BD93EFC3B4FC34193439561841BA989DD8D9F9AEE7A7B
676 24AEB4654B35023C9720B8F31AA9452E29753FB7915CB29977E725611E37C0B7
677 784BCC26FACF8A7A0EB1E54290D27FFE52B2D87FAD080AD15EE1984C37E0EB30
678 122C3012D3A16B09C28903D138352AB5462674B6CFB63F1371768D094DDF288C
679 36FB9B58443F872D61F2CD8CED42FE0EFF3D7E9952A172BB1AFECB60BF79F2B6
680 04265FDE4F78BC9FD619AA733CD0412F1D9A7C13B271BF827DCBDC8ABAE24FF0
681 74D3C220621D7FF0EFE62D835A221D0A7C139E2E6681FC2BBA58FA3B80D416EC
682 3854C63BA040A4262B458340DAA18AA6AEA3BBAC61615CB85982B18664D3D3AF
683 340C65B969071CF2D0CABEB80E04623D0526F862ECA8280EEE236C535F70561A
684 854181132E677674AD5E14C6636F57541D3C821F0776D2CB9B8526D4B826791A
685 0B179B386967E7B1725D1D0970983F7604FDB7DFCFF041F68133338974A281DA
686 04EAAAEB8CF074B11C56A8AD80F139546845157987B04DDE6B9DC8D327FD2DAB
687 5B7F4BACBC9D9FE3831736B0A3C5057FDA4F636318EEAF5FD32A87BF6B4D947B
688 1756CF885D4B955A1E36E5E44A89E35C68C70921505EC8D6DB40F82A8A3BD84E
689 3641F58211A7BF5EA5B6A84E2EBF805583095B25F2CD40DA5806FC701D751095
690 6432DCF5AB12A90F940B5738502202440AD44143D76009297F8BB80EA6EC702E
691 A5153B7D4431D1D93A64412B6C244CF9623A555D5FD7B133AFF4406A9E2326D6
692 25B250F6ECBF3123A4AA424080D3E6F962734BC08AED525787F406C3BF239B0E
693 28450A0DCA6479749F0E40AF5E6FECA657735650114DDA61637670B4B90252C4
694 D4F133FDF1998F09CF2360D498BD7E792A
695 0000000000000000000000000000000000000000000000000000000000000000
696 0000000000000000000000000000000000000000000000000000000000000000
697 0000000000000000000000000000000000000000000000000000000000000000
698 0000000000000000000000000000000000000000000000000000000000000000
699 0000000000000000000000000000000000000000000000000000000000000000
700 0000000000000000000000000000000000000000000000000000000000000000
701 0000000000000000000000000000000000000000000000000000000000000000
702 0000000000000000000000000000000000000000000000000000000000000000
706 %!PS-AdobeFont-1.1: CMR6 1.0
707 %%CreationDate: 1991 Aug 20 16:39:02
708 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
710 /FontInfo 7 dict dup begin
711 /version (1.0) readonly def
712 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
713 /FullName (CMR6) readonly def
714 /FamilyName (Computer Modern) readonly def
715 /Weight (Medium) readonly def
717 /isFixedPitch false def
722 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
724 0 1 255 {1 index exch /.notdef put} for
725 dup 40 /parenleft put
726 dup 41 /parenright put
728 /FontBBox{-20 -250 1193 750}readonly def
731 D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
732 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
733 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
734 D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
735 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
736 2BDBF16FBC7512FAA308A093FE5CF4E9D2405B169CD5365D6ECED5D768D66D6C
737 68618B8C482B341F8CA38E9BB9BAFCFAAD9C2F3FD033B62690986ED43D9C9361
738 3645B82392D5CAE11A7CB49D7E2E82DCD485CBA17D1AFFF95F4224CF7ECEE45C
739 BFB7C8C77C22A01C345078D28D3ECBF804CDC2FE5025FA0D05CCC5EFC0C4F87E
740 CBED13DDDF8F34E404F471C6DD2E43331D73E89BBC71E7BF889F6293793FEF5A
741 C9DD3792F032E37A364C70914843F7AA314413D022AE3238730B420A7E9D0CF5
742 D0E24F501451F9CDECE10AF7E14FF15C4F12F3FCA47DD9CD3C7AEA8D1551017D
743 23131C09ED104C052054520268A4FA3C6338BA6CF14C3DE3BAF2EA35296EE3D8
744 D6496277E11DFF6076FE64C8A8C3419FA774473D63223FFA41CBAE609C3D976B
745 93DFB4079ADC7C4EF07303F93808DDA9F651F61BCCF79555059A44CBAF84A711
746 6D98083CEF58230D54AD486C74C4A257FC703ACF918219D0A597A5F680B606E4
747 EF94ADF8BF91A5096A806DB64EC96636A98397D22A74932EB7346A9C4B5EE953
748 CB3C80AA634BFC28AA938C704BDA8DC4D13551CCFE2B2784BE8BF54502EBA9AF
749 D49B79237B9C56310550BC30E9108BB06EAC755D6AA4E688EFE2A0AAB17F20FE
750 00CD0BFF1B9CB6BDA0FA3A29A3117388B6686657A150CE6421FD5D420F4F7FB5
751 B0DAA1BA19D638676E9CF159AC7325EF17B9F74E082BEF75E10A31C7011C0FFA
752 99B797CE549B5C45238DD0FADD6B99D233AC69282DF0D91EA2DBD08CE0083904
753 A6D968D5AE3BD159D01BDFF42D16111BC0A517C66B43972080D9DD4F3B9AE7FB
754 11B035CE715C1218B2D779761D8D7E9DEBE277531BD58F313EBD27E33BEF9DC5
755 50C7821A8BBC3B9FDF899D7EAA0B94493B97AFEAC503EB5ED7A7AB67C3039A0F
756 BF0BA4B455D035FF3126F33A4DEA730DB0644CCE0E14E89E8F5873C19FAEFA91
757 9D14A603CF4D917A6AEDB4301981BAB51630CCACD37CC4A7AEECFA7E8A6A3F22
758 E517F781BFBF64CA02D39D6B759536AFA1A1D4C2F82C78C45F4BF81AE4193314
759 90EF9297156578BC9F14FA6D4328AA000C3B96C324921C95DB11D9AD73216475
760 52B066C2221D5904718F2E84DCEC6652309C58EAE065AE3F072211FDB5C97B97
761 6596D115A234B2C48CEA758207F0206C4AFDC0CD642C1473C591DAD250F472B8
762 6F8FDDF769B1150B9C9CBFA0C3370561CD16D089392F99A25B518A44B428CCBE
763 2C57E58016C7F8A68C60E760E11AC94DE463C3EBA0E113B0D88901D5D8423A24
764 E73A9255D36E89736F4769475E1A82A0A7BF57DBB8FEB2D2F4F2E6FAB9528C67
765 F633939E9A05D02468C1CF3EBE7BB304769F75844E7FDA5FF39EBA3D7ADBC733
766 B4A79E6B21849511BD087D192F4ED43F7900928C03D931DF04EBBED296AF1045
767 AC2B727A931D4C293CBE0EE977B9243D3EC7E68A
768 0000000000000000000000000000000000000000000000000000000000000000
769 0000000000000000000000000000000000000000000000000000000000000000
770 0000000000000000000000000000000000000000000000000000000000000000
771 0000000000000000000000000000000000000000000000000000000000000000
772 0000000000000000000000000000000000000000000000000000000000000000
773 0000000000000000000000000000000000000000000000000000000000000000
774 0000000000000000000000000000000000000000000000000000000000000000
775 0000000000000000000000000000000000000000000000000000000000000000
779 %!PS-AdobeFont-1.1: CMSY6 1.0
780 %%CreationDate: 1991 Aug 15 07:21:34
781 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
783 /FontInfo 7 dict dup begin
784 /version (1.0) readonly def
785 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
786 /FullName (CMSY6) readonly def
787 /FamilyName (Computer Modern) readonly def
788 /Weight (Medium) readonly def
789 /ItalicAngle -14.035 def
790 /isFixedPitch false def
795 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
797 0 1 255 {1 index exch /.notdef put} for
800 /FontBBox{-4 -948 1329 786}readonly def
803 D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964
804 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4
805 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85
806 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A
807 221A37D9A807DD01161779DDE7D5FC1B2109839E5B52DFB7605D7BA557CC35D6
808 49F6EB651B83771034BA0C39DB8D426A24543EF4529E2D939125B5157482688E
809 9045C2242F4AFA4C489D975C029177CD6497EACD181FF151A45F521A4C4043C2
810 1F3E76EF5B3291A941583E27DFC68B9211105827590393ABFB8AA4D1623D1761
811 6AC0DF1D3154B0277BE821712BE7B33385E7A4105E8F3370F981B8FE9E3CF3E0
812 007B8C9F2D934F24D591C330487DDF179CECEC5258C47E4B32538F948AB00673
813 F9D549C971B0822056B339600FC1E3A5E51844CC8A75B857F15E7276260ED115
814 C5FD550F53CE5583743B50B0F9B7C4F836DEF7499F439A6EBE9BF559D2EE0571
815 CE54AEC467FDC60394336D84666336B29652E7076462DF70C6087A99A89F69C5
816 887D9E651A859D64D64649A90837FD8FAE50336E1A69FD1B55B3FC15A80642F3
817 B6DC7AE39CE05B80EBE2031397C75759FA201BB78D9A63F539C2DB47D8A215DB
818 A7BD86A86F74FE9CC5DA6AF8E35E75815E2DFCBAA3B3C879942818DA1E884AE5
819 A257826EE787C4AF487B9E3645FB1763B2D83C7165666B3E63303694122477BF
820 C4F7A7570D968C2B5D7DB6251125B1440B6E0E74FF49EEF9D6D3CFDCC7A02AEB
821 53EFD2FF61BF1E9254DC034198C94BACDF6EF8A2890F5513840B1B32E734C5B8
822 509F254CD0F211948F13252CE39236B64C66B7D6CD8955F744A43EA5247BC134
824 0000000000000000000000000000000000000000000000000000000000000000
825 0000000000000000000000000000000000000000000000000000000000000000
826 0000000000000000000000000000000000000000000000000000000000000000
827 0000000000000000000000000000000000000000000000000000000000000000
828 0000000000000000000000000000000000000000000000000000000000000000
829 0000000000000000000000000000000000000000000000000000000000000000
830 0000000000000000000000000000000000000000000000000000000000000000
831 0000000000000000000000000000000000000000000000000000000000000000
835 %!PS-AdobeFont-1.1: MSBM7 2.1
836 %%CreationDate: 1992 Oct 17 08:30:50
837 % Math Symbol fonts were designed by the American Mathematical Society.
838 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
840 /FontInfo 7 dict dup begin
841 /version (2.1) readonly def
842 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
843 /FullName (MSBM7) readonly def
844 /FamilyName (Euler) readonly def
845 /Weight (Medium) readonly def
847 /isFixedPitch false def
852 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
854 0 1 255 {1 index exch /.notdef put} for
857 /FontBBox{0 -504 2615 1004}readonly def
860 D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
861 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
862 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
863 D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
864 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
865 2BDBF16FBC7512FAA308A093FE5CF5B8CABB9FFC6A66A4000A13D5F68BFF326D
866 1D432B0D064B56C598F4338C319309181D78E1629A31ECA5DD8536379B03C383
867 D10F04E2CB7C8461B10646CD63AFEB7608468CA0FCFC4D3458FB43D22879B515
868 27DD9CCF44C2BFCD95A4DE911E4915FBC02335E9999FD9B546134081D6DA3792
869 EC4A76DEBA77635BE52E09986268A919CB48B5EFB1A1301EE0683CB5709BC8CE
870 D819D799020CBA673BA39C911075501395B1FD20EAD392C9D5A8C9FD1198C737
871 D1A614CF0C0432F29DDEB4BF9DB026908DBE89EE522B7D55DE9BF64AFBE6248E
872 2E10466655EB9083E7D23E3F0EE26154F191BEBC9987930CD4B4CABE1275BDF9
873 8755EF3D531FDF91D54954FC53F15A38D1E8F8D1E36447484FA2C09D34813615
874 838B6330FEAE536D08376E4A0FDDF58CDF5647C9F1FF3A7D1ACAD376DB3CADB6
875 9459F7A5D4F1864863B79E9F93A1EDE8B99C3138D26227C01F6FE0AAC800F2E5
876 94DD81CF7B1355B642CE45CB532FC5B535D66EDFFEA076C009E87406D9772D71
877 848C3C53B7496A5D6B58679EF11E114C5F457C6A0D3CDE50278E4A89D5393B1C
878 F877CF4E2142A4D045C4AA9138105D748903BACC28FD43DFEDB341E1FCDBE2EA
879 D412498FBB5374D6836CFBEB13D4C2B7B9625C25B037FDA9DCC42F5679C4B3C1
880 6340E341F73A9215092C0ACC505A859FA935BE5172F4F6D4A30E73914DBD5297
881 7FE0CEB5CD0B92176B8174870F9FAFD22BD2ADDE02B5705B5FAFDEE372F17857
882 40C1B4024C9F04375B9CF997E9D0C0F7D82465D678BB9810016E6BCC9C4374EA
883 6B2CC834894FDCA891643D9417369458A630FD498794823FFA55705315F0687E
884 7592A5DFC8B8D6FE2F3C64B4A4F9D37F5F2200BAA277F2E0BA8E5A849CB4D8F7
885 C59D7605F06ECAA3A01F5180E25F1DEA34F81CDA7DD6C90BA8D0478E3ABF9F76
886 58C0FE1BC6594E230018ED14DED710EB9A11F6C4355EA61D9CA083951E8C374A
887 4EAB8971BDCD6C396BD1C6E07313B338068845A962F0A32548FD253D1F237BE9
888 1AC8C1412AA46DDA13D4C1840D75D6A94043A7DB11C57487035D4652902449AD
889 C7AAE657D1B0142D78D4F39E90DD6222E11320DE4D2939F427FA7058FE5E0386
890 BF4560B2EFA31802BCC6804027634DE8C10ECDE7C259AFEFCADB80AA07D433DC
891 7DB619FA8DBD44762B287B9E9F085584A0C1BA1F128CB59BB17F975B3556E024
892 F8845387ACEE0DD08394C0325AA73AF4DDD4AD8C60281BC9425D64DAFB3A2710
893 78C3CD4165BBBE89E342D2A94A5CD76083C217A5443E10811DE9E45E54DABE9D
894 D44746617B833A165E33EBE90C99203967A6CE4219C7B6ABBA9878BD4A75006F
895 EC7A3969713A7B9ECE7DD01EFAA64A36B5AF8854692597C9AF0A300660AF1AF9
896 23E4379A2624968AB762A960E148AE2718911B0EE896ADECAB44055924F1AB8B
897 88D6A95770B69EC27997889FD2E789F0967F67DAD4E94557FD3BB057F05A9399
898 1F23464A92DD140642E3A7B1973849E64D1A3CF6
899 0000000000000000000000000000000000000000000000000000000000000000
900 0000000000000000000000000000000000000000000000000000000000000000
901 0000000000000000000000000000000000000000000000000000000000000000
902 0000000000000000000000000000000000000000000000000000000000000000
903 0000000000000000000000000000000000000000000000000000000000000000
904 0000000000000000000000000000000000000000000000000000000000000000
905 0000000000000000000000000000000000000000000000000000000000000000
906 0000000000000000000000000000000000000000000000000000000000000000
910 %!PS-AdobeFont-1.1: CMMI6 1.100
911 %%CreationDate: 1996 Jul 23 07:53:52
912 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
914 /FontInfo 7 dict dup begin
915 /version (1.100) readonly def
916 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
917 /FullName (CMMI6) readonly def
918 /FamilyName (Computer Modern) readonly def
919 /Weight (Medium) readonly def
920 /ItalicAngle -14.04 def
921 /isFixedPitch false def
926 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
928 0 1 255 {1 index exch /.notdef put} for
936 /FontBBox{11 -250 1241 750}readonly def
939 D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE
940 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B
941 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470
942 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B
943 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE
944 D919C2DDD26BDC0D99398B9F4D03D6A8F05B47AF95EF28A9C561DBDC98C47CF5
945 5250011D19E9366EB6FD153D3A100CAA6212E3D5D93990737F8D326D347B7EDC
946 4391C9DF440285B8FC159D0E98D4258FC57892DDF0342CA1080743A076089583
947 6AD6FB2DC4C13F077F17789476E48402796E685107AF60A63FB0DE0266D55CF1
948 8D0AD65B9342CB686E564758C96164FFA711B11C1CE8C726F3C7BB1044BBD283
949 9AA4675747DF61E130A55E297CA5F0182A3F12F9085AF2F503481071724077A9
950 387E27879A9649AD5F186F33500FAC8F7FA26634BDCE1221EC0ED0E359E5EA5E
951 6166526FEB90C30D30099FBDC1BC2F9B62EFEEC48345160804AA98F8D0AA54B7
952 A480E715426651865C8E444EDB798C7E11040AF6E5A7ED1888653C6DBF5E6169
953 70BCD9C063B63B561EF165BF3AF11F8E519F37C6FDA2827685739DE2C48B5ADE
954 EE84F067D704D4511DBFA49E166D543CFD9ECD7417055D8A827F51E087CD2927
955 BAFC7E6CFBD70B0FE969F890A11149D3D44D422C3370495DA9951AEE7253A49F
956 3A9444C8CD9158D84117299F7F2332FEB0F94E6ED8BC7AA789A3219BC2F227D3
957 3B5BC75FB53B55D72AF4A6A7BB613FA235B11BB37D059FD87127CEF73D5B3FBF
958 9F91ABAD78BD9240BD9525EBA78095EA0BDB25D1A19E876F292882EAD5619D46
959 D20317A345D931F4FF4EAE6216C27044CBA525E3B917CEA25A04C120466C4B93
960 FC720E6BA832A06CCA0A3916CEF0968D49085AEBD243C41A448289A6F05CE3F5
961 79148DC112A3CC7E8FF810B8C1A09E05F496C0F1EBA334E42E05C376C98F5F69
962 C06C71BFC0A2F3AC9951CFBB143C66FB84F9C4ED27DF70869352D61BD5E11508
963 0797B87C74D8E22C8581255E53BBF5A60D2A2093A425A021E255B00856C47694
964 056E8F0A73CD14138EACBB90E79319071145231E91DCB5E8422BEA39DB99D9CF
965 308838B85C4A3D8572F1B1C3F89D4D48DD8275F6D6031ABA7CF8DACE056CAF25
966 570C1433215C80E5FAB7C8D351597F728FD5C2FF648B7AACEE7DA976FF79E5AE
967 9B9AC3D01CCF011066D60181CD6148867443D458D042E973B14EC68E18064395
968 C1409FE5DFAFB6CEFD37EB8C8874BA5993D35B4BD539FF4B4A303289FF74F700
969 22D13184A1E61DD2497FD54D5838E238FB498115F4B416AA4DB7871C0B5A238D
970 3D2E66AE5D286C6E4B2A3174BD9B5B96AD900F150CA151A42F2C65C76883EF63
971 F962DA68917E4A59BB1E009161DC4F9DC7F2345BB6612020EF59A2C75D5CFCD7
972 17010ED172B307EAA545228C5667D9796715F9A98C0B6AC42667D40D2A69202B
973 820B7E8D1CBC1287C2CCD5CA4C85460C206052D09C8535037C58D0DB11EA2C4F
974 23894D736BDACEF1108F6EE73120329168FF7B916B890D437D19ACE8822DBAAF
975 3A644B20ED314735EBEA5BC537B37123FD913DA09B7B20CFD369C65892B4E522
976 D315E106E776667073BA791CEEA4853CE8F6B13D6835EE6C3E094D013BACEC8B
977 78B9946EE658F19542C18EC86FE493974A5356270A530B5A3A6C858120834245
978 AC68A257DD74FF769EEFFEB2C95FC706F93EB79616F016241F872F1E338543AE
979 D8BE7FFB9E87B61AF59249045BDF3FF393B56F19E50739D1A28CFF40AC87B0A4
980 5650B82EF5D30F5347EB463EDC5AA0663528820F8352A37D7D604110702D1379
981 21945AFB562B1EF9E0275744930775F7AC1D245B7CDF0DB436C79F8DE147A987
982 62DAA64282F84107F86221EB641A4D4DEFFD18EFD67A642D83D26B855C92BB7D
983 17E1CBE8CB120E6423B4B43100FAC3AB90AB59B8D3C267E8D040D46F1F253143
984 A6F2C82CBCD962F07F40D7636A276DB59A5CEC5AF694B31A8E239AB788C866B4
985 4F835EF5C7015EF350F445CEFA288FF84A83469FE1602E914F3FAB0ED43E6AEB
986 4A995583380EF8A1F74D91AE6D8CE0A42BD2B8A67DAA15B809D1DDFC58D86620
987 8BB99ADE04B4176C643F6887E7B97D460F49E94B2C3A6B0AF8A3ABFCD9633C53
988 9B6B55F9B68C6CF3FBFB1D8CD74573F1ABC34CDEBF02DAE85FBBA28DD33D80E8
989 1DA41FD702C5846534ADDE9A1D4ED55FA5F1BAF8F2270325FAE389D5A9A212B5
990 BFF18235F70347F8A0756377E52D3FE93866D58A4B0E2016A17FF6DC584FADAB
991 617BC85D6486E122DF147CB14DCBB037677AEBD51C2D83D64453DBDC103A9D93
992 12EA8D18D5DD35DC816177C123A43322938E196EF7C076EF41843C0686CE65B6
993 EF5441CE6353B0109834584C260F600C8DA3D9FBA75D261E12F40227A4C9FCE3
994 9AE78D414C1FAEEEBDE84E8D2B25044819A5C175E406607F46064F07BD0B8075
995 1F9530D3D4F4E1DF10F450ECA272B1A909533AD5685B565BDC208141A3B87CA9
996 1BF93DEB65D4D01DF36125FC82D692D1B73AC1FF0EC5F541F659A39E5ABFA7A4
997 A024FCD9DC6DF5A46A0B11F02EF6DE5AF13B056127BDAC7EA62036523F19F0D1
998 BF29AF28E9744349EEB1AAD69EBD07E47787006483089435A3401D479B3CE2E2
999 ADD405F2105159DF4542A467E9046D5D916B65DDCE4D071D8F64A321A16586E9
1000 C0E4BA2506507191B820D837AD12222F17F0F1903629B3861D3F2AFF9DE1D4A8
1001 084DEA13640F817F475837761E5D3DC5FACDC9F39FBC48FB7CB2B56CD4E70391
1002 4230711C9BF715424FBB02C48E9C465727EF89D28D23A8E424B0ED79E36674A6
1003 03FF938F6A462B70228EDC2EDD2FC07BA54EFE020925A10DA5FB62
1004 0000000000000000000000000000000000000000000000000000000000000000
1005 0000000000000000000000000000000000000000000000000000000000000000
1006 0000000000000000000000000000000000000000000000000000000000000000
1007 0000000000000000000000000000000000000000000000000000000000000000
1008 0000000000000000000000000000000000000000000000000000000000000000
1009 0000000000000000000000000000000000000000000000000000000000000000
1010 0000000000000000000000000000000000000000000000000000000000000000
1011 0000000000000000000000000000000000000000000000000000000000000000
1015 %!PS-AdobeFont-1.1: CMR8 1.0
1016 %%CreationDate: 1991 Aug 20 16:39:40
1017 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
1019 /FontInfo 7 dict dup begin
1020 /version (1.0) readonly def
1021 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
1022 /FullName (CMR8) readonly def
1023 /FamilyName (Computer Modern) readonly def
1024 /Weight (Medium) readonly def
1026 /isFixedPitch false def
1031 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
1033 0 1 255 {1 index exch /.notdef put} for
1034 dup 40 /parenleft put
1035 dup 41 /parenright put
1040 dup 91 /bracketleft put
1041 dup 93 /bracketright put
1043 /FontBBox{-36 -250 1070 750}readonly def
1046 D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
1047 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
1048 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
1049 D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
1050 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
1051 2BDBF16FBC7512FAA308A093FE5CF4E9D2405B169CD5365D6ECED5D768D66D6C
1052 68618B8C482B341F8CA38E9BB9BAFCFAAD9C2F3FD033B62690986ED43D9C9361
1053 3645B82392D5CAE11A7CB49D7E2E82DCD485CBA1772CE422BB1D7283AD675B65
1054 48A7EA0069A883EC1DAA3E1F9ECE7586D6CF0A128CD557C7E5D7AA3EA97EBAD3
1055 9619D1BFCF4A6D64768741EDEA0A5B0EFBBF347CDCBE2E03D756967A16B613DB
1056 0FC45FA2A3312E0C46A5FD0466AB097C58FFEEC40601B8395E52775D0AFCD7DB
1057 8AB317333110531E5C44A4CB4B5ACD571A1A60960B15E450948A5EEA14DD330F
1058 EA209265DB8E1A1FC80DCD3860323FD26C113B041A88C88A21655878680A4466
1059 FA10403D24BB97152A49B842C180E4D258C9D48F21D057782D90623116830BA3
1060 9902B3C5F2F2DD01433B0D7099C07DBDE268D0FFED5169BCD03D48B2F058AD62
1061 D8678C626DC7A3F352152C99BA963EF95F8AD11DB8B0D351210A17E4C2C55AD8
1062 9EB64172935D3C20A398F3EEEEC31551966A7438EF3FEE422C6D4E05337620D5
1063 ACC7B52BED984BFAAD36EF9D20748B05D07BE4414A63975125D272FAD83F76E6
1064 10FFF8363014BE526D580873C5A42B70FA911EC7B86905F13AFE55EB0273F582
1065 83158793B8CC296B8DE1DCCF1250FD57CB0E035C7EDA3B0092ED940D37A05493
1066 2EC54E09B984FCA4AB7D2EA182BCF1263AA244B07EC0EA901C077A059F709F30
1067 4384CB5FA748F2054FAD9A7A43D4EA427918BD414F766531136B60C3477C6632
1068 BEFE3897B58C19276A301926C2AEF2756B367319772C9B201C49B4D935A8267B
1069 041D6F1783B6AEA4DAC4F5B3507D7032AA640AAB12E343A4E9BDCF419C04A721
1070 3888B25AF4E293AACED9A6BDC78E61DA1C424C6503CC1885F762B25948ADE0C6
1071 5FB5E59A5E169CB7633AC83D2840106BA5AE2D3F7C49820D71F65EA74CD13077
1072 336F23919B54FD4168346F73C7767D4D870D037852940C5C7BCED2B78164F530
1073 05C26260AED7DFFE53672DAD21896126121196B6764DD92C16C7B51CBFE6843F
1074 415E5FB1214F3EB152D430489F62EF6F1AFB0359E9612527F58E7E2646E6DC83
1075 FD6C9156DF9ACE936EABDFE94DF079851377E67D1B3565FCDE89490ADE425CE5
1076 4A73843763E20704FA6DB60C9C69BF18170F343FFDCD34A516D02CD1A50B678C
1077 271C95C079190B0B1E678E6786E3C21432C6569A2133BCDC7E5113617E4CC150
1078 FF9D1A288469B30604493E64ADCAA05B53EC315E77ECE26626D2302B02BB7C7D
1079 477DD854A95D178B156C53361C49BE7AEE25DF247E93457F5C7BE57336806255
1080 9850B382252B4EBBD908AF413987CC557B36D9D1274D67A3A58479B12BADEFF7
1081 0243DE07A7EA70AD44F12127AE604A9C22AEBC9E45EBF30BE96EDBC30C5FB15C
1082 E15D5761F79978BF82EC0D713849A2E7A03D3DDCBA027D8EAEB0A2DED5A7BA72
1083 56A1ECA78CC389DC2C79A3B34222994E270725D675382D16897618021F2FBE16
1084 08A5EDA351904CBA0B539CAAB2757FD3BC7162F9316C318F5EBAA3C38DF2A589
1085 A84B89CE4C7A9150251E983314A0E4F876AA0749C26523D5DB7F5095278647A1
1086 DEFE3F9E8C16ADB6D8B624AA9433DC8AF01C0C8F16DB5FE49A45B83E26FDB3EE
1087 21D9CB7E732C6197ED832D3FDE8163300D518653EFCDC971B8AF1E7FB51654F7
1088 08AD3E17C7E76ABDDC04FEAD33094EF2D16EBB2735B2875A215471B0FA823906
1089 2429A528B6598A111F2FB8609687E396A07BBBCDB12D4243320E4378FC7F932B
1090 3EF9A7597F23E0966F9A666091B97DD1B95B6C113E22614B14F1E825C8BD7053
1091 90827BA813CFB2358A509877B069020D3B36D2B1F9DF4A4BC5077D1243A8EFEE
1092 5F8DE09D69219761F06E25EDB309CD8FC3F8402272C2FDAE0AE187F3430B7ED4
1093 079C943F8DD28E00CD0C685FA700D1EB1C2AA2B47396C750BE3957414512584E
1094 41D8E590B67EACF8972C0C23A1371ED2F9E65D1EDA301E6B4D89CCE3A6276B93
1095 0A2BE8D91A5AFD6148971B829D8FF390849229705E56F60AD2002F6123A91E23
1096 4E12C6729F7EDA481D91CCD763FC282B1FDA3864422662BE79E822077818BEBB
1097 36A6422531C48A9532C5DF5E998B7D719A2B27CBBAB61DE021B2795D20B03183
1098 BE8E850C0092463A8251F32A11027D5DA0D99CC551E9977F93B7154F977FB842
1099 B99EA51A061DE4D28BC78A05A7BA79CC58AF5EDEB22DC632105A520EDF15AF93
1100 5AD60AEBFAA68B63D37EE452263206B156364C34DBD58E896C0FA41A80BFC257
1101 1D79706E91225AB66CBBED13022F7EF4B726E8BE989F253320A8009889250D15
1102 847CDB506F0F2F8DAFB9064CA637B2CD9C43FABBF6AE5B9C9A1A150F924DA690
1103 2DBE29239F0F80E40B7D8E9B2AB4008EE1DA7ABA
1104 0000000000000000000000000000000000000000000000000000000000000000
1105 0000000000000000000000000000000000000000000000000000000000000000
1106 0000000000000000000000000000000000000000000000000000000000000000
1107 0000000000000000000000000000000000000000000000000000000000000000
1108 0000000000000000000000000000000000000000000000000000000000000000
1109 0000000000000000000000000000000000000000000000000000000000000000
1110 0000000000000000000000000000000000000000000000000000000000000000
1111 0000000000000000000000000000000000000000000000000000000000000000
1115 %!PS-AdobeFont-1.1: CMMI8 1.100
1116 %%CreationDate: 1996 Jul 23 07:53:54
1117 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
1119 /FontInfo 7 dict dup begin
1120 /version (1.100) readonly def
1121 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
1122 /FullName (CMMI8) readonly def
1123 /FamilyName (Computer Modern) readonly def
1124 /Weight (Medium) readonly def
1125 /ItalicAngle -14.04 def
1126 /isFixedPitch false def
1128 /FontName /CMMI8 def
1131 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
1133 0 1 255 {1 index exch /.notdef put} for
1165 /FontBBox{-24 -250 1110 750}readonly def
1168 D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE
1169 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B
1170 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470
1171 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B
1172 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE
1173 D919C2DDD26BDC0D99398B9F4D03D6A8F05B47AF95EF28A9C561DBDC98C47CF5
1174 5250011D19E9366EB6FD153D3A100CAA6212E3D5D93990737F8D326D347B7EDC
1175 4391C9DF440285B8FC159D0E98D4258FC57892DDF753642CD526A96ACEDA4120
1176 788F22B1D09F149794E66DD1AC2C2B3BC6FEC59D626F427CD5AE9C54C7F78F62
1177 C36F49B3C2E5E62AFB56DCEE87445A12A942C14AE618D1FE1B11A9CF9FAA1F32
1178 617B598CE5058715EF3051E228F72F651040AD99A741F247C68007E68C84E9D1
1179 D0BF99AA5D777D88A7D3CED2EA67F4AE61E8BC0495E7DA382E82DDB2B009DD63
1180 532C74E3BE5EC555A014BCBB6AB31B8286D7712E0E926F8696830672B8214E9B
1181 5D0740C16ADF0AFD47C4938F373575C6CA91E46D88DE24E682DEC44B57EA8AF8
1182 4E57D45646073250D82C4B50CBBB0B369932618301F3D4186277103B53B3C9E6
1183 DB42D6B30115F67B9D078220D5752644930643BDF9FACF684EBE13E39B65055E
1184 B1BD054C324962025EC79E1D155936FE32D9F2224353F2A46C3558EF216F6BB2
1185 A304BAF752BEEC36C4440B556AEFECF454BA7CBBA7537BCB10EBC21047333A89
1186 8936419D857CD9F59EBA20B0A3D9BA4A0D3395336B4CDA4BA6451B6E4D1370FA
1187 D9BDABB7F271BC1C6C48D9DF1E5A6FAE788F5609DE3C48D47A67097C547D9817
1188 AD3A7CCE2B771843D69F860DA4059A71494281C0AD8D4BAB3F67BB6739723C04
1189 AE05F9E35B2B2CB9C7874C114F57A185C8563C0DCCA93F8096384D71A2994748
1190 A3C7C8B8AF54961A8838AD279441D9A5EB6C1FE26C98BD025F353124DA68A827
1191 AE2AF8D25CA48031C242AA433EEEBB8ABA4B96821786C38BACB5F58C3D5DA011
1192 85B385124DEB4D6B1F34D50F7D5EB409B8B352FE8465719EFA2D4E9DE8BF7082
1193 61FDE83F6977EC1158A1CCBEDB2A515CD1FF8BDBC440B26CF9381DFB5946BEEE
1194 C0E5ECEA4FEAF88C0B28EF150E026F88CB356DD5AAFBD882E9F225BE41084A24
1195 3C1CDC0F4F3478C30FA3F4DB8CAA8889E678D4505BBEA50F7D90165D2C51376B
1196 9E14C7D7763FBC84EF1159468BDD1BB17F9777DF9977BF038D7E4B50FF3294C0
1197 739F8E38761FBAD032C949EB7511B31D0233D6BA2F7D775E96212CCF0C92AA48
1198 2EC76E274D50E22E5FDB458694EF323B6CE12DA8B5D8A7FA49C16DAF3613E9A4
1199 F41A100EC900F711F8E70C1C10DF6851FB39D39809C327C7EB06621E6B88A824
1200 B894434B86CC0AC552304FC4D0DF6D6F0B047BECC9E6D93B2C7592A73EFF1F86
1201 75A36D6890378F9CA5592F200513B1108DA18070578C96FF88D7BF0D15A132AC
1202 FBD73A689F933DEDE585700DF249A85B3B0ED2EF0D24D4BD13C67FFF1275A4C8
1203 2D7F71F3BA6921E7B47A02AAAFA07150D162C74EF8CD0657592A10A410BDE572
1204 61CE2D9ABF6D058F7D3305BA6E7EF6161756F21759B14A1AC99EC3E3B6AB8B36
1205 D0F6BA680BC042E2E1AB5869AF8C552C3557DDC333CFB59CFE43541D745BCD48
1206 B0CDA26507EED6AF1A35E71D3E16967EB570A6CE207749D248AB652165B5E70C
1207 9D26FDE46EA0347FEE3643123678D1D2AFA8FEE4533815C2F3BCE21CB78F4083
1208 0993641EEF9DBB1E0658A95A0F42037BD0506427E4414CC7D811224665CBF9C8
1209 F4B29B44647E3AD66439C25334A5217D7709A1BDA7474D1C567E3D0BEE852B19
1210 E9DC7E66C3EC495AC6EF25726EAA24AAF9AF7BB95DA02F7ED0E669DBBC8B9926
1211 3D5C8328F32CC88813036474C1E2F4B7AAEE76322A3094DC370401A57982A96C
1212 437A84BBAA11F977E95F322A966660E07677A51C51BBBCF9EF7DAE75C97C3262
1213 268236A3659F8AF9A6E4DF779C46E5E1CBC924AA7F141D2DD05EC0CB59C031BB
1214 1AA17312C106CE96A98B380539F33B8FB0DB2C18755E8DDEDE1E81C379617CC0
1215 4C37E0176E4D58D4AE1BF44BDA60AEC65F60FE53D7139652FF32189F7A7D25E1
1216 C47724D2412A38615F474CB5325B6DD895DD288428A8D4367AD95DC78C793012
1217 83C4AF263D7D1E27645BDF385F04656BBEEFBD37803A78CAE1231090FBA9C4FA
1218 56A5C982C4F8B0A465D04755D8A7AFFA5742246117C4980D5E5C82AF4E048EC9
1219 2B4475D9C4A5E227F5DBD455348CDCAE2E7F81488888450C119E109D56A1DA79
1220 EF3E7E597B2452066F5F2EBC990385A6ECFF6EA5F7EB296B29DF5D4AE910B1D1
1221 57D79D08563EAED8E4CA4AAC63DF9F39A8EF847DAE907EE7243458A85ABC8272
1222 B0F1AC84771FB7B91253087ECFA926422A617151BD151A51758F5DF75E8EA741
1223 D627B88BD1361EB4BE45D953A8BD16B867635CFB0E12FB15B75C74D3A80CE7C0
1224 D61EFE791A739FBD4F805C65FB9DEDAA565F9BEC532DD6D6F183C9CDE98C5336
1225 906B6B2AF16FA97DD86ABF717730256ADA02E5382B4BAEE4974FCF8ABF036104
1226 98317399988351C31BDE41041AA2CE812E00F53E8DF1A3F0C1EB1528775483A7
1227 45FE24F342FDA2BF28A1A3C6737DE401FAC0BFE1B750B7003257A986E042D0D9
1228 3645AF133B37F911AEBF129BD145021C152E5D917CAA9F88F9CC51DAD187C81C
1229 70583F40C0C57F64CE962678FA90D5BB81B1E4E90408782CE91D6DEAAE0FE613
1230 5B2FB368D08A1789B2085707FA9375B8269F93F439D42A27E1E94001F909C84B
1231 53E0272A33BB5A2E1BF3E187E63052B059CBFEDBE7AA5D6D48246599D2268696
1232 02E8A82CBF6CB0B585CAC1622D235DF86834CBE0E190C9535619D7482B62E619
1233 034DB94648887C3007EF57C7A68E49305EC8F58D8AB7E1E2BC573637721CCB78
1234 1BF76E9F862A601B580983FD871DB404A0522F52120F3BD5367584EF9FCA4356
1235 6C4FFE64A16D9CD1F00993093ED704CEDB634C9124A45E6A10D00AAE5A0AC001
1236 FD37F8C36A35883BBDE158500B1849CF212E0F72C8970E85648655473D6B4F55
1237 16985CE30AC296207A5A511967594F615F9D32AABF0A3B7797333A4A19C77741
1238 CF62EA9F2DF6D8BBB752D0A26A3BEB369CBF0C05E5EFE9433B4624CF253C861E
1239 8A0953715BC98682A2BF8D1136CFA154F5981766D446967E56FF20B7ABC94DCD
1240 78BDE591E643AB0CEED992481D9E076859724F0AD5DD3C9817EBD91E72B2F374
1241 F6A0A5A566FE3E28E07CF917CA555E7D776B8418A63AAC49D1BB1238D4CE636E
1242 46924BB61FD4C5893CA1A059C45BD63294322664C4A7ECC8A8176835499BD3D3
1243 9341756A605B6DB6A1E5696CCC6B2A8481AD55CA78E4260E9C2DD9B9C2D5CF30
1244 76C29A190122A03E33FC2BB55C4DEDEECC3BDDF9CF72F9962AC38A591552CBC5
1245 14A7110F549C51B986210F29F13E7C927D250C7225629DB853BB3E491671A8E5
1246 B247C64323751F4F1BA2186C33A27F01EDE9AF9A8056AF34C3D3ABC7B158680D
1247 DD97B7C1A55023B76C8E38984901BE10C3D54EE69CD351929DE0FE58A96D37D9
1248 FBD6E83D5957B23047FBB5DC2B0C5BFED753593CD1880F6AAB2258ED12392172
1249 28F88CCB84CCE3BAFC522E804E173A632D2ED19082911AB7D83847CE47D28F39
1250 68A891C0CC402C218D468B8C950232766426DB756ABDD1ECE9673E3084098F0B
1251 E9710C8D4F0C39ECAE014C26D0A6868ADC42567CC8E5535A219B5CA0897C3055
1252 955D275E62ABB02032797E1A5164EE3092E276C76CFBAE6E4C1FFE5B69E0C1FD
1253 AF52070189C95AA58751AE0829474BD8CA30A84E8639B3ECA2796336E2675D0F
1254 2C714CB160AB18E87699B4C415A5E52AED38C69033C224909BA810E9EA99AC38
1255 186F5F79DD33DEE3C1A869717D4192B300DD5225DAA2DE488C1942EF1A786A08
1256 C6030CE7857B8F00A9D4AB5EE74557E41D989C38AB24B8494422B24A542632C9
1257 020A9B791AC8685FC9302FAB1AB954E08A674C1A666EB205E0986C92624944D1
1258 4F9C5EF98E3B190567B052680D4E2E334F0B1E33C29AFE2B46635E53016DF72D
1259 4C47FC64B537EE981AA393BDAA508691E722F54CD2CEC741DF3560D946307339
1260 735CE54BC208DF14EFA0C2893F3EFC2895BB3C13561395105C2788E6E761BEE4
1261 11F121F7925BC54D24C5DF01BB1A9BFEF0D2F584FCE6C5B1DDA96CBCD6452F0E
1262 8E8F511902C1283E5C4B7C6FAA9F0AEBE354A66568CEBDD700F381A12A505D94
1263 53B20D7AF9286EC3582E88B63E8CE762416645685952E67108087652EA89630A
1264 1A8FF796EF05E69542880DD08249A3435B5F6605701BE14707B07194E515A8EE
1265 A149501D09B5228DF8F5C97A7CEDA9D7D1DD1C7E41FDF5085B7918491945DD35
1266 9E2B44A650787830A428C04FC8C671D62E02541B90638D3AC28BB66CA4D5E510
1267 CE730116B309FC55977381F62418F59D4E6141E61AFE3BB8FA1F1D240B3C58FF
1268 5FB005EC900D263A2AF8E42647847365A6BF631B75423440E13476E1E39634DE
1269 A9B65D56F3F68A982DDDE729E25B4B4082543A53E9C3B61F6A715D2BFBE23BF4
1270 98067E6BC7DAA10E96378A277FF0A71D071E6D7F8B9458995F076B80E611D853
1271 44A260855913B9476B8E7E43478454F445C1677AF4A8B8C6B0058409E1BA87C6
1272 CF667DA020E6ABBE3405CB0EC3F4AB459C09B8E7525FBA6D6D10BB834D1AB0B0
1273 89791AD48003593F6D902E8D77A1058B83057B68D66B3A234B8965B3A60FD635
1274 238D489EC23FA5EEB227639471F60B6051C534D422EE1190C1A693775A0D787D
1275 BD21CBE83583D763298963D3CE94415AF1714F6F29A02300EDC7A895FCDE7F26
1276 3C3DE15A458C4AB9E4615B2B8BB96F0F53BFC6D2E5A0B08AA999462C027BB2F8
1277 B8BC46E0760629FF73E22391C5474903173B74DB8816D257489D621CFF393851
1278 D97FDBB149CD9BABE3BA5A0632B2378F2C3592E191B7CCDADE93051AB5231E47
1279 A31C43F4CF1801119E5096674034D35ED633C0C6B610E64C4A5FCE3F1DC089A4
1280 7FF7976D0DA25B1E4FF2D795AD65B4528B22FFE988CB8BFDFBC4E106E033D9CD
1281 01C237B77BECC20600DF62EC3FC24F1EFA9E46BD58FF89CE18DBFA3390AFEFA0
1282 7E7DA969EEEE8FB06C2CA7D4A8A76B6F2949C8AA1D836FEFC90004FE60EE9FBA
1283 71B386E7BE583D7E94DAD0456A6E29FB02BF7C8CFE2280724D8CBE7717A196A1
1284 952E98F1FF1403E54EF15B170CECB73B5384553C942B1AD19C38386192908303
1285 F8862C8257E363C74295F2DA8D9462828BF44B538ECE359275952AF8C4B271C3
1286 41664F30CCBE4B86FBFA34BD0798F5B56D79A57D41D106F33DBFF6C3688F3532
1287 87C3B0E18E8F483BA0B731EFAD2557998A4AA930EB37DAD917B1DC6E8337589A
1288 FBCA67E3888B9AFFE84768F3FD1AE4466C234FE0FFDAFB26768506C1C4EA66B1
1289 E588071C99507FC2854DF103F017F4548F324BC39FC56160669134FA285E3F4A
1290 9C7927920591986172F8F6045293379F7A82C4B016EAD9A52CBEB4A4D237388A
1291 38FC689CF4EA6E68DA7A897E064CBEBC58106901FD6307E7A08A24F86A8C4931
1292 42562B433EF42B33D49A7725943091388D19AA7FE9E9D73A998040C9EB80FBF0
1293 1E0AE084A8DE7A846B13C34990CDEDEEAC89BBFE4E4654738383F5C4444A300C
1294 172463FB7AEF5F5E1D740CB94E7E4396301A664E9EC313AE80B362BE4E7276F3
1295 E419985D865B45FE4A2FAC68F136E31DE139B398A817D0028767DB9BB912E8CB
1296 F17F2E613B1F4C29CBDF3D01E9C7DD0B3E614C2183E8D397ABC27FD8A30200CE
1297 5F75C90B2BE229A977EE30A60934CB84FC9396E4B6E7258D30EA5D1102F2B135
1298 C162E0B53FAD3FA1B055B20079E876499B4C79472BAA9BCDB8854FBDCC5AACDA
1299 541B48B4AA9B3C45E07915B533A9DE18E6E53076B8561C7EE5F972C497D920BB
1300 895E5C479ACA25EF9AFA47DCBA728FE6DF454390F08F65793777D43209A40E9D
1301 39C7FC5EF0F09F28E7B0BFC8EB7E98038C2D93312C92ABA07C0CAACDF9C3CBFF
1302 8A639E1189922A07FD8683BDFBA46DC719C9B78D1B53D70DF71786B3F29C07D0
1303 CCA7BB2EA9C7EBB96C1B31D3D3E5A96BC820DA605BA0A0CB530D93CAD69A345F
1304 FF12A2BF51BBB101CF97033170E8DB495003A4274961ABE7BD138BE64CA62A9D
1305 896FB8CC251D83921407F9211034203EDA31BAD0C5EA6CB45F25BDE4B19F2CB4
1306 7F2FE03592618DC8C7FA2305D5E8758A253BC865CFDC016E53982F2A4326F238
1307 02B7C2192F1D6CF4DFECB58F80F3A0B6AE680AF3335400B2136807E65D3C7B53
1308 1C266BC362DE6DAAFF6906A3130862C42452F32FC15E7B2E9ABC83EE7EDA26B6
1309 C4AA07C193872AF319BF57D30AC4FF5F25780624988F4FFFD20C7A0F4FBC789B
1310 1590B1A36A8C021A431514A70DAC9F851FC389037B7989CC888107E926B7D0F7
1311 F0B88966CEDF5F4047B50498B00646B5F32D06D5765C228F59823BA8FA0EB86A
1312 D6FDBB721E4C833911997A9875B0E9BB2E4FE7A7A1B7BF3B72D3B7220815291E
1313 53E940DA8F80D64499D7A9BEA074C340BE27662440DEBBE611262AC10070E863
1314 888C4C51FDCE8CEC5AE7BB1B96E5E7B9497AB373AF48E1DC314A87DD87BD557C
1315 65169EEF650ED153837FFA95D1F6C1ABFCF7144B55A5E7C6F3FD1D44C1D9CF7C
1316 83ACA2FB215D5450077B6B96C338FFFBAC412663BFBF7BFEA81544EC9549890F
1317 C9402560DA9668F039E6E1C0C77F3EF7B94CC399D50133983A2122C3ECBA4296
1318 E59B2614DC9230F3038B87FFD840FC4AEAF5D667A368B23005A7A29DCDE64B09
1319 2B3BB141CCF2DDAF403E7520E2C48683220874F2DE004E5AB8E19C38568CD8EF
1320 F167D6146C431925708D5C4F5ED0E1937116ACB0C9D71DAD38AFB5311E860164
1321 250C36A35ADFF20560DA6251A44EF9093FE2DF6A83ACD133C85018FEA16C773E
1322 0464676D6201EBC569999660E31B19F206A55A2E1BA58916ADC9BF3E2A4901F5
1323 730DDE11FC0CC507F37FFAB91546883DACA773AC7D6166C500475F0A16913451
1324 562E017457240A7FED196976AB5E52765A0665E2F2CE684E3587BB3AFC6A7956
1325 1B73B0DDB1C07788E46D80277852231F860A24C0ED35E29E876F8CF53099652D
1326 C07F2C42D649A0B3F5020CB957F7AC51D5BEC5BE635B088C5CA087FC6BB67DD4
1327 A467B84DA1F2718D3FA227AB78C0D79637840F8F97CED4C7F32FE339C1150398
1328 FAF9B68C35022F3C249E0890076885BC87BFE10226F683083E37F1CEA64D6480
1329 FB264E650E9B2D522D5B59AF605B41EA9C42FB881D5147DCEF50764F72BF8F59
1330 747395B9E75CFBEF903CBD782E05FD7F884B6DDC766CA672548663C76AC5890C
1331 B026A37D6FA5C19C09D6601F974F93F75AFF6973932A244F361219EAF6E9AA5D
1332 D7877341D4F6528E7B20D6DA3C5602D65B1AA5378981C82512263040FCE9354A
1333 49ACA47BDFFC378691FAC77C5211FDF38527DECF8CCA0BF495DF8F85CF01E45A
1334 0FC222543713B1FE6EE92259FF0EF12102B992A4A0EE7AEDD62951F25E5364BF
1335 0870F18EFB3285B8AE8EBD98B071204E1E082B5B1993EEBD5F766ECA63019A90
1336 A4C0E5CE7E0BE885EF60FBE4C394033E1D006723C1D29185ADBA5A75686C5369
1337 800AB33608085BDE89F56223D3759A0797C58B89D2A0CBD8F54AFE00A6CA100A
1338 B75DF2D752062BE41D098F161D077947CCA269DD6136AC9D7C9B53D9A0170CC1
1339 C19AE4F5AF20C19422E5C369834AAF46FFC5D1923F87E72F1FAE11D5C3845910
1340 358CBF4F9DFC1FDF05652D0B6E793EE3D7A44EEBA66E3F31622F4808EC3EB566
1341 A3F7353E28EFDBD33CB1D216173DF8EEA67D359B4B4BE6BBE73033225169070A
1342 C52AD4E5884F2A4FADE805F8F9486AC5587126DDDD97AD67988411581FD6F90F
1343 D52093704830DD2A32D10A55A16C7077F75297B54A6F5B45ED00FCF6568C69C1
1344 8794092075F5FEAF7001A922EB8FB402C92123DE83C0B8A475E59B72B9A8C2D6
1345 FFB67CF6E8F024E1E3FCFE82FFABE1A647520FAE583E1C52F5A274C0EBDEC561
1346 5A1171860904C3421705E34625D8ECBC5C2F8AD749D10DC1806432684EA42393
1347 44519507F197FF613A73A52EFD91CBBADF8CC32B6600B5E6ACB0FB846D4CBA88
1348 DA22206547A1A9B13F3320C5655FC667403578D9280663927A02161D8443FA04
1349 C70A5A896059C768C28E20C8EEFDADA3E76702561A9230D1C1E69CF94038E553
1350 0FC7E0561642AAF4256B046E4374ACA1B16D562FEC56BEBA816143E09240871C
1351 FFD679092317AA21AF966ED44F17CFFB4257FE203DD3C5A4D6CC254FB8C2B717
1352 04A149C9F2CE9F198DBED7E561DD919C338EFA0EAD9FE1166A632EBC501BDB34
1353 6377843EF9565DAB972AD2725288C93040D744889A8D4E27DABF0382ABDCDBB0
1354 2510D2B11528FD212144E9D7ADD2B9D65FA756E85BAC941AAB5D53F918DC79A7
1355 FFDE5D672EFD8A0B7809195D07CBCAFE6FA24B65AD7A9E7FCED615C25BF5E108
1356 C8210F1E12FE4BD0843B54F1012829FFCDA2DAC69B000131EE7E9C74B7E28FD1
1357 C60669D8267EAAC1D56E8299E1A8F9B4B5198C3846C0169C755E3643DFB82395
1358 9724AFFAC477E7C09CBC250D30F3F21925EBDFCF7EE42C161AEB80A0F514760A
1359 B701ADFD69884918E1FD6CF7ED8E3F792BC15368B489D5F035260C8EB7F6BCD5
1360 C4C109033511C0C4947638850C9BFC7324AFCE8DE070474994BB8CA2B6A338D2
1361 FF460D87A0CC4DB329A20DA6DC5E1EE2DADDE2FF5EAD1ED91DE06F8F191EF64F
1362 11B3AEC998E8EB50D126F925725805C45FB8D7EDBFB71645825F002798544976
1363 9843D1F4ED7B50B612DA6564430B61D1786D953889D3B4EFB89527A0B093EA5F
1364 8A30E37DCE4240175F219C11A631F98C1645D893702EE8B51A105A2E0B900D42
1365 AB92437BD48CAE277511B1898615F47B652767879CFC2083A864B80C9898272B
1366 C01925BD9E33CF8C41BB6C59912AE10069EF2940E846992642566945D6DBD9C5
1367 B85F29C1A672D11C7F77BE160025541BEB5FDC1212AEE60C2D6A0B8C6F299B36
1368 83AD09EFA04DED58D91C2D328CDF07A6AC2E88D366D9807D563C34B4293E818F
1369 2A31AD8968FC8BB54893419BAF7FC1A75F0BFB4EBBFD9A46043A08A2357448A0
1370 6C2CB8444007CC6C378E8C5588365416F7460E55B883008075DF4C372D181846
1371 4C26784A7FC303B0B42F530FC95A3798E8F9BDEA8F0E293FE68BB4DF05DA1E6E
1372 3E71A7F9153169D8D60DA76943FDF883D1773FC4B8534DA48C2C323E01C2F21A
1373 5218306512AC6AA9CD1C3BB69E01152ADE10DB2DFDD1AFB56E679528D5762FDB
1374 675D0DEF2E1E0038BB3AA0635275ED545E0DF79C443AC5D79545CBF9BCBAA450
1375 FE1331B15C5219EB9A231D22FE70DBC4AA81AF78226278E5237F068F9BEC8CD7
1376 8BE2DC4CBE545AA4AD3C9D137E4C7E0DF51065C384073D1514F538B492DCF523
1377 7E4BE3BB43A91FE2BA52C5CD6539ACAD6DA763138FD31584534C1F538BA52244
1378 4677BB8D0CD30A1D1846CED8C6FBB8599C3E05596AEB76E06F28F0FC1841BDED
1379 9B947CAC264C74E4B360E2D71557A70C4A3D74F47C9BC00A489795BA41621314
1380 C8C1F723632B9C84F6BB98A2EE3BD8FBB677F139DBD0B3A70818D90574E01857
1381 1008DA0D1BE1D0E5A92EE82F28
1382 0000000000000000000000000000000000000000000000000000000000000000
1383 0000000000000000000000000000000000000000000000000000000000000000
1384 0000000000000000000000000000000000000000000000000000000000000000
1385 0000000000000000000000000000000000000000000000000000000000000000
1386 0000000000000000000000000000000000000000000000000000000000000000
1387 0000000000000000000000000000000000000000000000000000000000000000
1388 0000000000000000000000000000000000000000000000000000000000000000
1389 0000000000000000000000000000000000000000000000000000000000000000
1393 %!PS-AdobeFont-1.1: CMMI5 1.100
1394 %%CreationDate: 1996 Aug 02 08:21:10
1395 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
1397 /FontInfo 7 dict dup begin
1398 /version (1.100) readonly def
1399 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
1400 /FullName (CMMI5) readonly def
1401 /FamilyName (Computer Modern) readonly def
1402 /Weight (Medium) readonly def
1403 /ItalicAngle -14.04 def
1404 /isFixedPitch false def
1406 /FontName /CMMI5 def
1409 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
1411 0 1 255 {1 index exch /.notdef put} for
1420 /FontBBox{37 -250 1349 750}readonly def
1423 D9D66F633B846A97B686A97E45A3D0AA06DA87FC7163A5A2A756A598FAB07633
1424 89DE8BB201D5DB4627484A80A431B6AFDBBBF23D4157D4AFE17E6B1C853DD417
1425 25F84CD55402AB88AB7EEFDEDBF2C2C731BD25567C53B474CCF739188A930039
1426 098A197F9C4BE7594D79442B2C8A67447DE44698321145D7689B91EF235EA80E
1427 B600AA8E238064F154284096C4C2554EFE8DDF13AFF8D3CE30E0999375C0FEE6
1428 F992DEA5FC3897E2CC8B7A90238E61E41622DE80F438DD994C73275CC52249D9
1429 F6686F87F394FB7BB668138B210BEC9E46415A1B58C990B81E7D7DD301143517
1430 4C2A259D2A0A1E200F8101469C10D7D537B0D4D39296A9AB3F132DA9A3B459B0
1431 F850E2B3A03BDCB35AEF82285D19C38F474FB414F8EC971B994D1C7DD753B271
1432 2B71549DF497C665DF0F266988209D9EB616E4D9BA229FF984E7A886DB01FD21
1433 48ED2E4859FD6416C2CE52537464EA884C8C9C2D1083E2B83BE4B766474C23B6
1434 6E8EC5003200AB10514BB44D14CA700416AB6B2683E80862E7D5B49A05526A32
1435 554BB23AB8B0824BBA198E3825CE82380CC0FECF46651E3E5D77F09465E73164
1436 20342822F29572BC7F73F2C3BF95ED3BB6FDEADC20C6AC866C4F2C679594D7E8
1437 8D944704A3C5D771DC39503BECAB89F34D8CDB8FDB91AFE21F3F0260D05E90C5
1438 73E2C13DFA022C4522E5918EE25038A0498FBB530DA33B0AE238B1C6ED03FC04
1439 2BFED8236E07820C5BAB411EAE1B31D93A2FA7C374B1725FEC359ABCB88E2C89
1440 214529A263D795AACB0B95A3AB2F4E08EF350C282CE521716DBB06E5B8291B3F
1441 5D4ACA230FA192F64BC902A4C8842C0F916F92FBD002ADD408BF0401D0284FBB
1442 F05D4C6DB631420747CC902C5E1617E6573612FB26C8378DF41FFB5048D3CF06
1443 4893DBA48EF4B043D760F60C75712169D16C83EE020C45369E443E853E1809DD
1444 F395B812067D6FDBD26111B34F42C21036AF952D0D767FD17F6959D9FDD46005
1445 D64FFF54772B50BB9B173AE79702981F58F9F235C591F476A31852174DF0619C
1446 A470359153DC32610E782B204E7945515464DACE9099B81EEECC7EBD4B5126AF
1447 C3FD9DDFB329AF1C95C41FA4A5F6958869509A23BD7210386329771FA46FF926
1448 0E54AC35106253EE140449425A8670E1F92B178A02A58EB57540F4BD8110E548
1449 BB584EA6D625C5F5FE0124A98E49915F1A1B95D2125874360EED1C4379FEF3C6
1450 90E5780C20309F11F2F23FAD635C44BA030B39EFF083A3ECCDD2641DC6515508
1451 CAC76EE7A83AE31B88BECAAC4DF67DB37FB506FB665E5586B8315128A8B532E9
1452 631B84F6DDAAE8DD2ABF50F23D1F9DDA1BC3E65F0466E1A5AA0743F1B21899AE
1453 D3D2895AF7BCCA9E9F6A258BDD1152CBFDC36F902C267516CF782DACD4438AF8
1454 E8CA7F71FE3FC27D0CCACACADA2FDA80392A06FAD08DDEDDB7A237184FA4915E
1455 5191A3D04C42AC147539E7F37AA221AD62CBABD71AA8DC30254E3B6ED43CCFAF
1456 50D174C8DB7C36B9643B6BCA099D4122EA54AD284A0C8613C49C6594E66480C1
1457 4B91C48AF2D40BAF0EFD85A70A64CB2DDAB68EA8F88D8C7285453860CD23461A
1458 C5C3F5961D7F7162E95ABDD4D546235A1AF6A6ED5BBE1243A5ED98A5CA5BEC91
1459 57EAB9AFDCD5202F89DE05F7EB6483471D75107F5FEF0E45FDA1559AD189DB74
1460 571629E9C030649B1EEED5B2E86CDB4417D7235A884DD3EECF10186D957F5C3A
1461 81D30D943279D57D16903327E97068135D38EFABECBE94F809D445F0E0545816
1462 A18BC115F7A64EEEC3794AFF9A157656335809FD29EAEB542849850339C6F35E
1463 D5FE9CD245D1442374A6935B243AFCFC2AD9DF644B3E81A1CB4B722D28DD9F84
1464 8923E66747372FCEFD9434EE70A56AA7319D265F11F3DDDFE26C09C6DBC173BA
1465 0081877F1FF971D88A82957EEA0A1C148C5D30C2D198CCD3EADE24B13A88E80F
1466 175989686F229A0AB178C56A3E4F366C8F477BFACFA31DACF45D7D103619533F
1467 635BFA06086F524FA336975CD2A3CC2A4EE2785C33076818AA5E43A32482FF36
1468 56E379E29F9CDF2474CA767DF1DE565A9AEC334BD9A36CFB8948FF562743E754
1469 EE4882484D95C172E3616FD5182EEA9429950E42EA4F68869683A241E519B4E4
1470 807E81E3CAA3C95B93B7803ED305D6D1A9A28B4B301B48B80FF5359CE17185D3
1471 6E05B53184E11A35043EF3A4796678E7D59BE814A00A18F0049823596D633B3D
1472 66203FA6FD99E1DEC46B9D70BE3937B8BFBEC01685DE6E02CDCD4DAAA1A05094
1473 18A4DC9F485EF81D115D84B9EB52DEC444846E74AD6728EA2D9B2F9279B2E895
1474 4895C766FA93F5EF158B626924A09E3E3C2FBFB18BD84B9749BBEABCA998DABF
1475 D58C29932B3527951FC532C50BEF4138D61115E7BF68EB0EFFE8283528DA50FF
1476 BBEA958CDD234CEE8DEB93D19C1B7558FA666793BC740E63C854EE0BF4006EAC
1477 E1272AB51A29F48298231CCD993F3A9E7C2381569C05158CE8C6C2215B06DD71
1478 2BC92BD131C295D07247A8F3DE1601E643796CD4B02ABF1EB4E564DE04A5879E
1479 F08A1A5F4365DB385B8CEA3CF370871004CFACC8AF566A132322993D94F25792
1480 9AFC825E36D844DB342CFD005362F93B1BD9B31168F5CCE14C444867A359D639
1481 E43D4DA9D1498A206AE3415BCE1EBC0038948AF13553FCC31F414C893C964D46
1482 7D0D7EFD74FE03A81E158D280B088CFCA5B4451372B94929BFBA8E3504484801
1483 E7CBAEB4AC66063F65D1D5EDBE0692CFFF1F8232B3615E053A495D713EC85880
1484 065A716E462EC14E376065C1120B6C7A48A8C7E3FD11C341487ECEBB85CAAF05
1485 4754C2D09E5EA75AE9CBB5F414BE32D51BB091BF9D40AC361987FF11BE8791CD
1486 3E95A3A1A6D1351BF4323D4407C9F87E459ED2E28CC71BE19F2F2E3F0F4176E5
1487 85109BB1EC7FD61825676CDBBAC21DA2EF414DCC72BBA0116B921847C7B13A1F
1488 1DFCFB7F8DCBDE9AE55CE72D9A7A0BE621941AAEE8C2466B7E8297D54344A182
1489 DFF7DB01109CC60ECF88E5989357961B00CCDFB24C250238C75B2E2EFC532966
1490 03F06108A3CB2D246C778ED471ECDA9AA2625EA5E9D5F70DC503EB69BDE1A4D9
1491 1E6C06DC3F7630025E04CF60BF5A223E69DDF30A3307AC793D8EDA179DDA784D
1492 F7DE6D478495B7190EC3D3F4DB9DEB3FF5EAF358428AB6F8CBAEF89FE57F5436
1493 E9FED8E2D85D77D75361C3948D0C41FCAE0FAEAF98A2B81777DEA0059E8885BB
1494 51D455531194F7A99D76C2FFF45FF61CB56E30E5D09A772D226F7A469D16D440
1495 752172F70A007707774BF8F93A250FC2D037BA2B93BA58EE3AFD016EBCBC1A76
1496 31C610B5A3F87E5D8BA87BEF7A90093632772B9D3AD65E10277A969D868B0504
1497 3AC8EBE553C2AEDCC76EC434A4750CFCB5EA797ABD6EA35FBBE957BBD438C367
1498 E3C887E010D7C7DD611F866A91A745BFA24559A69FC32FEB42D3584508B577DE
1499 45F4DC5DAE055910E7720827043A7B9E9356A5370EEF0F485CC1B1558ACE7F15
1501 0000000000000000000000000000000000000000000000000000000000000000
1502 0000000000000000000000000000000000000000000000000000000000000000
1503 0000000000000000000000000000000000000000000000000000000000000000
1504 0000000000000000000000000000000000000000000000000000000000000000
1505 0000000000000000000000000000000000000000000000000000000000000000
1506 0000000000000000000000000000000000000000000000000000000000000000
1507 0000000000000000000000000000000000000000000000000000000000000000
1508 0000000000000000000000000000000000000000000000000000000000000000
1512 %!PS-AdobeFont-1.1: CMSY7 1.0
1513 %%CreationDate: 1991 Aug 15 07:21:52
1514 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
1516 /FontInfo 7 dict dup begin
1517 /version (1.0) readonly def
1518 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
1519 /FullName (CMSY7) readonly def
1520 /FamilyName (Computer Modern) readonly def
1521 /Weight (Medium) readonly def
1522 /ItalicAngle -14.035 def
1523 /isFixedPitch false def
1525 /FontName /CMSY7 def
1528 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
1530 0 1 255 {1 index exch /.notdef put} for
1532 dup 3 /asteriskmath put
1533 dup 20 /lessequal put
1534 dup 33 /arrowright put
1536 dup 49 /infinity put
1538 dup 54 /negationslash put
1540 /FontBBox{-15 -951 1252 782}readonly def
1543 D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964
1544 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4
1545 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85
1546 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A
1547 221A37D9A807DD01161779DDE7D251491EBF65A98C9FE2B1CF8D725A70281949
1548 8F4AFFE638BBA6B12386C7F32BA350D62EA218D5B24EE612C2C20F43CD3BFD0D
1549 F02B185B692D7B27BEC7290EEFDCF92F95DDEB507068DE0B0B0351E3ECB8E443
1550 E611BE0A41A1F8C89C3BC16B352C3443AB6F665EAC5E0CC4229DECFC58E15765
1551 424C919C273E7FA240BE7B2E951AB789D127625BBCB7033E005050EB2E12B1C8
1552 E5F3AD1F44A71957AD2CC53D917BFD09235601155886EE36D0C3DD6E7AA2EF9C
1553 C402C77FF1549E609A711FC3C211E64E8F263D60A57E9F2B47E3480B978AAF63
1554 868AEA25DA3D5413467B76D2F02F8097D2841598387C588CB084A0351E1B0134
1555 ACDAF9FF07D2ADCD8915FB8792BD7F250469A256B05DED7089E2D994E72C1877
1556 5619AC07A1EF0EC47C91002DFEF22111173232C13CBDC15B370BEF2F39E24CAA
1557 8BDE80F48411B56D37603BBA5A934F8F24EE7B7D2310D38F128E141775ED4CD8
1558 D4E13F205D5F5E173E6755D013884306F3AE2D2A85A3A1F2161FAD28954AB8E9
1559 2B830051DA7BEBAE46C04D2FEDF469B94B3AAD91F66D22A983FCFDEDF23EE52C
1560 FDD3450DA0A26EEA38087A0B4EBCD3BD49D9E3001E7054184D063F80A3E86115
1561 A80FDAB9B533FBBA55E33B9DDF7846045765A0B0F448620D4E14A86338BE1721
1562 A6A730BE29A3619F62E42CCFD42944240C866F8A085D8C6716E1C0D5DC45BD1A
1563 5D9DC1AB368C9B65E1C6133EC3393388EB9EC8A5815F6C41A4383FFE387C7CC0
1564 A2DFE557E8D04AFD894B739E11273D5AC4DB522C308C1F73056EA1407D751447
1565 B900ED64FEDCF3E58944F17DCE2D10B3CD6038BC2D539925E9333CABF11093F1
1566 81AFCAC45B0EFD3983A3DB4FAA2FC3589A8C165865F428E0C8047E97D500717F
1567 2A1EF7025058B8B1602406B1DB450D8AB78AC7DBA98D808F10CB3121DADDB69D
1568 506A9B93F58F8D6713940203F7E85CD4FF76871ECE63ADE5EEE921C780289FB7
1569 0CAE047A107086881CF9850EC905C6FB2621EEC100F307221D630EFE84D8A853
1570 56DD483778DEF21C1FEAB944167FDCE9538E7B1E7CEF76FD3CE6C9EF0F7855E2
1571 AFC37EC5BA807C09F30D04889CCE201BEDCE98528D22A4CA16E352506AD9D75D
1572 B862FBCAAAB49642A5E2BA4380C9297E365AFB455EF374D30A5590C57B51158C
1573 6F3071C88709D217492A55D2539E779E49118513C040BAB6C8E1F37661310092
1574 872B490036997C82B6CC4A351F302F3B79BC2EE171D11FAF3A652A2964447CC4
1575 DF75F246C26B1D6FB57AD8231CA9469A13C7B3B88CD390AC3870C8729FF8656F
1576 6A90EA7C56B7EC46C12C8143B033816551B11CC6E4FE1610AD25B9EFABB6AB33
1577 DA7F511392D04AB04916460E56571DD126DF2A3614DCA88649901C9F49409803
1578 B045ED6F6418690731513C3FBCCF489E425419D0FB7688D196F55E0B8A04EBA7
1579 E23C81DBFA11B5BF5BD50E9EA667617F48AC06BB489822757701D21D7D2A1543
1580 33DA57EA644495AE33A2D66ADFBECD09C34C64F24B815CB95794572428BA1F88
1581 F1D43BCF0ECBE5608B5A7F9AF0079B16B61E62B2F05555592F74DDAC84D5D8EC
1582 09B8373720E1E417FBCE77AABC5C0256373412B783CA4A8A4CF2FB1B9989A634
1583 7C9BBC0D619BC23A8D7E8F2AD2BF3646877D2E2F9A257D73C4840D66306B3F4F
1584 D57E0C27A16A10578AED727585F95A0EDE1E85FA87B0A9A2F925133BA6E25192
1585 0CB7F5033662D2077F18555C6727148EECDF9EC178800492EB5CCB1DAE9A19B5
1586 C687C1F036E5F2EB4E1D1C351E1E5DBAEB2131952CA2041D37BC52FA89C4E607
1587 C6649306D6D9E16384AB81B8FD70E60947653FEBC748A393ABB5250DDC1A0691
1588 F4D8D5E31BB46BB83596E833078EA834FAFF38642B9C34D029F33AEC3A803F27
1589 9EF8F6A110392CE635C798055E3FF9774353C910B7E05D7EB2A5FC72F34CA41D
1590 FDABDBF0F8D39213E4CDF0E1A27895776C63E846578D5833F64A98A6E393CC9B
1591 E45DF220E08C4DDF8AAE0C29059D8FBED3F9BD9A56C7706E68B964BB15678E2F
1592 F54143F27BA422E8F4F18ACA984AF4AB59
1593 0000000000000000000000000000000000000000000000000000000000000000
1594 0000000000000000000000000000000000000000000000000000000000000000
1595 0000000000000000000000000000000000000000000000000000000000000000
1596 0000000000000000000000000000000000000000000000000000000000000000
1597 0000000000000000000000000000000000000000000000000000000000000000
1598 0000000000000000000000000000000000000000000000000000000000000000
1599 0000000000000000000000000000000000000000000000000000000000000000
1600 0000000000000000000000000000000000000000000000000000000000000000
1604 %!PS-AdobeFont-1.1: CMR7 1.0
1605 %%CreationDate: 1991 Aug 20 16:39:21
1606 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
1608 /FontInfo 7 dict dup begin
1609 /version (1.0) readonly def
1610 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
1611 /FullName (CMR7) readonly def
1612 /FamilyName (Computer Modern) readonly def
1613 /Weight (Medium) readonly def
1615 /isFixedPitch false def
1620 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
1622 0 1 255 {1 index exch /.notdef put} for
1623 dup 40 /parenleft put
1624 dup 41 /parenright put
1633 /FontBBox{-27 -250 1122 750}readonly def
1636 D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
1637 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
1638 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
1639 D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
1640 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
1641 2BDBF16FBC7512FAA308A093FE5CF5B8CABB9FFC6CC3F1E9AE32F234EB60FE7D
1642 E34995B1ACFF52428EA20C8ED4FD73E3935CEBD40E0EAD70C0887A451E1B1AC8
1643 47AEDE4191CCDB8B61345FD070FD30C4F375D8418DDD454729A251B3F61DAE7C
1644 8882384282FDD6102AE8EEFEDE6447576AFA181F27A48216A9CAD730561469E4
1645 78B286F22328F2AE84EF183DE4119C402771A249AAC1FA5435690A28D1B47486
1646 1060C8000D3FE1BF45133CF847A24B4F8464A63CEA01EC84AA22FD005E74847E
1647 01426B6890951A7DD1F50A5F3285E1F958F11FC7F00EE26FEE7C63998EA1328B
1648 C9841C57C80946D2C2FC81346249A664ECFB08A2CE075036CEA7359FCA1E90C0
1649 F686C3BB27EEFA45D548F7BD074CE60E626A4F83C69FE93A5324133A78362F30
1650 8E8DCC80DD0C49E137CDC9AC08BAE39282E26A7A4D8C159B95F227BDA2A281AF
1651 A9DAEBF31F504380B20812A211CF9FEB112EC29A3FB3BD3E81809FC6293487A7
1652 455EB3B879D2B4BD46942BB1243896264722CB59146C3F65BD59B96A74B12BB2
1653 9A1354AF174932210C6E19FE584B1B14C00E746089CBB17E68845D7B3EA05105
1654 EEE461E3697FCF835CBE6D46C75523478E766832751CF6D96EC338BDAD57D53B
1655 52F5340FAC9FE0456AD13101824234B262AC0CABA43B62EBDA39795BAE6CFE97
1656 563A50AAE1F195888739F2676086A9811E5C9A4A7E0BF34F3E25568930ADF80F
1657 0BDDAC3B634AD4BA6A59720EA4749236CF0F79ABA4716C340F98517F6F06D9AB
1658 7ED8F46FC1868B5F3D3678DF71AA772CF1F7DD222C6BF19D8EF0CFB7A76FC6D1
1659 0AD323C176134907AB375F20CFCD667AB094E2C7CB2179C4283329C9E435E7A4
1660 1E042AD0BAA059B3F862236180B34D3FCED833472577BACD472A4EA1CA80B6FD
1661 7B4D795B4D2972F034BCCD77C8250AEAB2F838CC94C02F44AF24FF8985D8E5C3
1662 1C4D9038E24E06639E7B418ECBD7C1CBE3A728B738BDF28E70B34B6CC2143A0A
1663 8EA5B2B33E03466833125AEFA21A833A326E54BA79822671B7FAB4DB3151BCD3
1664 5261150E52DCEE3C246CFCCB96A60B10DEE13ABE610E8B4B96A2671A33FDE074
1665 0BB1861F736BC34EDD3433C1091FBC16178A83BE62E6ECFEA1EA4B36A5B82B76
1666 5FB811D821B0A08C103FFA9CDBE09C58FCFF079E9C1681476AF4ABFFBFA9210C
1667 2EC2F945B707B7C1658D178DA98C7707EA3DE9A1078CAEB7715159374B8A1128
1668 0620C487536E94D66A30E6245ED6DB6C5A84F7952A687D7508F97D30188B3432
1669 863470387A95130623BED34B2D59F41E6ACF425C94F7470FC8474E0DB9AD7314
1670 B14D02DE228904FC9A52F1612686DD679117D58E6639C3B40811268103087DB2
1671 92C2CF28E40D046F577E702E170E2988B15DD8D7C3EB2381ABDF95D7961CC893
1672 0FCF2848C99E523A5F987C85C75CF91F1CF4C552E4D2CD4B7B4B791882C836CA
1673 9D2FB3C287B2D4A787BD0C7EF3D969428B4C3C067EB3790A0C2CF595DAC4C72F
1674 41D784FABDA7222433F68B4F67FA8EFCD85F2D4EDB8428BE84D7B59424ECE816
1675 04132C33DF3E7BB02158E40F5DD46FCA7B63CA552C22A875B75E8AE742B41666
1676 A6D699419F870C22B198F64E10D143B513CCEE72AF316EA4732F9669952774B0
1677 09C61679DC5B4762250491A19B9695C5B5AF1919C49610A012E71DF031E4C284
1678 B0182AFEE29029F385FFB67AA2D95228A311FFABB491E58518C4F1729825073C
1679 D204253248D2CD6686A4114A7FCC5D9A7496D8BB33C7ADD89C8877E761C43480
1680 5CDC4BBB62BA0360F8453B4A4B4351065717B913B6981727EDF090E100B64F67
1681 1BD18215DDABED31BAEEDE0432E958E56C783C89605120C70B51AE417105251B
1682 363163CDD890D9171BADC12A6856B4FE10050CD5E91043BD7723A3B8B82B053C
1683 6BE9D3797477D7A83FA010091C220EC9EDAE1DA21EC1A4F857ABCE61E3C6993E
1684 26C9ABF398E57B8432264335EAB57490C56CA0A1B2393FFE835D389500F8043F
1685 9A384021798E7982C3110E23B2A08F41BC23964CD3992E8B50AA8B62B9900FFC
1686 58F70D1A10D7CA081C0B3AE770FB679BC2D93B808168B6FE4C6F392B14054D2D
1687 6906D1BEA5CB0964794B6ECCFE2876A7334A0AE979CF41CD5482BADBFDA7A2B0
1688 50C279CD6313B5C1806AB9BE343C51FB1DCF0E4576BFE6C493CB34C66A375FA1
1689 E375C01DE69AD695B5D399243546430814E703944559941F68D1D16964236930
1690 E5F22431328529287E00E4B4DE6887E22391F8EB9988EF7E3009DF95081E9DB6
1691 1520C8F7733A34E669EC2B2155B255DBC003A161BAE9C5C1DEA06F922453EF51
1692 23582312F722BCCCB051BABD67F035A6B3E5F7824BC6B3E7BEBE33DB4388EB78
1693 FBBEE6D782DF21F0925C09D901CDAB59E679879A01FEB7457BF32AD64A034B3E
1694 5D759BC9FC9EB8D30B898D80472887A29578C96A35D37969ADEDBF51EE70667C
1695 3EEC44A9E5CCE99859E51374A25878C0C3DDA644C0E99EEA7BFC2DC11F76B675
1696 813B0EED5892C8F88A10754E7EB0DCB4F5B5A11E88929A5CF0F65A1C047FBE10
1697 8AA1FFB7CF0B900165EACC9158A9C898290B98C101BBF0A1B22807B2B0182B11
1698 83F4A5CB7EAC1F71731A625634AC3FA56D5F1E5DB2BB0F86577718F8566CAAF5
1699 9CBE80BEF66CA6CB19D5C7ED4C02A4B3E05C69868462E88170D11772CBA44E12
1700 59025AE4E68909637E4879ABE51DBEAAFF59F7041C059A42B9CCBB04E3A92534
1701 77A31A0D826A527C3B6F890FE4C238C91C7C46A837F1E08A4E1D2BEB3671F861
1702 BC46296D453AFF8C68016B7472D30E5BD81D42E7DFC54D33D00362788BB8A435
1704 0000000000000000000000000000000000000000000000000000000000000000
1705 0000000000000000000000000000000000000000000000000000000000000000
1706 0000000000000000000000000000000000000000000000000000000000000000
1707 0000000000000000000000000000000000000000000000000000000000000000
1708 0000000000000000000000000000000000000000000000000000000000000000
1709 0000000000000000000000000000000000000000000000000000000000000000
1710 0000000000000000000000000000000000000000000000000000000000000000
1711 0000000000000000000000000000000000000000000000000000000000000000
1715 %!PS-AdobeFont-1.1: MSBM10 2.1
1716 %%CreationDate: 1993 Sep 17 11:10:37
1717 % Math Symbol fonts were designed by the American Mathematical Society.
1718 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
1720 /FontInfo 7 dict dup begin
1721 /version (2.1) readonly def
1722 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
1723 /FullName (MSBM10) readonly def
1724 /FamilyName (Euler) readonly def
1725 /Weight (Medium) readonly def
1727 /isFixedPitch false def
1729 /FontName /MSBM10 def
1732 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
1734 0 1 255 {1 index exch /.notdef put} for
1738 /FontBBox{-55 -420 2343 920}readonly def
1741 D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
1742 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
1743 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
1744 D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
1745 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
1746 2BDBF16FBC7512FAA308A093FE5CF5B8CABB9FFC6A66A4000A13D5F68BFF326D
1747 1D432B0D064B56C598F4338C319309181D78E1629A31ECA5DD8536379B03C383
1748 D10F04E2C2822D3E73F25B81C424627D3D9A158EAB554233A25D3C6849ABA86F
1749 1F25C1667CB57D2E79B7803083CB7CC0616467F68450D9A3FEAB534EB9721003
1750 DBFEEFD050F3AC3492F5C74162A9A531ECEC0F47610B4940E946D21CAA771D30
1751 A6C27ECBA11708CC46C62396BF9D1990D579D0C394899D24FE7A4382EA18E7E1
1752 160E7283AF5BE17254790628E79FCC206F28B5566075B3A5697D5209062544FF
1753 D85FD89D6F43D6588B242AB2666B5D2861CD38A8CE676503EDFAE84D12A71E77
1754 8405E468FE391F4F3F50D2C57ED55512036B0DB8E76A7EF413ED08673E56DE2C
1755 16A3B65CD478433C0D2F9FEC4E662D54DAA43CFA6957D2A9AF8979BE06F70B68
1756 ED4C8C493D6DAC4971A3F1D010A7726D084EC1074FECD7D12D72AE16C26194AF
1757 21AF5774D9B860EEE8608D34F150092F09C19959BAA670022B9A9F263CD391E3
1758 74DD1D1B4CD4D75273CAA4E37F68C631723E08FA35AD34C0AFB4621AE6689861
1759 854D16CE1C375FD159A337E221A6FF1CFFB5693A0623E7EBB58C2969F590D081
1760 AD92DD9E5322E26D6A15023664AC73A355998BCC48ADD0E7A4BC79790519606F
1761 A1FEF6075033BCD1A542ED2F7EE4943A13D927138CB26A52F33F52249DD24930
1762 BBA9773D5DEB5B8115804C2E65EDBCCB17469C47F2591BB232690DAC5F1780A5
1763 6FE9861DC450426725D35E3E8006C022026C0A383B0A6E8AA30A52055E7E139B
1764 DF6ABC491AF90C7A3884582B7407C0DDF37CC49F3CBA0126D07A3639A615400A
1765 01FC5412668335BC7FB0C5C62F533276BC13716EA27CCD3924408650605BEEDE
1766 2A68B5B6105D8766B9DD6A877DE6AEA9C3179677B7C0726022D0F929E7E63574
1767 4692A959C7B4919DEC77FA5012A3CB81439F809D15DA7739FAB5D8E03BD8F283
1768 FB6832C9864D18C4CD499B20534D33C822226FC199D26116A73ABA2B5CAB0B63
1769 42F1B4A3003688088F1F6DA3C61363B4C0C44269FD21F981DA0BDC5D180FFD2C
1770 8BAB61F4330FE5806A35F1235364554FAA1CA61EC79EB01793D586FB1B62F4E9
1771 3FA5AF30CF24A87271CFB59FFED6FB662A77D0A42516634A0604BCB334503FFD
1772 60641E6BC62B28A8B3A44A5D50389994BF95AB3E7184E9954625B28EDBE99914
1773 4558E2F68FDE7E65D0B777A64FB3A7A2E4A27F656FA2F9075269F70B020FAD56
1774 BAFB1BC4FD259C2C9F2299D4421DCFD38C947ED4EAF5FD02B9A31AA37DD2E82A
1775 315797E6456601502E47F85EDE87851E6AAB854DF59522CFA9BC02F4DBB3F024
1776 C6EAC54AC427B5AA039A9697F52ABAA45083CC1159604CBBF1F7BE585146391C
1777 D45F718B12F8CB4C65D6FE61F5D07FE09C3E5F7FECBF1A649853517E4D75CE59
1778 B1A78262991D56EBFAAB32A539C9294B74AFBC46835874F8FE7D7A5D2F54294B
1779 8586601992F7A8FCCA63C680CD8EE5CCF50EB13DBBDD94499526038035791451
1780 90636C5FB2B5BFDF13A9A6AD4A34DD28ADDFD5C9FBF3E714B08C53C967F7CA09
1781 3385CCD9517F0EBDC6B04DF729525EF98F7D7F0AC48DFE22CDD47381CB5E8874
1782 5770D238E7055D33BD55B18BDC6B03EEA14C983E1E4E7FAD2EACAD9CA038A873
1783 B4D30413CB0B0880E00D582F464B676762A73EACD395A12AC1C5F23E03B691FB
1784 E3BDD8090D8B966910C9FFD5064408E361FFC59ACCFEC21BCE3E0D63B17CAE20
1785 419BDD735F5215A8B860B9A2693998CB2E4DD7BACBBB845EE1BFD40C594EC2E0
1786 9D86326CB2E7F13DAC4878964E7E8A4774C55B954F30AAA3B88BDFA0ABCAA75D
1787 B224D2D212B8CD2568EB8E4235587F088D81171E16AB9743BED043F4B3BE8AC0
1788 DD207FF7AB4F4087E85A151CEE8029167DECF2655CC12601C5A7AB3923ECC8C6
1789 B68747EEB74DA7E2144289C8236983985623CEEC393F3FE3B866C4C0A6508EB9
1790 FABD07269EC2764C03D8B14E7A2ADCEFFCE4C842518324F5EFE79EB5544A2A41
1791 8C7EF948062E6BB97EE89492B050EEBE8262D03267CAD70A8FED6CBF2E731FE0
1793 0000000000000000000000000000000000000000000000000000000000000000
1794 0000000000000000000000000000000000000000000000000000000000000000
1795 0000000000000000000000000000000000000000000000000000000000000000
1796 0000000000000000000000000000000000000000000000000000000000000000
1797 0000000000000000000000000000000000000000000000000000000000000000
1798 0000000000000000000000000000000000000000000000000000000000000000
1799 0000000000000000000000000000000000000000000000000000000000000000
1800 0000000000000000000000000000000000000000000000000000000000000000
1804 %!PS-AdobeFont-1.1: CMR10 1.00B
1805 %%CreationDate: 1992 Feb 19 19:54:52
1806 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
1808 /FontInfo 7 dict dup begin
1809 /version (1.00B) readonly def
1810 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
1811 /FullName (CMR10) readonly def
1812 /FamilyName (Computer Modern) readonly def
1813 /Weight (Medium) readonly def
1815 /isFixedPitch false def
1817 /FontName /CMR10 def
1820 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
1822 0 1 255 {1 index exch /.notdef put} for
1823 dup 40 /parenleft put
1824 dup 41 /parenright put
1836 dup 59 /semicolon put
1838 dup 91 /bracketleft put
1839 dup 93 /bracketright put
1847 /FontBBox{-251 -250 1009 969}readonly def
1850 D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
1851 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
1852 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
1853 D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
1854 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
1855 2BDBF16FBC7512FAA308A093FE5CF7158F1163BC1F3352E22A1452E73FECA8A4
1856 87100FB1FFC4C8AF409B2067537220E605DA0852CA49839E1386AF9D7A1A455F
1857 D1F017CE45884D76EF2CB9BC5821FD25365DDEA6E45F332B5F68A44AD8A530F0
1858 92A36FAC8D27F9087AFEEA2096F839A2BC4B937F24E080EF7C0F9374A18D565C
1859 295A05210DB96A23175AC59A9BD0147A310EF49C551A417E0A22703F94FF7B75
1860 409A5D417DA6730A69E310FA6A4229FC7E4F620B0FC4C63C50E99E179EB51E4C
1861 4BC45217722F1E8E40F1E1428E792EAFE05C5A50D38C52114DFCD24D54027CBF
1862 2512DD116F0463DE4052A7AD53B641A27E81E481947884CE35661B49153FA19E
1863 0A2A860C7B61558671303DE6AE06A80E4E450E17067676E6BBB42A9A24ACBC3E
1864 B0CA7B7A3BFEA84FED39CCFB6D545BB2BCC49E5E16976407AB9D94556CD4F008
1865 24EF579B6800B6DC3AAF840B3FC6822872368E3B4274DD06CA36AF8F6346C11B
1866 43C772CC242F3B212C4BD7018D71A1A74C9A94ED0093A5FB6557F4E0751047AF
1867 D72098ECA301B8AE68110F983796E581F106144951DF5B750432A230FDA3B575
1868 5A38B5E7972AABC12306A01A99FCF8189D71B8DBF49550BAEA9CF1B97CBFC7CC
1869 96498ECC938B1A1710B670657DE923A659DB8757147B140A48067328E7E3F9C3
1870 7D1888B284904301450CE0BC15EEEA00E48CCD6388F3FC3BE25C8568CF4BC850
1871 439D42F682507AEBFF9F37311AA179E371A7C248D03B5BF40C3B7E0FDD80D521
1872 09B4D0044C5EFBC5C4A8DF9B5F734ECA6099F8A76881278EC54549F51532AC62
1873 0D85E2178D1B416514B03BC33767A58057CF521F2620B53DE2A240D58312B92A
1874 7C1F9BD0A11514B5CAB87219A1F5C4982A83380B0896597EE5E42BDC6F85E6AF
1875 68ED6994484CDC022ABE678A7F2E298A7FAD967A2EA7DC426F07342ECC66E68B
1876 983E966FCFB745795C4D2C87CC15BAA041EF80C5BDC12EC1F5786BB41A5A2107
1877 3EE0BC436B346E014DB4099EDC67BC432E470A4B779FD556341061CA3F2BE8EF
1878 A332637AEC878C2BB189CA3267B2BE5B8178E6B7889A33771F86276E6F0B8E89
1879 BD209DB0CCDDC342CC3D438356296934D03FE107CACD00545E375162DF567C70
1880 F2DCE2E5A2C5F61EDC0DAE9A91044DD214031FE8339581A9798BC43F1349593B
1881 D408714EFAD02AD4B6763945ED645A0FD4A71D4226EED9EA1633950350CF4B2D
1882 0C0ACDF3AA03DB3E75DA4B8ACE7EB90A31F0FCDBC0AA03FE0E68E0D0E81EEAEB
1883 EA79EDE22B71BA5BA148841DE5394BBBFE694D7796A13E19A4A782F9ED05B50E
1884 FFE29BCD196CC096B282BB7AE080A50DF19D5AEEC98C5D392138E7847EEF4548
1885 2B20A84D10CF3920BD583A05B1FD1AFA82D69696C4D1B13FF62DB165293D4A2D
1886 92CC4527109F177093E43F3507E188F59B4A5B1D4D8710979472394392C53B46
1887 1F7A7A2CF4A0F4BAA4D5D965566E53A74EE43286559F3757D2AA52B6B9BC320A
1888 56578B512393D038E0E8873DE31C3642B13807520C8B4F0FC5EC6ED3A7A0E86C
1889 8EB19DA903FE24988EBA6FC48DF96A5239CDFD85C441C0D7A174C40F2366A899
1890 77662CCDD85C7C702542DCC4F62DD4CE83D8B0A6B2D3D7E84A09F7B7B2AC0F91
1891 5A89AB253EFA653E29CDBE7BEB5FD80244BC4D6F73FDE34846245FB19B5036E5
1892 A40FFAC0C4FB4F8BD6C351707A524187ED4C6A8323B06159EF2110B228B69FB6
1893 94766199A37C9125F07C07B4CBE2BD76FE9D80DF7F55C7713138573A95C3FCD1
1894 B346DD76961F4397CAB8E1FEBC2FF6ECCABC763FF7C995738B082B37F0870572
1895 3A5D49D049F420266F034B72EE3B707AFF6A4D0F63DCCFD3D9B0BD93DC13B78C
1896 EE8C67EB4676EB693EFE23F1DC6CECF28ED4A1EA517C986C17D8154607A330CD
1897 FC0D83A62A5197EB7489706826CFB01F22A944EF21FAA6C12D3BAC92E531CE07
1898 A2D62B606AEDA91D12E735B99AD63514C776517D0D3A978D0E785FF8B39B9AEB
1899 B0B61DADB95FBF85DE427B414A399042E3C2861A8331B8E7E7BFE5FA1FFB966A
1900 D8B1F0104864F4826EAFFE30B73AD8DA53156B55BB19BAD0846CFF85E381D78C
1901 A56B0B1FC0B5C7144384BB3F835DEDEB15B90B3BC0AD1168CE5CEF4637B662B1
1902 F3935E6330C048B5BD2C7B9427773F5710D80D06B41F46D2334BE4463A8C6DB7
1903 6BB7067A5E3D974EB7210DDCE1582827DCD3005F5FE2634AF79323BC08F75F51
1904 C8BB41D31A002780A221C9299E4A10F95F7EB12B018BB216691D1038BC9B51BA
1905 DB30A21E23E2365531AB5909911BC2D4A3925CB8205DAAC4A0C54AB311F611B8
1906 5E5E087EFA21F48267D6380AC1E942D73E95E67632F1BC5C4189E3B959BF854E
1907 3293FABAEB3F9233F9BCBE9BCEBBE063C0A953134A42372B14891CEF77FA5F89
1908 6AA64CBC0441F98BB140604B6EED20F46B1B2392AD3BF0699D5628AF4FC88F92
1909 AAFD2B62E930F39F92BE7FECF851D13195F8B26F881A99E8DEDC4A8E95D87801
1910 850C23E5BDD17002A81CF4C256B6550FC9080EEE86568000F12AC4B7EC5B7107
1911 8458696C6298971108059DC9ED523108AFD437F76573F4A86F28A242455C4C8B
1912 679FD4879D5462CFA122EF2A2C077D055C46E786C3EDC06A7EAD55E34B67A2B8
1913 2565C660AA219EF220DAE4625F30803DC44A6D3DDF4513C2B12F553B26ED5215
1914 852976EF0233CB4900E74EC232D6657D28A4CF8C4EB7A7D1538AFFF4F1900F9A
1915 2F068351C46B6FAC8B545FA407C2F40578C0EAF674CF2CF80FB4872C3865FC75
1916 6F576AEF692CCF675AE84CDE56A2A6B4902D95065C9C9D54E52A834ABFF5A10A
1917 D0EA765525FF0AE205D4776F6BCA0931141770E56AB9F288290459810A10CF23
1918 DE33768DF2517E779B20C73A60376729DA90B07B21D036A7D5AE25DC32C12A09
1919 AECFAEC457EA9B6A5A0C75AE8963B66BC6A659361B0A08BCF1AB747915110064
1920 3EFE41493ACA61CF596D1D41DA9F3F18BB3F1AEF850D0DD0F7535B7F2B77B340
1921 71B51E4C4EC95D9D6210FFAFE3D5DD8C45A14599557A626ADADECFF1290EC47F
1922 7D1CF7D000B0A5ED22F9CEBFB5C47208A5D94CD256EB0E930E18FAE3DCFF672D
1923 B88E6C04FAE98AC54740CECE9202C177416A5AB0131A279797F962F273DDF12B
1924 10D70989ADA78C283634C7EC9D30B8530DE2A9E1FEA2433A93EB73FD18AE2AE0
1925 83EE7FF31D1072482DC03AB107D9B22104BB92B339D5DAFB82E3A9D8BE73838A
1926 C69641CCFA93123CC40E88D8809E2DBCE6B3866B02CB89C57B3E3A4CA1A54028
1927 4D168DF6BE032D3E6DD7DA4353390CAF76CB103C6608B3D628FB22436915D58D
1928 5F72BFB76F5637FD54623E8986103F777762BA2AF9BB8DD944D158A7331D2FC5
1929 6C7F30B321561AE3AE28AE5A85777F1B688BB2C1FCC14FB5A5F59F8754C583EF
1930 C7E9CBA6F21CE37E8CEAFF27B2F35F86519B09716C7376A6CE80543592139660
1931 3BB9E8E619EDCF66C52A7EFFC7B83A969D1275FD6F009C7162C84CDC7BC01049
1932 82028AD7772DB414507D795689C812C11F69D9697A49E064D56A52D421A773FB
1933 E3B8D6330F4204364B957CCA13AEA09257D6C48345F0B15106A18DBF6C402F83
1934 392C5A17C1BB9D81FFB0FD65DE01DDC751430D946A80E615B71D0229A07EE860
1935 65171165045081BC1F82CCD049D0DEBF0468EA9BD6A44AA07774E3F723CFA8BB
1936 892D98A46193FD299DE77F8B097DBED7BED3B0B15ABB32D6283C45AD1B272216
1937 C556BEC5BA1F8CEDC7DDAC33A735D919469F0C560772E369D4358346FD7EA472
1938 08BDA9C424BDF3AD5E5BB2F14958A24ECC5FF0DD44AF6FEF700B2F67B87E2502
1939 E022176919749D13726410BD6601036F0A702B4FDA5D322DEBED2247CAF244F8
1940 7F470FC87053A6C2FC7F4491B7043FAE6B58BC1271C1953D385DDE9603BA1838
1941 EECE49EA716119042BBEFB70B544BF18465730186EE62E7C0F410C48F2C03E2A
1942 3663C80DDE23993A48B3E9EB1799E78D59052C95ABF56E7D16246E73E3017AFB
1943 5455A95B0CDE8EDA98B8D4A408FD3A8FEC48CE9E7137A297092D491B4EBB6017
1944 8D8D6F0831CCED874D4759AF185454F44EF58A613C8021B283FA3EAAFF1EE97B
1945 08C9CE032606A0772595699DA356EAE1A6BE29B91BFD9ECBA535D400209DBFF0
1946 35352E0145B8FEEAB8BC22BAA72A2E00BAE3EE50B453C5E2BCEFFD1861EFA852
1947 94EEF92615A7A3186652530DC17204D5BDE1BDDC17A071A3D2962E58962FB015
1948 6CCFE9FB2E339408EAE8C4F1BA820C0B9620C2010BD3CC124D23BD364705CD23
1949 DEAE35E2109EBAFFECCE7E29CBE003F89AF9C9638D2AB5D062E9EC4AA4DC99A1
1950 1FAE3469F60BE1991C56AD71FE23F57244174C67FB4A2E06234343AB82EA749E
1951 62011332C48672AADCD50F8089E0BCE4C57D58F69F493EDA0BEB60F2226C714A
1952 89B2E1FC512E7864AFAE4F84A6914ADC0F017AF97534BCD44B4001D0AF7BAEB4
1953 251494C831D5035001DE48B3207DEA2E3F4A85FA4AEE711DD6C28F5E2E5BCA7F
1954 870FD73010CD0A16876B521B1AFDE743162E5E5136014584F72DA8EB84AB614B
1955 E8BCD061BBC1D37C1C79B61CDBF8A0DA63C7580481E4D969018DA780EC1E5E6B
1956 1DEFC64F69D23A966D2A61F643054DD02EAF95CEE954A2D2DCE3EA813CD74FC6
1957 247766CC787549A5913B5A3F2479728A73CB64A2D06C6ACD85679CD9F9AEA261
1958 D977FBC0D0C864E2A1AE5EDA9EA457EA316B295A07FCEE6306EF122423E06E53
1959 F4981E5F495DC62B2E5E27E606DDB2908348F45A659D7636748A3F92B9501EB9
1960 2F66685224482AF232A93EA7D1C2634DDA6195E7DAAB7ABFD3670C43AD87D1BF
1961 CD52965F587C79D6A2DE1D26CD431E98DA18FFEB1C79A16B5C06DA22F615B5D1
1962 C98C808F7DB252B6BB7896971FCF06BDBFEE9C063971A72A8837B718C6835699
1963 08C17CE5A5EFB8BAACB9B320CB76885212A606A82CE5CAE1EF16FB8D4EA56676
1964 57343C5C27A3E8BCE846D642F06471A8B616E6E2C3E8E5DE8540FA56D6B8E0DD
1965 86558F347C9BFB1CED6350E0BC25C2F57BD650F49E1FCB05EC186463A66474E7
1966 3574139564C0EBD025289DDD359CBA44A761400F8F1EFE67AB9079BBA7CAAD30
1967 BAF63292D64F72DD2973F065F0CCAEEE1FF134A23048BE32405C405239724C2C
1968 A9A1AF53A17FCE53B1CB8849A03E91C3814FA753A58BBF29796642225A5AF8AB
1969 0F2A088632F517BC552B901A0B3F66F69B01B6AEB098026ECC8F8D4808B4F87C
1970 0EEA0FD79ACF789E844532E74BB3AD5EC3DF790862F55070DB64F5A0598312CB
1971 C875428E1FCCD50BB2CC4E09E62130FE240A2FC2FA3DF1DD6860CAB16F8113B6
1972 C2B6013EA3D62D5A7179BD9B3E8B0D54C79BC0EAF02210C70B75792F3AF4B6F4
1973 075AC1F19FA3ADFCBCCE4CEAA04D8E83A7C4198F41804DC24CE7F304AD2F047B
1974 55E4C87F0B1A91502F86793B3BAEE685EA0383600EC7165DE21F51AA577DE8D5
1975 B1044FB516A6647053C790E30C907AA6DB54AEF674E227AB2A2812B8705B1F61
1976 B79B378ED61A160AB02AE4D2CFD11702A2CB7D9299F1A28770786FEB3ABEE014
1977 F2A0AB35C9583FB922C83FD1927C2CFE595F34B1AE7C81A06EC9EF5F498855D9
1978 BAB8C2CF0F56D60D55E9CB52D9675B6E820BC0301A7D606C77EC06206EAE0647
1979 DFE727234FD89F3ED4E2312116B95D7BE64E7142866CD5C84085893781CA48D6
1980 BCC0E52B676B8D1119BCB81BE05545D3F7FC35C40B99E43CA20F77E0C5C11B68
1981 05B0CB984D94BD6630CEB96A9E7A60DFDA304B30CA0B3FE69BFDA984BA95B318
1982 9174CE3BDEB589BAC46C82703D498EB35CB25A54A6A1BCFDB950B461F47DF126
1983 9E02D60F5AF7F65C4B14E259511796191979C58830B9121BC6EA1F80DFC26DFD
1984 52F6007FFA1C08181974D0617F92C5EF0E8FAA0E97BC852C098DB6D8CBFF589D
1985 E5E2389C537F1C2C8AD8888E0584F39B114DA2CACCEB38B5C99CF93E1FDAB0CE
1986 8EEEEA5563D0358566D7627E97FFDAFA7EA4F0BFA4431645D4E24620438CDB99
1987 036ABCFA8B597643C98056D5D8FC00F68642C0CE811502153816C55C7A0BFE4B
1988 8098E6AEC78C998172320A33FB5B46B9D21BEB42B34D8D6262BB4DE936A51516
1989 0830C108ABF4D0DC6C7188BB6F52C471C78D79F5DE13CE1C1A5C6D8134BA7D9D
1990 54652582C284D027DC1B5AB97AF8E1DF490BBC18421B91099DEE930D3D377E53
1991 7DD081DC875791B0A81398BFB46F02EF975FB2B8ED39C6D5BAE92EC2E85B2B7D
1992 290E3B9AC864AC17680A345EAEA41E9E50A22D4DAECA50A5285443493B18C178
1993 DAF904E6A6447F8D4CD0FD885D1D9192708560C88F378001F29EDD92A80A2457
1994 084A5E0486700A19C1E48882098DC901E20DE43CB8E5CA992120ED5812B382EC
1995 A360085E7A53C0BC0CB865A70C3F666F3F5198E5E50DD12F19B9804DF96FD9E8
1996 8F0970DC799E3F5D1D989BB2C100B16B724BA1AE0BD9A1459B2A5780DB956DD6
1997 A7EAE3166574B28B49259BC32A7C257A8D065A739D8BEC7FF6DFDFFFE33E952C
1998 FB5EBEEEA9F0745846FEF1823FFED7B3AA5D6EF101D58254E385F3864B888F37
1999 F5F2B65A4C3255EEA67D1329B2DBB253F051C7185783F42F8521B756CACB8AA2
2000 C654C5FDB699BA2C8F7D163E3E258C38B7496BEE5FFB4A5461188CA80D7301C0
2001 4EB3E5BB99FD8DC294A9799D2B3E18E9B0E43E54492E4295ECE6E814F3BCC9A9
2002 8E0F2738AFBBF8A9EA81D553EBA2A45F41E8466208E0A33394FEE2171A49BD92
2003 177DA001B9C12812BE1D9F9E23DE521D87F10DFAB3FA7FEF7111AD4F61CEEB9B
2004 C03DB3FB22597C2AE32E8DF982B824B774CEC964AD24390D42BBD53B3A3144EB
2005 342220ED35BBCE069BE99EC2955B02541D9777FF828BDD2A27D7DB61346F9B79
2006 05B3C0355C87697F3C26990AE871EFB9548DA44EB064AC9EEBC7B2A9FFAD18E9
2007 0AA04D6871E2333AEBAD4E407F4EFE9429A3B575BFF62B73931543CBD85A3CE5
2008 915633A52AB76856C1E7639C54CAD10D18F3B629A40D3A1DE09728946D689E48
2009 44CE6E4CF644597120C4C5FCA145E8777AF94C0F93897732EDA2AD31B9D16BF5
2010 AC8876090D204C7DB7B3C7053F16E94F0D0F6DD9F919F73EBECCB7F17EA26D9B
2011 35AEA187CB1F56442B6106074E139A0FE9E8511CA485FB85962B4D8B607C626A
2013 0000000000000000000000000000000000000000000000000000000000000000
2014 0000000000000000000000000000000000000000000000000000000000000000
2015 0000000000000000000000000000000000000000000000000000000000000000
2016 0000000000000000000000000000000000000000000000000000000000000000
2017 0000000000000000000000000000000000000000000000000000000000000000
2018 0000000000000000000000000000000000000000000000000000000000000000
2019 0000000000000000000000000000000000000000000000000000000000000000
2020 0000000000000000000000000000000000000000000000000000000000000000
2024 %!PS-AdobeFont-1.1: CMMI10 1.100
2025 %%CreationDate: 1996 Jul 23 07:53:57
2026 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
2028 /FontInfo 7 dict dup begin
2029 /version (1.100) readonly def
2030 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
2031 /FullName (CMMI10) readonly def
2032 /FamilyName (Computer Modern) readonly def
2033 /Weight (Medium) readonly def
2034 /ItalicAngle -14.04 def
2035 /isFixedPitch false def
2037 /FontName /CMMI10 def
2040 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
2042 0 1 255 {1 index exch /.notdef put} for
2083 /FontBBox{-32 -250 1048 750}readonly def
2086 D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE
2087 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B
2088 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470
2089 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B
2090 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE
2091 D919C2DDD26BDC0D99398B9F4D03D5993DFC0930297866E1CD0A319B6B1FD958
2092 9E394A533A081C36D456A09920001A3D2199583EB9B84B4DEE08E3D12939E321
2093 990CD249827D9648574955F61BAAA11263A91B6C3D47A5190165B0C25ABF6D3E
2094 6EC187E4B05182126BB0D0323D943170B795255260F9FD25F2248D04F45DFBFB
2095 DEF7FF8B19BFEF637B210018AE02572B389B3F76282BEB29CC301905D388C721
2096 59616893E774413F48DE0B408BC66DCE3FE17CB9F84D205839D58014D6A88823
2097 D9320AE93AF96D97A02C4D5A2BB2B8C7925C4578003959C46E3CE1A2F0EAC4BF
2098 8B9B325E46435BDE60BC54D72BC8ACB5C0A34413AC87045DC7B84646A324B808
2099 6FD8E34217213E131C3B1510415CE45420688ED9C1D27890EC68BD7C1235FAF9
2100 1DAB3A369DD2FC3BE5CF9655C7B7EDA7361D7E05E5831B6B8E2EEC542A7B38EE
2101 03BE4BAC6079D038ACB3C7C916279764547C2D51976BABA94BA9866D79F13909
2102 95AA39B0F03103A07CBDF441B8C5669F729020AF284B7FF52A29C6255FCAACF1
2103 74109050FBA2602E72593FBCBFC26E726EE4AEF97B7632BC4F5F353B5C67FED2
2104 3EA752A4A57B8F7FEFF1D7341D895F0A3A0BE1D8E3391970457A967EFF84F6D8
2105 47750B1145B8CC5BD96EE7AA99DDC9E06939E383BDA41175233D58AD263EBF19
2106 AFC0E2F840512D321166547B306C592B8A01E1FA2564B9A26DAC14256414E4C8
2107 42616728D918C74D13C349F4186EC7B9708B86467425A6FDB3A396562F7EE4D8
2108 40B43621744CF8A23A6E532649B66C2A0002DD04F8F39618E4F572819DD34837
2109 B5A08E643FDCA1505AF6A1FA3DDFD1FA758013CAED8ACDDBBB334D664DFF5B53
2110 956017667084E248B4E19A77B7C42DF6762413BB3B142E19AFF7DF267DB0C315
2111 9F7C9061FA1216806E4FEB424713C5D8197A3216EA5540D1BEC26AC1B17D190D
2112 F66A096A8854AC846932C735D064DB56287BAB4AEB352600851833F5C49B00F8
2113 F2324E5A873315CFE2B0C71FB263E0213C5FC83F2D011C1361570621BAF2F34D
2114 8A46195798F84660F710C7BE1D31D123ECA0B7965A2AEBEC6CD5FD55DC0B2945
2115 AA442125F7EC382E849F98EADF4F5F8B92C04669C9CA2CEEC6B904368DC374A5
2116 0E4372048210A63C055B13F9E04405E805900BA040C9AF9C9BBA6A02F87C60BA
2117 9DCEAD5A9E7BBECEBEE887F378676C72FD00978D15D0046C0690C0D4B5AD4183
2118 95F6A9DD88C772D9F7C38A6F51BA692B81D60BFF93CFE887516378210D1CA765
2119 8E15C57545A0C95EDFB7AB40039E89D027860AF114E89850C0AC2E50B696B3D1
2120 19400E123569E9EFBA7E0876DE9628B90A373547C96FE290965906EA8A1E846C
2121 43EA4B0C01D84702059B6888DA48DC3EC87D6ED3F5BE7322567E660586843571
2122 65ACDE826977A8C05ABD73491F800D6D3F31DAC2DCC94197008699B08F389271
2123 28BE1BBE243F5A59EBA25059F90C5148C0D606AAB186BF88BCE51E82C6A2DD2B
2124 1B5DD50987E914FC3223EC169BDEF18BE4DE7F5E824D414CA186C54B4DE4EAC5
2125 E5F84C3748283E8F0FBA0F0FD9DE1459D068B624626911999B9CA785A9314F26
2126 C71D43DDC0D792520DB3774AEF341ED2B3FEABC2C8131FE13C4B04FD64DB5AE8
2127 8BFE43A83344D7466A8C2F51709E771F02CF369255DF519732B0F4EB2EDE5E86
2128 062A91DCD0D42B2C5D6D3DF29F30F24BC98093AB95B06097B5CF3B612F477E84
2129 9065E1C60CD71608A16C9FA59D10106282E225EF38B15225B57F6784EFAC91BE
2130 83E6991EB5E59C8FD13193BE20323ABBAA06E81D0D1BA749129C0E898EC3F8F0
2131 4452FD5428802DE83F6833563C49AADCB28DCE3E4040F69CDE82FA6F2D2DC7FC
2132 88E96641F227A44A979EA58706672D7AD1FB23E699BE729B99864FE3F043C042
2133 10725788C5260E5053CC94FC9B4A9A134787D1F3E6FC5B3CCD7C7D624E6683D7
2134 B49A02B37FBE56AF6C230B7563D38A40591E9BD14E8339A28B8F86F30242F86C
2135 F43FC20C80DDF37AAB23BB01381D769E6E4523F403C11CAABFE5DCC58CB19E28
2136 37989C46A1D21F1637021091E39E3C9F8244AA9F43A137932113C8CB2C2D7239
2137 364C52EADAD13C1297A463D8F94355394F18D79925958280344AAF911BC0DD44
2138 31DD6047080F51C49F77C1E587CEBDA32718B9CC19533857B3950BB69C9D18DF
2139 D5914FB8D36EFD05D15ED1AE8BC3DBCEE2FD15F65838DA357F0E30B8FACFB381
2140 A658B95C852032D9F6E57785622DA212CEC31CCDDDDC9773EAA46F18750FE121
2141 251615AB53D597437F068C2462A4E8B90521F4C85B9300264A6C35B46EC2A22D
2142 C90D48C4108FD50D8B089DA431BD8FDDFA8CF8D6C257F03F0ED907BEB2E91CEF
2143 B3AB4A6A8E4016419033ECEB7473EC8093ACF80EDC48F1D4F525F7AE6D09B48D
2144 D5D83DAB680696E72D6A3BA755523DB0BE5639C1703D2711789F2C5D2E7BCDBA
2145 FD5654CBF4BDC05DAD38DC84A2A8FB043A22FF580F065BCA6BF5E17DE21B6680
2146 A5AAE78B4711C5D056E1F7BB4A48127233CFACED2E947993EEF6F12327DF1CB4
2147 5ED203F8212BAF4F6D4A076A6F2E826E45C4DEA2F42FC5F5C1892DBDC8065C62
2148 5D5A6A91EB9DBD71E32935EB22D69E8E6529F95A95E533E52E705213A2CCF3CD
2149 F83FC853B06563A1C7206EE24589FB3071F24213EF4A04656F22D433F22A8D92
2150 CD838E13F7B626AB0497BE49BD8F4EC69D4CDCB375B38AD21DB8DA302BC51BA9
2151 EA150C7759581AE01584F9121C9CE9C989DCAED80D9BA22CDD513E92F85C1596
2152 6ED92395A424FB4309C3F6E83990195DB61797AFA1B85A68A2FD36AB94E0E665
2153 C2E2E32A5A66B8319153DF96F2B06FAC6D3ADE8304CE693B83F81938F177598A
2154 239FF172A50B421A5982879525D59E0179D0C4A3F3DF97772B0768DE450264C4
2155 164003BA7FD408EF75215221763D87E7E8D743317D6F80906D27B118D15E6A9C
2156 1C43D54B8FB7C844A58F9FC5A88B6B0B6541C1776248A8A008BEB038A4BB0EB5
2157 EC122B46A3F3BCB2998738056AABADF60223CD7C48FFD5AD6A77536E198646B9
2158 4518780667FA2B61C2EB8326F81CAC89AB6F0635351614F3521B131BADE73283
2159 27930084D3C1B26CA3554B0660EE8C8DEC57B0FF344B961975193B988FCAA78A
2160 7160F3E94231B31A3E46DC16CB21BC65DFCE7AC4DC610AC6388B9AE12BDE1F1A
2161 DECD3BA34297B989B731846ABC57844E1B53238C421ADDDB00ABCDC743235480
2162 F61CC25445C9119AADAA47C7B8913CFE1640FEC333BC9C35803CF02C508BD62C
2163 440B27BB184EDD0C04B157C259D71E5B58050FDA4967A25A5FABCCA029088BF3
2164 03E8AE975E543D496F7638A4103BA925EA27905DFD62666108B633927E07136B
2165 613888EB04C1F5E216F08A1BBC7D9303B77FF23A4FDBD58CE711E1D362ECCC8F
2166 9B687CA125A13C454B12F9BD42DD7D42EF796994BA4FD41288946E52C41AEC6D
2167 8C7BEEB04D24682A243AB54C3992BC938F41A1E46509A4B3A28700C645EC7C34
2168 C90A38E31DF02E0E22BB0FCCCB9EF87E5BD185830FC5A719BFB74ADC6385715F
2169 50730FF41DCE1C5B8202FA7EA5253718FCC3E4F18D37DB28A0685C7A195D2C78
2170 A0539C23E57FCC25A07E77EF12C4E6E59D94144048EA45336F13C9C337DAB239
2171 B844668515CED8836B8B0DE5BFA514CB92979AF9CFD08C31E436AEE956243011
2172 FCD5BB877A0F8CA1BC70FD7EEBA250EFA3D878ADDF40F532B4C7D0AD2799C2D6
2173 E8A55A0029E87C1A6E37E3B803B7F3C4182BDFCDD3B3A36FF1686045558C4335
2174 1F10FF8C796B05BE183D751CA322F63E66B35C0F6B7DDDFDB7B36ED2B49DDE72
2175 870F88089AD1EA69F54C5CD55807056F61568B98721C47E7E63E9FDD5820E954
2176 C4B2FE72815FCE308F8D9E091314971A833E4FD9B51751BBD4FB9216AA150A7B
2177 83D714AACEEB5938780319CF8D3FE580B608DFE6E6E76D1380A60130359AA274
2178 66ECBE181CD60F2D4B48AE2D1299E16B2007699E23D6A2177CFD5E5233638009
2179 9E821985ED328356FF8CE1EE59D16B2830AB24F852798515C95D5EC178784CB6
2180 B4C09A8379A9FCCD91468DB83EEC2AFDA0B6AEDC44BF9903BC0898831AB62298
2181 7A5D2185748707BAD6AA2E1765B5A9D6E00E014AD00BB68F0F29B144E131EDA7
2182 8EED997B78B95043D611A3FD50784F253921838BDB152424B02D08722258744C
2183 95E4EBA32FEC796915F88552D4E1F899C833AACB96CF3BA940BAD7520D7D2F28
2184 2BD1EA10C97E0A5C1E45D5FA6AF1A23A6E530C030F16D46D2E66F77D6224636D
2185 5437B45A3AFCF982B4AE9F848C36AA52E1B4EA653B104F090BFB3E77F2121843
2186 4B2510179C358DE38FF27BF3C8A31A9EEBA0F180BC63C69A23BB418C583AF9A8
2187 C2402A32E83FCF0B7C4B6374B8018DDB126E90D5AD8A7F2517B40117D593DBD3
2188 0BAF940FED36A3A677B994EA06CAE77C3E06ABB1F41AD2ABC4E7864C7A4A75D0
2189 5708A337A535365B658F406A70567FC7E8132EDF67610B59119D46C7B0954E88
2190 B8E6242EF84F10681DFB2AA3ED1D6AD687C92EFE89C57D3ED2FA0DED74982E94
2191 E47FF8873CB15DB41F14871AD6A9C924C80FED0C492425BF8EAECE55E61CBAC1
2192 26F2FE5A61287A1C2FF052C0E2BCF30A29E07AA6478B9A7C7E5EF4DE63838CD9
2193 FF7A20ABFCE6A930BCA905CE5FE929292A9C4EB680C095EB75D53AA7B287972B
2194 157F83330C509758A040C65AA2EB70A2AC0CFD1E1F26199ECC65250B7696FCDF
2195 BB48B401F6EC0CC9525C30666ED2CBEE7C7A00223A2EFFEA57013ECE86F6DDE2
2196 B26F65F202CA9D97593257DF7688F4E3A405383F0BE86CD597626A73E490FDF1
2197 A6C32D7A0936AC0BEB7DDF9A8FE63560E61CE95183891009AD75F6DE8296FADE
2198 6F37567B7186EEBD30462867EEBCE3ADB6A41B11E4B7AAA465883225F2067239
2199 9B561CE77CCAE176805C79A6B2252FEFB1E43BEE32C67F462876F2656C59E4DA
2200 C939A9DAEF17E6F8DAE786E41F6C0F013B1EE6D65C622912796194E68E34397A
2201 C971C022CE5E751F342819670695F154AA9F228BA3C2A81C2519F2243EBC3BC3
2202 BCDE7BE2A7AA5FD890A91FE3CDD5A8FE6CAA3BCB237B3FE31E4D20D1EEEAE6C2
2203 D3746062ED962604E3509D3483DE4BC882E8BF7C3248981BCB47C5540CB28B24
2204 7DAE6F2D71D2E4A1D9CC7A7A36125F9C057B072772C0EAD1EAD2EA655671A099
2205 2D79302BE286FBE3252DDFE121F165061A3570519FB36151899314F8D83C92A4
2206 5EF79EA1EE55B32081A96FF2B5F8070CF949C33EDCD5DA0F72B0B0F648D3FADB
2207 C2C95850310FD7D47B6B2596836AC41B752DAF041E31EB2139AE606FC4C1B65B
2208 815373D824EC543F85370159EDDD7B024A78C8D0013B54AC311F07DFEE2E0A80
2209 6CCA9B676B99F016E204F3A43F58C5600557AE3A2C3397B94B918BB7F94DD8A8
2210 C2D6BC1DBC41544372EC47D33561983BD21E5E09A07426D34DA3BFAB31A333CC
2211 AAB66ACB1D17E918D7276B2868154AB27B7309E2209910510D33D6F7D4703ABF
2212 0AB5E44C45F4A68AD17F45B7CA26942F04722B7ABD1C3D4B9C18B5443A0A27C9
2213 26025242C1B6FA724C6A897D9C5287F89AEFF23E009CD4DE5C256FB882130D68
2214 7E2FAD1854F6A563A0E7465134FA561ABEC11E84C32C4AC6F39B89376EE6CFDC
2215 D0A437CEDBE76406586C2EF25F7FB8A4269780C15F34CEE58A9D29C56841D3F8
2216 7CA1515E1C70A132347F5F20C3D5F16E0A8D73E2D00A6AD4BB02C71FFA14A931
2217 65D3C9A5161526F349759EAD35E417DE5A251506F6C5A1C6479C2B2A7DBEED25
2218 7C2EC8B09B6FE16BF878A72FF8C252AE0371EC01E510532F8B34902A37C9A90C
2219 FECD51826275D4685C3B5BC584CF414CFC35E62E9CF36EFF3491D974E9FDAEB3
2220 874EC3ECB0F2687AD7904953B6A71A52370139D66B90444F41A431D5B40C2EA1
2221 CEE1A75007C1D3864FBBDC1AD43DECD26486DFAA7EF254334ED53E36D808756B
2222 C7F8A62EF71B02E9F6A764CAB61E7C27DD4E5B3BF2B5FE6F8A452A0C304D0624
2223 D2A7236C5B65FF84971294EFE825CCE132A092AC86A4F9227CD944198CFE3698
2224 7884C031B7AA502335ED602F80645831BB8A1526098464CDF72B3C259978D02B
2225 6FC9795D14777BB5B72920CECC39E55660520634199F3D78139D020A7CF5B22C
2226 8E0683DD8163B861E3FEE3658D52572871253F38C85FE3E638E2B13B8A284C54
2227 07FDDE222190508F8A7A04D08061311BDA9D72AEDA1410F981E8A9BE7071C08F
2228 F438BE33CA53FA4676458EDF5CD52C001CDA39A7D8F3116358F9A77091675235
2229 79C42515DCD64164F43070CEDBB11E69DC2E2FCAC983C4A2A073DD7C913EDEA4
2230 594374D87B9AF5FBAA0ABF720B0641008DF8212443E161253C41478935F7F482
2231 F169C3A6A9D799AE05464704BEBB53EE2FA5E71FD79D27A8EA846419A17EC98E
2232 3D0679231BFC88767CD2178BED35025E1EBCCD4DDDB7410CDEE8B22DC9A5B024
2233 0705C1E32F954DD85F34441E453285063333C3261688F020D5A6EE1236515687
2234 F94B672FC189DEAF0BE59E9BB5AEFE6460BB4C06A9947F8B863D8B0C72DAC249
2235 C6032FA7C0AB406F2D254B9CE3AF9741201619F18D6121E17F3B52EC0B870BB1
2236 96B9EB52D6C761DE95C286FAB896B7D0B8C12C4AD1933F238C0A9C195EA40BD8
2237 548AD3B5717DD787EC05DBCD55170B1524A58D39C91936FB9A86CCBD48562A6D
2238 7D1270F5F9B311E132F43787FA11FE12243A4454154D633A012E174783DEBF32
2239 997E9A4170F47732F6ADD306DA7AB582E758E8C2FC8363E8C585F3E92A573F54
2240 CC2D34FAE6F10DDB7A98D4C4F656F6700C6A8C6FC960B0B4B9D446BF52B80B5B
2241 65CE01B59B8DAFDF3D878084B88728072A97648821400CEA6C9389794186B219
2242 99A017FA4A809DB2F93FF89A4206CB66FCF588584A6B7BEC990E5A0A33C75FE3
2243 C95C971044853D750B14FC6227B730D2C00FFAB2221F682A10469B5369E436DD
2244 526328D2829FB8A82A1F02B77016EE186DC6D4C24E58BE93C9A6450A996A1BAD
2245 4929DA91FB7D067844C425313D998883B7F2A600390A6DA9F5164D6763E2FB0F
2246 D047214832B09CF62613C8D3ABFE03479B493340AC36D412C49D7DF39CA89AA1
2247 17D9FCE14D40E5BA8F587F11A3F7D8DA69F5650B00244DC561B329826E9BF11D
2248 EBDF8593B20B6A916AD6B4E121A3F72F042A1943DD72DC587D74B1B14C9DFDE4
2249 05AB26F9B1E5F433D1E6F12AE369203A63DD39F5E2E5870A7097C020584AB252
2250 8CDE37BFB45DA0B18B4BE37026E700B941F482C6C102EE582E567967D0697245
2251 878E076AFC025AF1A653EF718E7CD550E214F5798F048895DB759ECB2EDBD4E0
2252 AC2BAC11B390278CA5C30F1AA6800A87BC6101CD26B217D5901A40B1B0C617D5
2253 E3058E980F3818B2235B73D6C7EEEA4021B9809433109D837050F29965FFC7C0
2254 F5321A93D5C2315E0C3388F0208B686973FFF13D78B8DE64C43A60CA70EF4E1B
2255 DE972C3077BFC5C7B23BA026A77E2930073C8D493F2AC4F3B5D599F716E6051F
2256 166253EA22C317044C96A7F281D5CE5AFB1E2C6BB72257E864544A5C23BA1273
2257 59A7F42E0A7CB48A90F5EF47B9A9AAEBF82C78B477B16A4B0B57DAC9117696EB
2258 E1F1187220FEEA3B0BD19840CA637F2306A185D4A1B7ECA6B0D2CF662473DC24
2259 8270584083426D200D28426F362BB801D556CDE4E4456566F761E6589403E0FB
2260 CC154A41D828DAE490E0A223AB5C53BECF7D1FAB3B66A5725A4BDAED4080D773
2261 83139DBCBBC93B58A34EF16A7491592B27F526C3F0911669A7F5867FA872596C
2262 E9BA07BC078A9F07052135EB22CB87883B8EC17B9CD6B4E13023FEEBA3C732E6
2263 843F9D5B27EAAE781BCD534D08F7DE20B713ACD556390A332045B72ED338A70F
2264 760BCFFD185CBBF7705DB2D55C1FBB8F38A4E5DE0913AA7980A2B92C63A3EEA1
2265 C49C0DDD54B76325F5F5A0C3F2C42E9897C930D4528A058942680CD35BC12F87
2266 DB2E409622313A385216585D5C37DFFC9B46F48F2BCA0BDB54721764FEAC99AF
2267 BFD01B2E63F68A669229F80BCADEB20262923050A875B5EF18232E6E1819B2E0
2268 AC81684977DBB7F0EB11DAFBB5774E03D63CE0F730A77A5531EA0FE5447E008A
2269 D2ECD0B30DADD3D1BEAD4B0BB194CCCF4DE9578EC9442F4EAA73B8BB8F138B16
2270 06565913E554933E4613ED11AC1F824D558DB589262440D175C2C754E6584950
2271 47494BF87510E31075A6E3D60CB6A32F5B2A885049388035B97B779C42429D4B
2272 303FE5C64DF7627F92A962A3B8F5271EEDD78F658ECE20B07D19879BD00C8BA3
2273 ADAC110FBAEEA23E349EB4294CFDF279A7B1CC2A71326982C1241FE7CC8CCD7A
2274 D613AE2F9C78A853DBA83600B193FB45531998C6D9DCA1B8E3DFBF754B829727
2275 EA1D5C912CA13FCEDA4256680159FF1F377C0C6B93B9FDB5C748736787C8413D
2276 32436B4DBE8339E868EC8C42BC5F1B887EDB628335F0FEDE2C7A959E16410852
2277 954F5C5CAA2B4C557A30AE1D2DEEF673B68B6CE989B27F4E26FF8582C30EE843
2278 BC7392D42CD728E6C626203F1401D328E9B38770D48ADAE77D87CE04BDF2FF89
2279 6FCE109028653B8252D4DCC8B34040833F8E8A8FF1A53448C8D289AED30969BE
2280 7840AD99B77634201B8B9649D14B003836F9ADAA41C302625CD1B6C1A6F40B5A
2281 ED6A5CF12930E48B9FF647166290439420B6831219DF14F18021CD563FC257BF
2282 9C368032559F5C1C3CC198FE6D833B8D612890F6114203E90EA7A9D6EC8B3A36
2283 00486E140B9B76BEBE37888C8831653D237C1AD50E00ECE417C9C8FCF1A9115C
2284 DAE1B99D11715116E698AFF2DD7F6A34F4EB0B2ECD49854613B1DF522B6E8953
2285 EEB3D1C90F3179F56FFCE049D06AFD09814FA87D2B0D100B11105609BA8567B5
2286 181445216C061293C6C9DD0E80FCB290DDB63A55FE3BAA16382654B167E99290
2287 26DF9BA06A96EEAA33CEE2412D16B0F8C749A7E4C76A889E24FDD9D849B5068E
2288 F204008372317087891A7ED02D0BA26EA9DDD6BF1649F06F5A3008408B0FED08
2289 EABE9AE4711B954A3CD36094CB79C964975E6FBECB93C940381B2D0AEC71AEF8
2290 6ADCACDDDA63FBFE0CAC845E24BAEC24B8EC4F9764655C20AB752BC5FC7BFD92
2291 EBFB78FF7AF43EAD8C9B7AB75517AE9C06DB5CC0F8CE9EB5217138803B572640
2292 9AC5C4788CF145ADB5E1F7557B43360C96FF808E5EE15FBC34E6788D0566692B
2293 787138C1F5A7F6006A94A7E0D9842DC369BBCBEAF10CA5DD000491F5D77BEBE3
2294 49FC14007B740C8914327EAB77232A75E8435D519F7A4342BD281E11D5FC7925
2295 172B0B6536C4EA03D8E03ED9DDC97B65E0DB25E944A777AA23BF45521403A879
2296 953D5AE9E120339495CEF93CD90689AB259B38BD8E598968A3BDDDA4185237BD
2297 6BD8F1E5C1EE9442DC28283D2E930FD7B4311D53B1B458A9E124812615D3366A
2298 801A76A7CCA7DB1B5BB4531E7B68068B3E36BD2E9A427885CF360C4240C5B89E
2299 C1028EEAB4FA4AA2435D4C221120459FF063488743CDCE682D7BD79E59DB018F
2300 740490742A4F86B2DD34D409DB4D4A8D2C265B788E31D5098B20B9DC6455E3C7
2301 1CCBC89EB9A6F1DD0B1D15E57C68293D913E2ECEDBBE89801C9E673A2B607B98
2302 E72B0F608E9D8D69A29DA89371F807148D1B7E6B7B04276719A087658F88ED44
2303 390462F01C1806A0DBC2C9F0AEA43D107C4F36BB0E2E89C6FCA8DDF67EF5A026
2304 1B529F9F065ECF945EC664B9E5A280BCAF04472598321E8709649D3F58EDC9B4
2305 DEEAABA6D9422507307132E73A941FF3CC43904373A4A616FBFEB230B327F360
2306 2EF5981AF5FA048B9943BDC3E9554322A39454E2DDCF4AE2EEE29FFF07457794
2307 A1CA38CD0BA815958355A56F656937B7B8F5E9B1645714C22BFCA5C2BD0760C7
2308 34200ECF6C7F9C5FD384C4139B38D97334F0B3F8100FCDDBB5B497CE327A0A93
2309 36A0C9B42CE0756ED25CADDA2B1645F92A28A3E22D45E760F9D692D35BD798E0
2310 7413AE5C5B0A0EFBD23BD02F5BE218DB065BBB9AB8BAA6E406263C21E02646ED
2311 CB9AB447820912B6B6A223E9735B3DFE16CD1C6E58A9A89FF6824D417FA45DE5
2312 1BBB05A24AB825C3E34F403E462F875DE9C44A7B70C17711F1F06B978ABA3F03
2313 03E769493BC1068B6B4E1236BDC385FCAA03BD13EF4CEC29712BC4DAD8A57025
2314 624FCE0342E5EF96479E4CB19F90563476DF535B7BA290E3537542D130884B2A
2315 B4557610EAE99F633087F26E3F13FF5F97C87B6DB2C57C8EDB0CF0D9F6F57719
2316 40CB59793CD2FACA30E88FD7743E8EBB9AF6925C6020AFD1B6F0531F4445F7EA
2317 A2D944012DB4E209E8EDA63BAFCE1CFC0116E1FEC608FF717AB76DF646FE43E3
2318 15E80619FA65ECE84CF79243441DBE74622B2399870DC8DB0EB474740E6B0EC6
2319 C18A95B8E5D1AAE8409CA2DF9C5CCCFEFAD11EAA9F2B4D54AC86E08775012D14
2320 F1B13CC0E1FCE34630A716CD3BCA21856FCA9D42FCFE22C08DCD3050E05E6E82
2321 924BD30A95879C27F9DB52A23C4AE542BA3207842AC22815DF40EBCA491FFE90
2322 23750CBF6C07F65BD0095D9C969AF79DF4D2ACACF5449A50653408CFF59EBDA4
2323 E0F38F0DA578F7AE56D7C7AB7E46B865AFDBB09AFF6B0AAA978D0EC3B60DE002
2324 EFB5DE2A8CE2078B94BBE39496D7C2A8DDF2D7097CA8DB7A290F639A6205E37A
2325 0E3ABCE7CD54858D55837A8BD376580FE59F3D07B788EBEA7BA21B4AEB1177BB
2326 0508DED552EC197CA71D2AEC178068345F14F351239B01BBA9B37C53F88E7730
2327 D9836EA38100EBCD162A85BD7B2E38ADDF6F315135D426A6963962D317342805
2328 A10DB92D6C9089FF578D9F13319A55D72646E70ACEE59172607654C8A45856F3
2329 9B127D69D50AB5E97279B3257BD88A6CE8338FC236DB01ABCC52F7AACC54A6AC
2330 314C1FD3065C975A66E93F7020107994385D5006E30D9995317F1D3B6C9FA79A
2331 441A3C79F5B01A0F45055B114AB6BD2B76915DFB6E31BBF79CA9297EF76090D6
2332 AA2DB56FC2A948B4B686352D64630BF7434BA122E40EB355FBEA442AE2A9B800
2333 5534A18DFDE0F83DE229F6440A33F019CE6EDAA82AA839A801BE687E61AC116A
2334 E64BE4343B25A0A3078EA887E80B7003B35DE11EAC5A40A7AF7EDDC2B4B84526
2335 1A5EB0CBC872419E8FF01FB7B88D79DF68763A4FE1BBA60DD5F49DBD2FCED03D
2336 C8AC5C65A5B2B216E169884301F6C1B282906C99CC6C32C5BE4A04ED6D7C7D33
2337 A277570F1109CCC6A9918CE7C933946AA0DD60D7B30BB3271CA4F8290006A97D
2338 196731C5030B04E2334E9527F68C2210D10F2CAC8C0BFFE07E3501635804129F
2339 FAC1041E34BA4C141BCA97E43BC94EC2D955BBAD410CDBD06FA27999A5602507
2340 D9092E169D44E607AEADE8E4238768B599CFBC46CDCA2FF4CCB6F282AA02AF64
2341 1B66419AE5184B6C798B7F9C3107E3056B43E2733DDB9365B9BAB3C22E5CA594
2342 F71F3FC9BC58C45A915496298F4212F80D569CA216B38AE1BEF678CF555EB362
2343 BE6C2FC4D5EEE09D5F705F54F1C747919CDDE4A7B4EBA1C6CA3DBC06F19BBE38
2345 0000000000000000000000000000000000000000000000000000000000000000
2346 0000000000000000000000000000000000000000000000000000000000000000
2347 0000000000000000000000000000000000000000000000000000000000000000
2348 0000000000000000000000000000000000000000000000000000000000000000
2349 0000000000000000000000000000000000000000000000000000000000000000
2350 0000000000000000000000000000000000000000000000000000000000000000
2351 0000000000000000000000000000000000000000000000000000000000000000
2352 0000000000000000000000000000000000000000000000000000000000000000
2356 %!PS-AdobeFont-1.1: CMSY10 1.0
2357 %%CreationDate: 1991 Aug 15 07:20:57
2358 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
2360 /FontInfo 7 dict dup begin
2361 /version (1.0) readonly def
2362 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
2363 /FullName (CMSY10) readonly def
2364 /FamilyName (Computer Modern) readonly def
2365 /Weight (Medium) readonly def
2366 /ItalicAngle -14.035 def
2367 /isFixedPitch false def
2369 /FontName /CMSY10 def
2372 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
2374 0 1 255 {1 index exch /.notdef put} for
2378 dup 20 /lessequal put
2379 dup 21 /greaterequal put
2380 dup 25 /approxequal put
2381 dup 26 /propersubset put
2382 dup 33 /arrowright put
2383 dup 41 /arrowdblright put
2384 dup 49 /infinity put
2386 dup 54 /negationslash put
2387 dup 56 /universal put
2388 dup 57 /existential put
2389 dup 102 /braceleft put
2390 dup 103 /braceright put
2393 /FontBBox{-29 -960 1116 775}readonly def
2396 D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964
2397 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4
2398 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85
2399 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A
2400 221A37D9A807DD01161779DDE7D31FF2B87F97C73D63EECDDA4C49501773468A
2401 27D1663E0B62F461F6E40A5D6676D1D12B51E641C1D4E8E2771864FC104F8CBF
2402 5B78EC1D88228725F1C453A678F58A7E1B7BD7CA700717D288EB8DA1F57C4F09
2403 0ABF1D42C5DDD0C384C7E22F8F8047BE1D4C1CC8E33368FB1AC82B4E96146730
2404 DE3302B2E6B819CB6AE455B1AF3187FFE8071AA57EF8A6616B9CB7941D44EC7A
2405 71A7BB3DF755178D7D2E4BB69859EFA4BBC30BD6BB1531133FD4D9438FF99F09
2406 4ECC068A324D75B5F696B8688EEB2F17E5ED34CCD6D047A4E3806D000C199D7C
2407 515DB70A8D4F6146FE068DC1E5DE8BC57034FE2AD655DBC911C76FD991B91DF5
2408 2DAB3701C2F3703809AA4D01CE2FB5823DBF3DCB8FB55EA6C677A115BFA7781F
2409 B87B1DA2ADEC303DDD1B4FD1CDE506AE380F938245AADF44DCD3DFA5D86EDDF4
2410 F696ECB1962420A310F01CF7FDA47567932366429EFDD54BDDAC412C155E41D2
2411 F4F88BCFA6AFDB11CAC1C833E8BF502FC99F5891D5A8DEC1A4C114E4D9895E0C
2412 962B36ECB641B597A4942103D6E695A749A91DEA1D65A5B4D9055F387D9C365C
2413 DA51AE4119A24930D3D1BBFED43BF8846ED0083C7A1ACBB8010EAAA3C263EAEF
2414 00C1B7099378ABA2DF7833BABA23201D8C9FA4A784A50323BD621D7D5375564E
2415 79BC09AC1F0B9BB65D5FA943A3E359D9F79FE6EE213EE56F1CD5595D726B5BDF
2416 67D6DE93F117FCAA51EA345C4E0E160FF6802B23F6BCD33BD0332CA55B3C681A
2417 2237868613595F87E616005D92D5F66081B4FDD91CC2418128F388CC38279B2D
2418 4482FCE23663E0A368FA2B3957A387DB9BCEBD4FFA129F070CE7FF314D233DB6
2419 84B1100086CB09D7F80A24C5590B27A877979EAB3826211ED54CBF8097505FF8
2420 93F5A1991F8414C02D4ED0E39E70C57025D4AAED565CA38A5D7206AEA68DB95F
2421 EA5CAD014BFBAA9895D8B6ECDE1C3B0057EBB7F8E94004EE3D2F025CCA598B12
2422 46DB612CAA8BC28E1A1D03F5655871882F4AFE424E0F1636C5EF7477C9C7AAC7
2423 B55441AA4C2215F4ADD87C10144950BB7339DD915A8EBBC8099D54638C54769B
2424 AA953FFEC731E086B37955462878F8B7712CDE117F98A474477F97EC0BB6B9AE
2425 97DA8ADFD25B96D82BDAF99C99D380920C0FBFC7BCD0A99A9F1B9CD8947A65AA
2426 3AE1513907B66A6A3A2F243E200531E6C5189C32E634F6F07B68B449D117944B
2427 4ED1DB4596BA2F732162C24100932645471E301CFFBBD7D4B885C4DBB8FE8089
2428 09EFBFC715F64E8FF18114EDE2F4D2BD9E87008251914E25C9EED94E5370CF2F
2429 00AF7374774F2A864988759BF5FE7FB4AD89CDFBA414CD30DD4ABF53C4D66488
2430 8D623E28150D6F919D9601A5FA2C37DAFDB17542CB2302E3B1D31308BFCEFEDE
2431 8ECA47CAE8FC68B4CBACC55638521293F696DB54F3C3E9D4A53EECC1DFD2839E
2432 9DE21F72C3314B9BEA085F7627A0E92F57132F4034B4444C55A425EAACCA6429
2433 21DE46605D2575CA80A66DD1FF83DC3454C564AF7DFD63CFB1EC8F069E9CF9FB
2434 F50BCFBBD47783C5310AB50DA1BB3995414E9702EE8FB6CA92D2E474973604CB
2435 3631E363CD472E4108642C699B587EEBCA0EAB5FDC4855A038E2145D082317AE
2436 D5602BAB9C005E3D7CC7720C80DCED623FB95952970392A7257F1713970565C2
2437 0FCCDB109F45A1033E3329F567FEE314219A745DB7037C011E16F7D2C31596CB
2438 92C2033D34632CDCC770CFCC682AFDAF47A229EFE7DF0EFD6E9F20CF1CDF7316
2439 2A24CF7BFBDC084ADF96904E4ACF4A683635B1B2FEAA3F391A7B9595EC1F5DFB
2440 9753E9FE8D813C631E351C6CA99C2818B4D73B3DE25A7D34EC37AE1A8E65DE8D
2441 E71CAB3BC6D4D2329B9AF1DFB595340F329D14846FAAA80F776A35F3C49FAA3A
2442 C38C7C66DD26EA957869655E12D28A78A8CF931918B3DBFDFD23C215A6CE65B0
2443 5576D97108275B34F97F477172BAE043A5E8C90661B06E8AA4EEB6A86E2D1407
2444 085FC72E7C94766504D7F58EDAAAADC7AF08A0FE5B022E8E57EC523DAB101DE8
2445 46DBED3C5AB3852BD3BD9D757F2AF984C937BD0DAE690CBE0028F91B1B4C5399
2446 5076C265C45556AF2A8351611A95FCCA6912B361A8D6854758F9022BDD8777EB
2447 CFEF842F1D10664B0B1550D7B0104F0FA8114E7355496EB6018991E4FFE82B94
2448 D83A6DA20FFAFC001AADB9F2886B175147588B4CB8CD2A6755463AA8F5F8E617
2449 0670A89C0C7EAA408EA67A75756156222A0AEA2A8A35E1F9676AA7F99E3AA6AA
2450 035DCB233A60248B85B82FF451F3E8DE7B8EAE0FD2ADDB94741C121585E4C4C8
2451 737AE6186640E96BBE1EAB13EF38FA4911FEBF6D71D7B3D24D529D42F4A9387B
2452 4FF73A803A71FC3F2CA6FFDCFAE20F6575F53D20584F3B72A72E7334836403E1
2453 C111D4E4204CAE0AB3F630801F84877E3A57CE95CDAE615EAC9DC146FA32D7AC
2454 55B9C86154C6BF79767251443038D0554CEF078E69796DB939A5949A9824C3EE
2455 0EE19DB2D56C128F9280A0970E2FBE7DF44CABBABDB93C01A3F784AB9690A861
2456 6730D4CFF2946851A273B026C18D55C2A24D612B9D05773ED74A15306FCE57A6
2457 52399136F78872973DD9C162206BA2FA0A7F121B8E5A8B9FE3587C7393776E68
2458 168FDC276D4E77468E3378788C81A4A7DC660028317C0485F023676E68C0343C
2459 92108F2D3E0541E1A02FF488BB8C0027B73C60358148C45828B041417255BC1E
2460 F0A86ED17332BF158EA209B709E471A5BC6FC1FE131F6B1D9DD64B0C64F945C0
2461 F22B89ED5969450422FFB41F67340CC7B93D63A6A32D933F3B755456AEF912F7
2462 92480D3C3F8D5E0423B6D6D92CE72870428D7485528DE35C8A6096309C25506D
2463 C0E5BFC8A2181E8A8F420E8ABE1D1946B591F6546758A6029BC05859A4A3FC1D
2464 A6925BA39ADB68BEA37FD215F93E15DB56157597C8D0E6CCE0B024892F540D34
2465 8327CC5D6475B2BAAD3C1B75E66A62209EF100418FBA3A00A334B551E69F5F2E
2466 3A631655771B835D2CF917994DF5E3467100DA76EEC1804A4C4678B114470E50
2467 B78E607BDC6816B81862E56C55ED80B2A0A6AFA80A2599F1F142A68345810F69
2468 85ED999E4E26F7B3A15039D811516D467039D594A5067B657B1A8944954F0FB4
2469 981F50C01C96BDE026AC09CD12A4B597E676D3B30292D4FBE1528CD0FC67514C
2470 531A35D88459D2A229A0131327F3CEBEFE42B622710AAA4D94147F69424A2B83
2471 31C1BF461480B07EF8A7AC13B2D547266F0DE9F179CE254F1F9A24DABCF7B479
2472 4E9241C98DA417F26DC1B730DD6F403488D0A130EB66D421F285A77DBBE86D72
2473 5C7D1ED33F6F69CB55309877832207E7788EBC7B5C4E22FBFDEEE212F6988E64
2474 CC95D8B563AE465A4F0B89215927BB7D3BFD8634A24AA7FCEEE5500B27E46791
2475 D7C2A623F9DFD42F3ACB822CD29C6B7347820D1F68B04305CDF92543ABFE9CBC
2476 7793974C53B66542311BE0B21CB3692444256CA0CB7A12265FC270740AED685B
2477 556438A29271D544CDA97C78E29E6A7540E46B2E5B644F1CC7F36F2F85BD1208
2478 97F024FD848829F1BC90BDD38F670F2EA27A1FC93827C197D885EF9554F46E55
2479 B810AB474056F63E751FA492BEEAABCE753FE7DCBCE43117D06ADFA0301680DA
2480 E2E9A1FE66DD26A9D1905F4F3764892D79818AEA4F9E3DC4E628119E3C33F38A
2481 CD1C34BF76B9C04D9E48DD49577EB0BCC21E4168D5B0D4D9EC1E94E47ADD100B
2482 37EB00833C8CCB492AAD22F8C634B939838E00D42E75380492FFCD1F28A93D27
2483 915CE6F1780F6B69E2ABD839A0D6A7E92015DE7ED33914AFFDD2C8DA4B40195B
2484 23497BDD7541FC59327272FF5D25BAC1D88BEF4E7D2A0C6DF1591DEB266BB628
2485 1EA176485B5D57F3590FC4D5EE8EAF53D9741786859FC871899C0EA73A23292E
2486 2EE21E88B6E2F997F540BB146DA2379C0FE5AC4FCF8346A1966E103213092EE9
2488 0000000000000000000000000000000000000000000000000000000000000000
2489 0000000000000000000000000000000000000000000000000000000000000000
2490 0000000000000000000000000000000000000000000000000000000000000000
2491 0000000000000000000000000000000000000000000000000000000000000000
2492 0000000000000000000000000000000000000000000000000000000000000000
2493 0000000000000000000000000000000000000000000000000000000000000000
2494 0000000000000000000000000000000000000000000000000000000000000000
2495 0000000000000000000000000000000000000000000000000000000000000000
2499 %!PS-AdobeFont-1.1: CMSY8 1.0
2500 %%CreationDate: 1991 Aug 15 07:22:10
2501 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
2503 /FontInfo 7 dict dup begin
2504 /version (1.0) readonly def
2505 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
2506 /FullName (CMSY8) readonly def
2507 /FamilyName (Computer Modern) readonly def
2508 /Weight (Medium) readonly def
2509 /ItalicAngle -14.035 def
2510 /isFixedPitch false def
2512 /FontName /CMSY8 def
2515 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
2517 0 1 255 {1 index exch /.notdef put} for
2521 dup 21 /greaterequal put
2522 dup 32 /arrowleft put
2524 dup 54 /negationslash put
2525 dup 102 /braceleft put
2526 dup 103 /braceright put
2528 /FontBBox{-30 -955 1185 779}readonly def
2531 D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964
2532 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4
2533 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85
2534 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A
2535 221A37D9A807DD01161779DDE7D5FC1B2109839E5B52DFBB2A7C1B5D8E7E8AA0
2536 5B10EA43D6A8ED61AF5B23D49920D8F79DAB6A59062134D84AC0100187A6CD1F
2537 80F5DDD9D222ACB1C23326A7656A635C4A241CCD32CBFDF8363206B8AA36E107
2538 1477F5496111E055C7491002AFF272E46ECC46422F0380D093284870022523FB
2539 DA1716CC4F2E2CCAD5F173FCBE6EDDB874AD255CD5E5C0F86214393FCB5F5C20
2540 9C3C2BB5886E36FC3CCC21483C3AC193485A46E9D22BD7201894E4D45ADD9BF1
2541 CC5CF6A5010B5654AC0BE0DA903DB563B13840BA3015F72E51E3BC80156388BA
2542 F83C7D393392BCBC227771CDCB976E93302532471AAA096BDB7D3D00544FCEAE
2543 86A3196E1683DB53C308F865EE7F6C22EC40D307AE114E328CC80446A3F982AF
2544 9F6D58B72F017CA3A5E4241120081E58FA971E59192E4671C7792406813C6BB6
2545 A9D5CF1CDD3F0B68897404FD1C8EBFE91EF253083495F0D92A7AAA065EDA79F8
2546 7C9F31807E23979F8D77DA7F04B7995FCDF479274EA20690085B37441CBE529D
2547 FBC2DEFA2D2EEFEA08B828523F05516FF44856947BB35A3023E8D44E8C7843D0
2548 DEBD78FEA96E4EBCCBE6CF0518DEC7AFF49CA4FEC889658CDDA8D815D37B985E
2549 246422C972319DEAB98699ADF21AF8ABA7D738EBCE86D057D036DFFB2C173E0C
2550 BC673338506C9C9A74B4E62D0EDB0932F31C97D7D941F1AB92C8344178EE40EB
2551 9FD9F188F64930489DC7954201668D8C13D6771001E22F5705B21E471E3B5D64
2552 DEE474A8D30D4B798AE5775AD90A7F7C6111332FCE120019E7F0097A26D3CA56
2553 509F077E50CA3487F837C1D047C9426E90DB39CB1351E835EFF1668D43383C53
2554 3DD7EE40589B8952A4D4C7D2DFD4C26693C23773E66BFBFFCD1FE6B763983571
2555 50DA339C1FF2DAC8264F7E63C62DBF7233DBCEB419D0AB09031421ACA6087B41
2556 C65EEAB08E63840DAE4CE1FD48030280DBDDF6FD404017856AAA6547BCC15AA2
2557 33C11466F7FBEEFE888AAAC8510FEF279D7A334C96615C3BE70D6F38455D1302
2558 D0DC25A9C867CBA1E91CDDC5AFC0FD702F4D4CA76394FB1F71D2587547F0B6CB
2559 9B7A6EDC1F3976E80248EDC50F7B44E5611FCF618409E454699A3269EEE11829
2560 B65E38EB0C414AF52484681E481C11EB0FD068FFA5635E752216F70EEACD553F
2561 DDE57C9DAD8DF87CEFA452136F2F2F729E36DB27321FBB52301382B8EDB232CB
2562 E2ECD487E09898D2E21AC82120BBD72392AC1E77BB67E8675801BA3AD936A02D
2563 745F30A47F189D1049E5844F11C98E975C9F958F2F9B16732F9285B47A2512DC
2564 A2812F89ECF035686374D4DE2C9DBC56C8AFD1772A5289C46EF51FE7CF7201CC
2565 C0A9104251C2091456868BCACF740A013174A1274A12C6B74D404C50662AF20D
2566 365D43592A0F56B9FD6197E86E51222315BFE79403B1471680FBE95E4F195BF9
2567 FF3697F2042AA882944E05F7A4119C8C263DEB03A9E4BC5232B779AA483868F3
2568 81F77D28A869FEC766B1169C2715DBD57F5B97756D75AAB94268934BCA947935
2569 A223D534E9BB485A9EC245B58C6B685F53738EF196CF727BAAE8AD15729D06DF
2570 BFCAAD6C3C935454C59B18AB27A9992CF9DAB91BE1C4CB99B5AECFCFDD1DB902
2571 C831A2541C72D1FD12EF76228B99CD5D934E91F6810B0E34042B87E59A60CEEE
2572 021963452C1FACAF9093DBAA49E4BD9164FE73BF6F28F6903291C33ABF2D978A
2573 09FF2ED56066E878D23C297D6B5EF3516BFBEA6FB835A3FEA0A87E5AF4EA46A8
2574 7488627FAA32015E4648D10DA02AD389B8E18DF9B524B036BF21F4B39EF3D0CB
2575 82A8A4EBFB2457E8F40742B16D09656ECDDADCCBBA9BDD7AE6A6E67D45FE12DA
2576 D3D5547C257F23E462CFEE452907481FE1FE9970433078408F8C0FEEAAE553D2
2577 146B5B5049A9F25CACFC14BE5AA65D18501F68D5BAAA43AC403535A74C5637C0
2578 1EE0B6838C5BBCD271A5AAAFB8B2C46A70540571A8E890323298A4E43F8F3939
2579 F06FD69C154548E185EDD64DACDBADAA50D1EC81F245C64F82F5F41383B0E70E
2580 F7788725B6E1BD626472797E4E28F0AB7CBCEACAA75C988D8B98C00D5FF3EB8E
2581 B8AD0F5D83A69CCE1DE349AE70AB95A1C0595206FDE0753C16EFF3AB743F1F07
2582 6F81C2D9FEAAF165ED0D323B35D75B806A4D3A0CF91B4A8C844F8ADEF9E1315C
2583 858825E8E59EDA0E39DF24C5C0E8C04126816A80D23232ECA1E0DCA95B14F8AF
2584 B2057A682D8728B6AD59BC57A0274C7AE0D303465087D3C8B9FE9DF2F2A9011B
2585 513C163A62834E7CDB5381A5EBBB30FD9353DD2B12636F6D650F284978F2
2586 0000000000000000000000000000000000000000000000000000000000000000
2587 0000000000000000000000000000000000000000000000000000000000000000
2588 0000000000000000000000000000000000000000000000000000000000000000
2589 0000000000000000000000000000000000000000000000000000000000000000
2590 0000000000000000000000000000000000000000000000000000000000000000
2591 0000000000000000000000000000000000000000000000000000000000000000
2592 0000000000000000000000000000000000000000000000000000000000000000
2593 0000000000000000000000000000000000000000000000000000000000000000
2597 %!PS-AdobeFont-1.1: CMMI7 1.100
2598 %%CreationDate: 1996 Jul 23 07:53:53
2599 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
2601 /FontInfo 7 dict dup begin
2602 /version (1.100) readonly def
2603 /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
2604 /FullName (CMMI7) readonly def
2605 /FamilyName (Computer Modern) readonly def
2606 /Weight (Medium) readonly def
2607 /ItalicAngle -14.04 def
2608 /isFixedPitch false def
2610 /FontName /CMMI7 def
2613 /FontMatrix [0.001 0 0 0.001 0 0] readonly def
2615 0 1 255 {1 index exch /.notdef put} for
2634 /FontBBox{0 -250 1171 750}readonly def
2637 D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE
2638 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B
2639 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470
2640 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B
2641 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE
2642 D919C2DDD26BDC0D99398B9F4D03D77639DF1232A4D6233A9CAF69B151DFD33F
2643 C0962EAC6E3EBFB8AD256A3C654EAAF9A50C51BC6FA90B61B60401C235AFAB7B
2644 B078D20B4B8A6D7F0300CF694E6956FF9C29C84FCC5C9E8890AA56B1BC60E868
2645 DA8488AC4435E6B5CE34EA88E904D5C978514D7E476BF8971D419363125D4811
2646 4D886EDDDCDDA8A6B0FDA5CF0603EA9FA5D4393BEBB26E1AB11C2D74FFA6FEE3
2647 FAFBC6F05B801C1C3276B11080F5023902B56593F3F6B1F37997038F36B9E3AB
2648 76C2E97E1F492D27A8E99F3E947A47166D0D0D063E4E6A9B535DC9F1BED129C5
2649 123775D5D68787A58C93009FD5DA55B19511B95168C83429BD2D878207C39770
2650 012318EA7AA39900C97B9D3859E3D0B04750B8390BF1F1BC29DC22BCAD50ECC6
2651 A3C633D0937A59E859E5185AF9F56704708D5F1C50F78F43DFAC43C4E7DC9413
2652 44CEFE43279AFD3C167C942889A352F2FF806C2FF8B3EB4908D50778AA58CFFC
2653 4D1B14597A06A994ED8414BBE8B26E74D49F6CF54176B7297CDA112A69518050
2654 01337CBA5478EB984CDD22020DAED9CA8311C33FBCC84177F5CE870E709FC608
2655 D28B3A7208EFF72988C136142CE79B4E9C7B3FE588E9824ABC6F04D141E589B3
2656 914A73A42801305439862414F893D5B6C327A7EE2730DEDE6A1597B09C258F05
2657 261BC634F64C9F8477CD51634BA648FC70F659C90DC042C0D6B68CD1DF36D615
2658 24F362B85A58D65A8E6DFD583EF9A79A428F2390A0B5398EEB78F4B5A89D9AD2
2659 A517E0361749554ABD6547072398FFDD863E40501C316F28FDDF8B550FF8D663
2660 9843D0BEA42289F85BD844891DB42EC7C51229D33EE7E83B1290404C799B8E8C
2661 889787CDC2BAF26F242EBDCFACBDBB4366B3FF8B61EB77A2D5CB8ED043CC677F
2662 065CB219AE7093997133905126A3555B89E83F0FEA679B2E45E3C4D16BB578F6
2663 83778A44C76A5EC27B66C8D35AFB9F04D1979A59007A57A3B36EF9FA34CE5233
2664 324EC98F38FF79B7F6C29D16C498D0F26FBE1E2CFC9A46EA99F7717795F145F4
2665 A5565AF88877C525ECD0E9ECD1D19B731E50363A46D5B576351B4657116EA4AE
2666 60FD15F8F94834684DA50CB1B30D2B647AAFB2E46AFE1B18CB859210A02318F5
2667 5FFAC83A06F9A29D11C64BF5F3B2F05F7573F6AB8C938C783F832674A775B047
2668 C8F9249ECA759C70C7DBE31A20BE54981042CF338C20FAB5101FE265A2A2848A
2669 05D5B8743FDBFFB746014AFD04E194767578BB4BC09C4BA1718654F22BE0923A
2670 ACDBBC1D55536150E3C8882DDE937CC0FDCD022DF344C7BFDEA6C7DCA46DF1A0
2671 E650760D02F9FEA92E2054BD3AB7929C2681D29302935DF4EBBC79E94BFF2981
2672 6AA850454DD5D1484B7B2C77E041B8D8704EEC0C125F876611B8734F92D2D42F
2673 1E105D556D760A67D53F63C21F2966ECEA481FCBA69A085474D09244E57A2949
2674 515CC7E42F3BC53D3351582F413CBE9D5F0AA250010DF0B8852DCDEFDB413E6A
2675 0A52476549E949B19FAB5ADBC822B75CE2BAFCB9AA2BDD0F1B09A0488909FAF7
2676 5248E195C9FECD66D31D2154BE3C5F7E9D5999A3D98887FF6AC592AAC1B333BD
2677 2BA0E7FEBE34AAD138972FFB0893B4322E8645A207120454BC08C20E4261B48D
2678 D4A334431324EBA58D35756A8B8B2FD10B2D83021582F4606FDB40ECD6719195
2679 938531D9645973067D2444D81E302BE473EE06BB0893331F84AB44249C56F527
2680 BE62E63C2478BE969A713BB65D6483DE21E6AEB9F1EAF0372A05BE6FC8329D24
2681 8267497DD6B34210744A5C2EA400B522A40C59F9996D3753D9BA6A5E14878AC3
2682 0E15662ED4D857D9719D1B0F0C2A4B74F2DC3E9702DE4E2C2F10F9393A21F9B0
2683 C4B115359D25C9F2DA0128A91AE272ABFD45A4F454CC9D7A064FD0E639CD7BBE
2684 E21ADF9346AA80F24999CA788B4A8FED53E3388664B9D51D6E2F4FADD3A70AC9
2685 8243F24072A524F43F5D72CFE53060EA80636B66B6399CA44F2E74E0D10C97A2
2686 3C0205E7D880453E46BC1547FF2CBFAD095757F030D647E3E86F3224B336F26A
2687 D6835FE239158219B5FD715B3B2E8F74A053BE279A1188E2950E62DF353AC6A3
2688 BDD4F2E80225FA9DBD60E648DD0C5B4537D37F529F9E05D273422A577AD06102
2689 5C4DD3BF98C4348C3164EFFE730583EFBC984E752E634045F005A006F983AFD7
2690 E52F3DB0775E8C563E7BA885350F82680252F88BE2779C407398FC10F4BD5B47
2691 67D59D232048FCEB25F25CFB1CDBF9424112F2296615EC701949BAD7214CD031
2692 3CEE6CBE843A3AE24171DC8DF8E2187857C95EEADD57209F35A1F395BD1FC1D7
2693 8A897F8DDC326F7D54554685A5360E28CCF0E140E00CE7BAA3E5D31BB9835CA7
2694 5BD8EDF15F75CF786724CA913F9F53A0D31E2F0E4965D2D3A218B09155BEAF25
2695 852D8407C2D1F14D7A1EB2FAE19752BECCD343E3FA070294B572C31D4F0773AF
2696 1EDC366D7938F5D3AD59D0B752B7631FF6C5D1FCA3D14EA18FEA28DE9B208C8A
2697 BEEBE3E8D3CAC61E769CC6A02971E6FF9A5E464551912750C604E314C4A2EA60
2698 DE5372EBAB851336E4DB3B7736A8A836283D97CA05D3F68373EE53DB20B54E6B
2699 F632C08B90644B190B2AF07423F5E432442BA187E15C5D70458E2D3EEAB2BB81
2700 54870B4ECA71C5D3E8F8BED323E6B2BF0014B66ABD4D7DC362CD4FBE29D0D6F4
2701 5AEA8CFC020F9B3B9D30BBE3E8AB88353ED669F70B0117E792BCFFE56D1CA794
2702 A2E2601C43F02E71F5A59D9EE6B9580C54FCFC09706FBD2BE11EAE3C0CB6F0AF
2703 D1A1116CB023E17340C9BCBE291BDA5BA88866E3D8862F13772A3CAF168970D3
2704 ECE65BCE9CD69D7BB87D42D75F3EC10480B642BC7C06797CC24B06ED2459538C
2705 E73327A102689DF0E16258CBA0F6793E226DF350930442A2A904A3F537604BD7
2706 479E0EFCA3EE2AB78E63C028673683D203BDB1F30480BF01C50162FEEF71917F
2707 B240CF393F6D5E8AF3E8E2F1A9CA0D0EE0E8B1449890250FAD0A8DFB1FBC663B
2708 2E225613EB5D1A1B0BCE536B4999428034EC9BA602A4A605D64E6F7204413669
2709 1A295DB9DFF2EFB1A2FD4153A2714D4FB9EB868CE0C20065932562F271B8F0C0
2710 1645F0DACBF12BDC4C162749B986CBD7ABDAEAD8DD94B3C2B87D1C9E18DE3F45
2711 E9B8A21630EE83E832C6A3887D3150684F1F9B28ED4C438A145B7C26ABC7B41D
2712 22D633E713A146B718894055A0C5ACE6D556E9882EF23E7229D00E2038251DE6
2713 71EBF0B910E4B2ABF00774F3BAFDA91B893E217CFAA277CAB718D21E2432921B
2714 B82C5FFB8BF276719F6815C09493BC8FE82E33DB0EF703F3F54890D4129102A7
2715 5FC02DF9701988D3F6B5445793205FDB224C61C9D9C30E262C044D773BCEAF69
2716 6162C2C76EDB31978907A8F5EB41A5B2A48EAB6C1195655F6E6997B6D9A5A6C0
2717 A78105E503F1E02DF706DB93DC8AF589BCFD6ADAF983541DEAC144F640DD4582
2718 7AE7688E17150775A69DDF03AFD9594B715D3722589AE210157F44692F330AC3
2719 F5260A3A795803A001E4342BB0474A23734F0D779FFBD7FA96FF81418DECD960
2720 9BACEF3159544A5A167705B297D517A49CB87D8FF5DF8A8C1EA77671AAB3AD93
2721 6EE3F25283820B64F400FC633043F5242F86AD93C1B7F0246CA60B4C894C87F2
2722 EF125ED3C271B45F90AE0B937E9F763C84256F3F47BDFB83CE926A8C371191AC
2723 312928DF5C87A3282A881A520592C62295408AD92A767E1084861DB010919616
2724 59FD6DE85787A18CB27DC6C0C2F4DDD68CA539D900774696CEB53FBAA4CA6BF9
2725 4D7AFF39DB99019B8008D8403CFB0B56CD84E592FA5CE57E4BB97C57C8FD80C4
2726 7BCC26E150DBFAB0CA59A0ACA70345CD00B0B00428421C13173D49D74F8D6684
2727 302AC70BBD77036FC71750D670F8B0C8162BCEF3DB3CFF161FA1A18F9FBD23C9
2728 CFE9E9AE82B804B236F74EB2A197936EBAFB01D4E6939B90A4BC5350BDCC0FBD
2729 49E97502F9125C11F8C7BA7B2C20074766D9D431ED27039C82D87C35C3E7D318
2730 2830647F250858FE041E01BFAC3B68ADC806BA957074E078B2429C872B8F5AC3
2731 3742327FF14FC0E3C92F3288FA564B8679EA8D8F12241B8AB3D838697B8E77E5
2732 9850C9A9A8C003973B6A8D01EE6481ADD3EA7170FDEA3D7154A3B6CC7A57E77B
2733 8EEDACF237DBE78500A1A8BA50D742A0E96155BA4FE0B957739BDF7A3750813F
2734 3E46A33D18126974A28D776CC89A462A4468B5A83B9504953EF2F860804B5858
2735 CBA60B752245F82D6F6351150441DC1A1FF10D1C21E9D30C9372AC3C98EA4D0C
2736 F5D7F0ADFA32B4795F30AF0D70F3726B5554B401C56E9B8F22737CB95F2DC629
2737 8115139AD53EF5AEEAD88FB188A76EC9742DFDBF8FF7875C6AE1FC95FFC0CE5B
2738 DF1FCD7237BCFD950B51C7242AFD827DF3D8A33924FD382EB384E0D597B47402
2739 1439BE425507C45E2A3E84C2E10C2D3049A56D29EF07E7D8BA97AC78AC67712A
2740 E1250D02881E151A0B35323DB7965F0ADAB0FBCAC6993915FA369A9DD5B352F5
2741 CCA00FAA6058378CA6595873984EF6602C56DF9C2A3647316E3C1F223E40531A
2742 C2DF6531CB053D996577EE1C3084484456E01C1BE186AC66C14E640D3FFBA030
2743 78CD7A5A6D11562A5D939D21CD2C618E9648684A62DC5A0B7031FE9E4E46D443
2744 29BA0188D4334D93B2B08E5A1645D3DD8F89F6AD12DE50D712729212849614A0
2745 37F6FE2BA4AC810E536C02254554F461F912E904B2832C00E7FDC67A3972EEB5
2746 309599D6CD4C744DB0125FDA4C8514FE0E1F7E0E65ACEAAD0A01DC92EF630A1D
2747 5B57BBE25DF1F7A184E9D8DC6F65F139725BC4AB4CB085AF49A2260838DE4985
2748 084C7DBE968D16B03E4CC33FEF7CA14AB0FED4A7B2F3E25254D9AD5375BE6B8C
2749 8A5F649849F06EE2E4230F33E8AF7B2305315021C106C3C162739A7D8B8F251E
2750 58F206991E6126D4AC94AB025F3901F3DFDA06D949DD8454581501DC58D813CB
2751 DFEFCBA7B4E77F3071451E06310E8E2FE68A2DF24A96D6FA97F0CADA5D583B4C
2752 D69DCE527D0595ED1926D98EF6E9244B01B69CE38FDC29164CDD044F460FDE8C
2753 3E0D42EAAA1FE3FB78852CCC182A29B3F6CD100BAD23609C1E628F6F6F87C9B4
2754 140556B9E7B4F959926074576186A3A29ACCF2F087B790F3D74657C5172D511B
2755 DD0D469E3A5C6020359CBAF5E30FA2069644DF98E98D972ACEB4022A56EB7D2B
2756 86A6F5F7F8CBB569425E7FF4FEECE58ABAF7A0ACE28D56938F5373441E444B0A
2757 67EDA16E5C8D503EEF9891CA7DA993087DBD9E725D1B21CEF96A9B5D8144D00E
2758 D980B98D4DFBA4D84FDC8EDCE0847D979FADCA832E6EA28485F6A36024ADEE8C
2759 08F7848B2B2AC7806B713D6E6B9FB4FE1EDDD17AE2F9D52E705F4F23386977A0
2760 FACEE53745A829D745A641E36963E61E99196830241BE1F1350F1A25D3D1F8AD
2761 05797E1E1520F87AD6867E6744946AC63F3ED1CB18F6AF5BC0A2D01D40FA85BD
2762 FDB0EA39A2224783B23FC254007F7035668C2D937790C75BC5EDEBCC1EFF361F
2763 9E0F3DCB1ED7A8095DE536C8BB9221CD5A5E038DC9C2ECAF59BEBA15C280FE7F
2764 E8E237C804A48D69039ABF7D57F8410C64B97B4BB058A1BC3D066DDA0CDF6A7E
2765 67D6BCD368F25BE95A7BCFF7FDBCAE674EE1035E0D2FF7CE93AD592BA10CF31F
2766 5C7F53A42D6579933E855F94AB40B4CA7D3C001C8A13EB69784958E64348D73F
2767 50914BF5B3C238D1B9CA0BBD50917430062D848833CB80FDC5FACB8131A6587F
2768 182FA0CB4CD5B2883D3A5D464D84559A38AFBEBE68028B40B33442AA225689E9
2770 0000000000000000000000000000000000000000000000000000000000000000
2771 0000000000000000000000000000000000000000000000000000000000000000
2772 0000000000000000000000000000000000000000000000000000000000000000
2773 0000000000000000000000000000000000000000000000000000000000000000
2774 0000000000000000000000000000000000000000000000000000000000000000
2775 0000000000000000000000000000000000000000000000000000000000000000
2776 0000000000000000000000000000000000000000000000000000000000000000
2777 0000000000000000000000000000000000000000000000000000000000000000
2780 TeXDict begin 39139632 55387786 1000 600 600
2781 (D:/Texte/Sensors/Fusion/Fusion-chapitre/Fusion-chapter.dvi)
2782 @start /Fa 133[27 31 1[47 1[35 20 27 27 1[35 35 35 51
2783 20 31 20 20 35 35 20 31 35 31 35 35 12[39 35 43 1[43
2784 1[47 59 2[31 23 2[43 43 51 47 1[43 6[23 1[35 1[35 35
2785 35 1[35 1[35 1[18 23 18 2[23 23 23 39[{ TeXBase1Encoding ReEncodeFont }
2786 49 70.5687 /Times-Italic rf /Fb 175[70 80[{}1 58.1154
2787 /CMEX10 rf /Fc 201[0 50[31 2[45{}3 41.511 /CMSY5 rf /Fd
2788 194[43 8[28 28 28 28 28 48[{}6 41.511 /CMR5 rf /Fe 193[65
2789 62[{}1 83.022 /MSAM10 rf /Ff 214[24 24 40[{}2 49.8132
2790 /CMR6 rf /Fg 205[42 50[{}1 49.8132 /CMSY6 rf /Fh 167[102
2791 88[{}1 66.4176 /CMEX10 rf /Fi 173[48 82[{}1 66.4176 /MSBM7
2792 rf /Fj 139[24 7[20 1[25 22 8[26 17[48 78[{}6 49.8132
2793 /CMMI6 rf /Fk 162[20 1[20 29[55 11[35 35 4[55 1[27 27
2794 40[{}8 66.4176 /CMR8 rf /Fl 133[33 1[40 2[41 25 33 32
2795 3[43 62 21 37 29 24 3[33 36 2[37 29 11[41 43 3[54 56
2796 6[55 2[58 2[53 3[35 55 1[20 23[33 16[35 5[45 9[59 1[{}30
2797 66.4176 /CMMI8 rf /Fm 138[39 23 1[31 1[39 35 39 1[20
2798 2[20 39 35 23 31 39 1[39 35 12[47 5[51 7[43 14[35 35
2799 35 35 35 35 35 2[18 46[{ TeXBase1Encoding ReEncodeFont }26
2800 70.5687 /Times-Bold rf /Fn 139[23 5[37 1[20 31 24 22
2801 38[43 66[{}7 41.511 /CMMI5 rf /Fo 201[0 3[45 66 19 14[66
2802 12[52 16[34 2[52{}8 58.1154 /CMSY7 rf /Fp 206[25 49[{
2803 TeXBase1Encoding ReEncodeFont }1 49.3978 /Times-Roman
2804 rf /Fq 194[51 8[33 33 33 33 33 4[51 1[26 26 40[{}9 58.1154
2805 /CMR7 rf /Fr 167[120 4[69 2[88 14[73 73 3[74 1[74 1[74
2806 6[73 73 14[66 66 5[62 6[61 61 50 50 6[48 48 6[38 38{}21
2807 83.022 /CMEX10 rf /Fs 173[60 3[60 78[{}2 83.022 /MSBM10
2808 rf /Ft 135[44 9[46 69 23 2[23 7[42 3[23 1[23 29[65 1[23
2809 1[42 42 42 42 42 42 42 42 42 42 4[65 1[32 32 40[{}23
2810 83.022 /CMR10 rf /Fu 133[39 41 47 1[40 1[30 39 37 1[42
2811 40 50 73 25 43 34 29 3[39 43 36 1[44 10[48 7[67 81 5[65
2812 1[61 69 1[63 3[65 42 65 23 23 23[39 5[36 10[41 2[37 1[47
2813 53 4[65 4[69 1[{}39 83.022 /CMMI10 rf /Fv 133[39 44 50
2814 66 44 55 28 39 39 1[50 50 55 78 28 50 1[28 55 50 1[44
2815 1[44 1[50 12[61 55 2[61 1[72 1[61 2[39 2[66 66 72 66
2816 66 66 11[50 50 50 50 50 2[25 4[33 33 40[{
2817 TeXBase1Encoding ReEncodeFont }41 99.6264 /Times-BoldItalic
2818 rf /Fw 206[29 49[{ TeXBase1Encoding ReEncodeFont }1 58.1154
2819 /Times-Roman rf /Fx 149[23 2[42 42 44[46 46 1[0 3[55
2820 83 7[83 7[83 6[65 65 3[65 65 4[42 12[65 1[65{}17 83.022
2821 /CMSY10 rf /Fy 107[46 25[32 37 37 55 37 42 23 32 32 42
2822 42 42 42 60 23 37 1[23 42 42 23 37 42 37 1[42 12[46 3[51
2823 3[46 2[28 7[51 13[42 42 42 2[21 28 21 2[28 28 28 35[42
2824 42 2[{ TeXBase1Encoding ReEncodeFont }41 83.022 /Times-Italic
2825 rf /Fz 152[35 35 47[0 3[47 17[71 10[55 5[35 12[55 1[55{}9
2826 66.4176 /CMSY8 rf /FA 75[23 29[35 1[31 25[31 35 35 51
2827 35 35 20 27 23 35 35 35 35 55 20 35 20 20 35 35 23 31
2828 35 31 35 31 7[51 51 67 51 51 43 39 47 1[39 51 51 63 43
2829 51 27 23 51 51 39 43 51 47 47 51 65 4[20 20 35 35 35
2830 35 35 35 35 35 35 35 20 18 23 18 40 1[23 23 37[39 2[{
2831 TeXBase1Encoding ReEncodeFont }74 70.5687 /Times-Roman
2832 rf /FB 135[38 3[25 31 31 3[41 1[21 35 27 23 4[35 13[39
2833 7[53 11[50 5[52 31[31 10[34 5[43 11[{}17 58.1154 /CMMI7
2834 rf /FC 134[50 50 72 50 55 33 39 44 1[55 50 55 83 28 55
2835 1[28 55 50 33 44 55 44 55 50 9[100 3[55 72 1[61 78 72
2836 4[39 2[61 66 72 72 1[72 10[50 50 50 50 50 50 2[25 46[{
2837 TeXBase1Encoding ReEncodeFont }42 99.6264 /Times-Bold
2838 rf /FD 138[46 28 32 37 1[46 42 46 69 23 2[23 46 42 1[37
2839 1[37 46 42 12[55 7[55 7[60 2[60 12[42 42 42 42 2[21 43[46
2840 2[{ TeXBase1Encoding ReEncodeFont }26 83.022 /Times-Bold
2841 rf /FE 64[37 42[37 25[37 42 42 60 42 42 23 32 28 42 42
2842 42 42 65 23 42 23 23 42 42 28 37 42 37 42 37 3[28 1[28
2843 3[78 1[60 51 46 55 2[60 60 74 51 60 32 28 60 60 46 51
2844 60 55 55 60 1[37 3[23 23 42 42 42 42 42 42 42 42 42 42
2845 23 21 28 21 47 1[28 28 28 35[46 46 2[{ TeXBase1Encoding ReEncodeFont }
2846 73 83.022 /Times-Roman rf /FF 134[66 1[96 1[74 44 52
2847 59 2[66 74 111 1[74 1[37 74 1[44 59 1[59 1[66 13[74 4[96
2848 7[81 1[96 2[96 65[{ TeXBase1Encoding ReEncodeFont }21
2849 132.835 /Times-Bold rf /FG 139[39 1[52 1[65 7[65 2[52
2850 3[58 29[84 17[58 49[{ TeXBase1Encoding ReEncodeFont }8
2851 116.231 /Times-Bold rf end
2854 %%Feature: *Resolution 600dpi
2860 TeXDict begin 1 0 bop 523 282 a FG(Chapter)27 b(1)523
2861 448 y FF(An)33 b(Asynchr)n(onous)g(Diffusion)g(Scheme)f(f)m(or)i(Data)
2862 523 598 y(Fusion)f(in)g(Sensor)g(Netw)o(orks)523 886
2863 y FE(Jacques)20 b(M.)g(Bahi,)h(Abdallah)e(Makhoul)f(and)i(Ahmed)f
2864 (Mostef)o(aoui)523 1720 y FD(Abstract)34 b FE(One)17
2865 b(important)e(issue)j(in)f(sensor)f(netw)o(orks)g(is)i(parameters)e
2866 (estimation)g(based)h(on)523 1820 y(nodes)i(measurements.)f(Se)n(v)o
2867 (eral)h(approaches)f(ha)n(v)o(e)h(been)h(proposed)d(in)j(the)g
2868 (literature)f(\(cen-)523 1919 y(tralized)i(and)g(distrib)n(uted)f
2869 (ones\).)g(Because)i(of)f(the)g(particular)f(noisy)h(en)m(vironment,)d
2870 (usually)523 2019 y(observ)o(ed)26 b(in)j(sensor)f(netw)o(orks,)f
2871 (centralized)g(approaches)g(are)h(not)g(ef)n(\002cient)g(and)g(present)
2872 523 2119 y(se)n(v)o(eral)g(dra)o(wbacks)f(\(important)f(ener)o(gy)h
2873 (consumption,)f(routing)h(information)f(maintain-)523
2874 2218 y(ing,)19 b(etc.\).)g(In)g(distrib)n(uted)g(approaches)e(ho)n(we)n
2875 (v)o(er)m(,)g(nodes)i(e)o(xchange)e(data)j(with)f(their)h(neigh-)523
2876 2318 y(bours)f(and)f(update)h(their)g(o)n(wn)g(data)g(accordingly)e
2877 (until)j(reaching)d(con)m(v)o(er)o(gence)f(to)k(the)f(right)523
2878 2417 y(parameters)24 b(estimate.)i(These)f(approaches,)e(although)h
2879 (pro)o(vide)f(some)i(rob)n(ustness)g(against)523 2517
2880 y(nodes)d(f)o(ailure,)g(does)h(not)g(address)f(important)g(issues)h(as)
2881 h(communication)c(delay)j(tolerance)523 2617 y(and)d(asynchronism)e
2882 (\(i.e.,)h(the)o(y)h(require)f(that)h(nodes)g(remain)f(synchronous)e
2883 (in)k(communica-)523 2716 y(tion)k(and)f(processing\).)f(In)i(this)g
2884 (chapter)m(,)f(we)h(tackle)g(these)g(issues)h(by)f(proposing)d(a)k
2885 (totally)523 2816 y(asynchronous)21 b(scheme)j(that)g(is)g
2886 (communication)d(delay)j(tolerant.)f(The)g(e)o(xtensi)n(v)o(e)g
2887 (simula-)523 2916 y(tions)d(series)h(we)g(conducted)d(ha)n(v)o(e)h(sho)
2888 n(wed)g(the)i(ef)n(fecti)n(v)o(eness)d(of)i(our)g(approach.)523
2889 3281 y FC(1.1)41 b(Intr)n(oduction)523 3513 y FE(Recent)17
2890 b(years)f(ha)n(v)o(e)h(witnessed)f(signi\002cant)h(adv)n(ances)e(in)i
2891 (wireless)h(sensor)e(netw)o(orks)g(which)523 3613 y(emer)o(ge)21
2892 b(as)i(one)f(of)g(the)g(most)h(promising)d(technologies)h(for)h(the)g
2893 (21)2555 3583 y FB(st)2638 3613 y FE(century)f([1)o(].)h(In)g(f)o(act,)
2894 523 3713 y(the)o(y)17 b(present)f(huge)g(potential)g(in)i(se)n(v)o
2895 (eral)e(domains)g(ranging)g(from)g(health)h(care)g(applications)523
2896 3812 y(to)24 b(military)g(applications.)e(In)i(general,)f(the)h
2897 (primary)e(objecti)n(v)o(e)h(of)h(a)g(wireless)h(sensor)f(net-)523
2898 3912 y(w)o(ork)g(is)h(to)g(collect)f(data)g(from)f(the)i(monitored)d
2899 (area)i(and)g(to)g(transmit)h(it)g(to)f(a)h(base)f(station)523
2900 4011 y(\(sink\))d(for)g(processing.)g(Often,)g(the)h(ultimate)f(goal)h
2901 (is)g(to)g(deri)n(v)o(e)f(an)h(estimate)g(of)g(a)g(parame-)523
2902 4111 y(ter)i(or)f(function)f(of)h(interest)h(from)f(these)g(ra)o(w)h
2903 (data)f(\(e.g.,)g(source)g(location,)f(etc.\))h([2,)g(3,)h(4)o(].)p
2904 523 4182 851 4 v 523 4279 a FA(Computer)19 b(Science)g(Laboratory)-5
2905 b(,)20 b(Uni)n(v)o(ersity)f(of)f(Franche-Comt)t(\264)-27
2906 b(e)21 b(\(LIFC\))523 4362 y(Rue)d(Engel-Gros,)i(BP)e(527)523
2907 4445 y(90016)h(Belfort)g(Cede)o(x,)f(France)523 4528
2908 y(e-mail:)g Fz(f)p FA(\002rstname.lastname)p Fz(g)p FA(@uni)n
2909 (v-fcomte.fr)3252 4960 y(1)p eop end
2911 TeXDict begin 2 1 bop 523 100 a FA(2)1011 b(Jacques)20
2912 b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
2913 282 y FE(In)23 b(case)h(where)f(the)h(sensors)g(are)f(carrying)f(out)h
2914 (multiple)g(tasks)h(and)f(need)g(this)h(estimate)g(to)523
2915 382 y(mak)o(e)c(local)g(decision,)f(the)h(deri)n(v)o(ed)f(estimate)h
2916 (is)h(then)f(sent)h(back)e(to)h(them.)623 482 y(The)j(abo)o(v)o(e)g
2917 (data)g(processing)g(scheme)g(is)i(usually)f(kno)n(wn)e(as)j
2918 Fy(centr)o(alized)e(data)g(fusion)p FE(.)523 581 y(In)i(this)g(scheme,)
2919 f(each)h(sensor)g(sends)g(its)h(data)e(either)h(directly)-5
2920 b(,)23 b(if)j(it)f(is)h(located)e(in)i(the)f(im-)523
2921 681 y(mediate)e(neighbourhood)18 b(of)23 b(the)g(sink,)g(or)f(by)h
2922 (multi)g(hops)g(relays)f(to)i(the)f(data)g(fusion)f(cen-)523
2923 780 y(ter)k(via)f(wireless)i(communications.)22 b(Besides)27
2924 b(the)f(important)e(cost)i(in)f(term)h(of)f(ener)o(gy)f(re-)523
2925 880 y(sources)e(consumption)e(due)i(mainly)f(to)i(wireless)g
2926 (communications)d(\(i.e.,)i(sensors)g(that)g(are)523
2927 980 y(located)c(v)o(ery)f(f)o(ar)i(a)o(w)o(ay)f(from)g(the)h(base)f
2928 (station,)h(requires)e(an)i(important)e(amount)g(of)h(ener)o(gy)523
2929 1079 y(to)26 b(send/recei)n(v)o(e)f(data)h(to/from)f(the)h(sink\),)g
2930 (this)h(scheme)f(does)g(not)g(hold)f(good)g(rob)n(ustness)523
2931 1179 y(against)d(communication)d(loss)k(neither)f(against)f(nodes)h(f)o
2932 (ailures.)g(Furthermore,)d(it)k(requires)523 1279 y(that)g(each)f(node)
2933 g(maintains)g(rooting)g(information)e(to)j(reach)f(the)h(sink.)f(This)h
2934 (is)h(particularly)523 1378 y(challenging)18 b(and)h(resources)g
2935 (consuming)f(in)i(case)h(where)e(netw)o(ork)g(topology)f(is)j
2936 (constantly)523 1478 y(changing)d(due)h(either)g(to)h(nodes)f(f)o
2937 (ailures)h(or)f(communications)e(unreliability)i(or)g(nodes)g(mo-)523
2938 1577 y(bility)-5 b(.)623 1677 y(Distrib)n(uted)38 b(approaches)e(were)i
2939 (proposed)f(as)i(interesting)e(alternates)i(based)f(on)g
2940 Fy(in-)523 1777 y(network)31 b FE(processing)e(which)i(may)-5
2941 b(,)29 b(in)i(man)o(y)f(cases,)h(signi\002cantly)f(decrease)h(the)f
2942 (ener)o(gy)523 1876 y(consumed.)17 b(In)j(f)o(act,)f(in)h(such)f
2943 (approaches,)e(nodes)i(do)g(not)g(need)g(to)g(hold)g(global)g(kno)n
2944 (wledge)523 1976 y(about)e(the)h(current)f(netw)o(ork)g(topology)f
2945 (since)i(each)g(node)f(communicates)f(only)h(with)h(its)i(im-)523
2946 2076 y(mediate)k(neighbours.)e(The)i(unkno)n(wn)e(parameter)h(estimate)
2947 i(is)g(then)g(successi)n(v)o(ely)e(carried)523 2175 y(out)18
2948 b(through)e(local)i(computation)e(from)h(the)h(e)o(xchanged)d(data.)j
2949 (The)g(adv)n(antages)e(of)i(such)g(ap-)523 2275 y(proaches)23
2950 b(are)g(numerous:)g(\(a\))g(no)h(central)f(data)h(fusion)f(base)h
2951 (station)g(is)h(required)d(as)j(e)n(v)o(ery)523 2374
2952 y(node)d(holds)h(the)g(estimate)h(of)f(the)g(unkno)n(wn)e(parameter;)h
2953 (\(b\))h(multi-hop)e(communications)523 2474 y(are)g(a)n(v)n(oided)e
2954 (\(only)h(direct)g(communications)e(between)i(neighbours)e(are)j
2955 (needed\))e(and)h(con-)523 2574 y(sequently)j(maintaining)f(rooting)h
2956 (data)g(is)i(not)f(needed)f(an)o(y)g(more;)g(\(c\))h(better)g(beha)n
2957 (viour)d(is)523 2673 y(observ)o(ed)i(in)i(front)e(of)i(communication)c
2958 (unreliability;)j(\(d\))g(Netw)o(ork)g(scalability)g(is)i(better)523
2959 2773 y(supported)i(than)h(in)g(centralized)g(approach)e(due)i(mainly)g
2960 (to)h(direct)f(communications)e(be-)523 2873 y(tween)20
2961 b(neighbours;)e(etc.)623 2972 y(Ne)n(v)o(ertheless,)23
2962 b(man)o(y)g(of)h(the)g(proposed)f(distrib)n(uted)g(approaches)f
2963 (present)i(some)g(insuf-)523 3072 y(\002ciencies)f(\(see)g(ne)o(xt)f
2964 (section\).)g(F)o(or)h(instance,)f(the)h(\003ooding)e(approach)g
2965 (requires)h(that)h(each)523 3171 y(node)18 b(holds)g(a)h(relati)n(v)o
2966 (ely)e(important)g(storage)h(space.)h(Other)f(approaches)e(mak)o(e)j
2967 (the)f(unprac-)523 3271 y(tical)24 b(assumption)f(of)g(communication)e
2968 (synchronization)g(between)i(sensors)h([2)o(,)g(5])g(and)f(do)523
2969 3371 y(not)18 b(tolerate)g(communication)e(delays)i(neither)f(nodes)h
2970 (f)o(ailures.)g(These)g(weaknesses)g(remain)523 3470
2971 y(v)o(ery)j(restricti)n(v)o(e)h(in)g(sensor)g(netw)o(ork)f(en)m
2972 (vironment)e(where)j(on)f(one)h(hand)f(nodes)h(are)g(prone)523
2973 3570 y(to)17 b(frequent)d(f)o(ailures)i(as)h(the)o(y)f(are)h(dri)n(v)o
2974 (en)d(by)i(batteries)h(and)e(on)h(the)h(other)e(hand)h(communica-)523
2975 3670 y(tions)21 b(are)g(almost)g(unreliable)f(and)h(prone)e(to)j
2976 (delays.)e(Moreo)o(v)o(er)m(,)e(these)k(tw)o(o)f(limitati)n(v)o(e)g
2977 (fea-)523 3769 y(tures)i(lead,)g(in)g(addition)f(to)h(nodes)g(mobility)
2978 -5 b(,)21 b(to)j(dynamically)d(changing)g(netw)o(ork)h(topolo-)523
2979 3869 y(gies.)16 b(In)f(order)g(to)h(o)o(v)o(ercome)d(the)j(abo)o(v)o(e)
2980 e(mentioned)g(weaknesses,)h(we)h(propose)e(and)h(in)m(v)o(esti-)523
2981 3968 y(gate)g(in)h(this)g(chapter)f(a)h(no)o(v)o(el)f(approach)e(for)i
2982 (data)h(fusion)f(in)h(sensor)f(netw)o(orks.)g(The)g(k)o(e)o(y)h(idea)
2983 523 4068 y(behind)22 b(is)i(to)g(de)n(v)o(elop)d(a)j(consensus)e
2984 (algorithm)g(that)h(allo)n(ws)h(all)g(nodes)e(of)h(the)h(sensor)f(net-)
2985 523 4168 y(w)o(ork)16 b(to)g(track)g(the)g(a)n(v)o(erage)f(of)h(their)g
2986 (pre)n(vious)f(measurements)g([6)o(,)i(2)o(,)g(5)o(,)g(7)o(,)g(8)o(,)g
2987 (9,)f(10)o(,)h(11)o(,)f(12)o(].)523 4267 y(More)j(speci\002cally)-5
2988 b(,)19 b(our)g(proposition)f(is)j(based)e(on)h(an)g Fy(in-network)f
2989 (async)o(hr)l(onous)e(iter)o(ative)523 4367 y(algorithm)p
2990 FE(,)23 b(run)g(by)g(each)h(node)f(and)g(in)h(which)f(nodes)g
2991 (communicate)f(with)i(only)f(their)h(im-)523 4467 y(mediate)c
2992 (neighbours.)d(The)j(main)g(contrib)n(utions)e(of)i(our)f(w)o(ork)h
2993 (are:)523 4611 y Fx(\017)58 b FE(Our)23 b(approach)e(does)i(not)g
2994 (require)f(an)o(y)g(synchronization)e(between)j(nodes)f(as)i(it)g(is)g
2995 (basi-)623 4711 y(cally)i(asynchronous.)c(In)k(other)f(w)o(ords,)g
2996 (each)h(node)f(communicates)f(its)j(data)f(to)g(its)h(in-)p
2999 TeXDict begin 3 2 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)n
3000 (fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)581
3001 b(3)623 282 y FE(stantaneous)16 b(neighbours)f(at)j(its)g(o)n(wn)f
3002 (\224rhythm\224)e(i.e.,)i(no)g(delays)h(between)e(nodes)h(are)g(ob-)623
3003 382 y(serv)o(ed)f(in)g(our)h(approach.)d(This)j(is)h(particularly)d
3004 (important)g(because)h(in)h(the)g(synchronous)623 482
3005 y(schemes,)i(as)h(the)g(one)f(reported)f(in)i([2)o(],)g(an)o(y)e(delay)
3006 h(between)g(tw)o(o)h(nodes)f(in)h(the)g(netw)o(ork)623
3007 581 y(will)j(result)g(in)f(a)i(global)d(delay)h(o)o(v)o(er)g(the)g
3008 (whole)g(netw)o(ork)g(since)h(all)g(the)f(nodes)g(are)h(syn-)623
3009 681 y(chronous.)16 b(This)j(is)h(particularly)e(limitati)n(v)o(e)g(in)h
3010 (heterogeneous)d(sensor)j(netw)o(orks)f(where)623 780
3011 y(nodes)h(ha)n(v)o(e)h(dif)n(ferent)e(processing)h(speeds.)523
3012 880 y Fx(\017)58 b FE(As)27 b(a)f(consequence)e(of)j(its)g
3013 (asynchronism,)d(our)h(proposed)f(approach)g(totally)j(tolerates)623
3014 980 y(communication)14 b(delays.)j(This)g(feature)f(is)i(of)f(an)g
3015 (important)f(matter)g(because)h(sensor)g(net-)623 1079
3016 y(w)o(orks,)22 b(as)i(it)h(is)f(commonly)d(kno)n(wn,)h(are)h(prone)f
3017 (to)h(en)m(vironmental)d(perturbations)i([13)n(])623
3018 1179 y(when)d(communication)f(delays)h(occur)h(more)f(frequently)-5
3019 b(.)523 1279 y Fx(\017)58 b FE(The)24 b(proposed)f(distrib)n(uted)h
3020 (algorithm,)f(as)j(pro)o(v)o(en)d(theoretical)h(and)g(v)n(alidated)g(e)
3021 o(xperi-)623 1378 y(mentally)-5 b(,)17 b(supports)g(dynamic)g
3022 (topologies)g(and)h(guarantees)f(that)i(each)f(sensor)g(node)g(will)623
3023 1478 y(con)m(v)o(er)o(ge)f(to)j(an)g(accurate)f(estimate)i(of)f(the)g
3024 (unkno)n(wn)e(parameter)-5 b(.)623 1644 y(Ho)n(we)n(v)o(er)m(,)27
3025 b(as)j(for)e(an)o(y)h(iterati)n(v)o(e)g(approach,)d(our)j(approach)e
3026 (could,)h(under)g(certain)h(en-)523 1743 y(vironmental)37
3027 b(conditions,)h(consume)g(more)g(netw)o(ork)g(resources,)g(mainly)h
3028 (communica-)523 1843 y(tions,)15 b(than)g(other)g(centralized)f
3029 (approaches,)f(speci\002cally)i(in)h(\224perfect)e(en)m(vironment\224)e
3030 (where)523 1943 y(nodes)27 b(and)g(communications)e(are)j(totally)f
3031 (reliable)g(and)g(the)h(netw)o(ork)e(topology)g(is)i(\002x)o(ed.)523
3032 2042 y(Ne)n(v)o(ertheless,)h(we)i(note)g(here)f(that)g(our)g(concern)f
3033 (is)j(more)d(focused)h(on)g Fy(\224noisy)h(en)m(vir)l(on-)523
3034 2142 y(ment\224)20 b FE(in)h(which)e(communication)f(unreliability)g
3035 (and)i(nodes)f(f)o(ailures)h(are)g(usual.)523 2507 y
3036 FC(1.2)41 b(Ov)o(er)o(view)24 b(of)h(A)-10 b(v)o(eraging)25
3037 b(Pr)n(oblem)g(in)g(Sensor)h(Netw)o(orks)523 2740 y FE(The)20
3038 b(\002rst)g(and)g(the)g(simplest)g(approach)e(for)h(distrib)n(uted)g(a)
3039 n(v)o(erage)g(estimation)g(in)h(sensor)g(net-)523 2839
3040 y(w)o(orks)e(is)h(called)f Fy(\003ooding)e FE(approach)f([2].)j(In)f
3041 (this)i(approach,)d(each)i(sensor)f(node)g(broadcasts)523
3042 2939 y(all)22 b(its)g(stored)e(and)g(recei)n(v)o(ed)g(data)h(to)g(its)h
3043 (neighbours.)c(After)j(a)g(while,)g(each)g(node)e(will)j(hold)523
3044 3039 y(all)e(the)f(data)g(of)g(the)g(netw)o(ork)f(and)g(acts)i(as)g(a)f
3045 (fusion)g(center)f(to)h(compute)f(the)h(estimate)h(of)e(the)523
3046 3138 y(unkno)n(wn)26 b(parameter)-5 b(.)27 b(This)i(technique)e(has)h
3047 (ho)n(we)n(v)o(er)f(se)n(v)o(eral)h(disadv)n(antages)e([2)o(].)j
3048 (First,)523 3238 y(it)22 b(results)g(in)f(huge)g(amount)f(of)h(e)o
3049 (xchanged)e(duplicate)h(messages,)h(which)g(represents)g(a)g(real)523
3050 3337 y(limitation)c(in)h(en)m(vironments)d(lik)o(e)j(sensor)f(netw)o
3051 (orks.)f(Second,)h(\003ooding)e(requires)i(that)h(each)523
3052 3437 y(node)24 b(stores)h(at)h(least)f(one)g(message)g(per)f(node)g
3053 (\(in)h(order)f(to)h(compute)e(the)i(a)n(v)o(erage\).)e(This)523
3054 3537 y(could)k(lead)g(to)h(an)g(important)e(storage)h(memory)f
3055 (requirement)f(in)j(case)g(of)g(a)g(lar)o(ge)f(sensor)523
3056 3636 y(netw)o(ork)19 b(with)h(the)f(associated)h(operations)e(\(reads)h
3057 (and)g(writes\).)h(Finally)-5 b(,)19 b(it)i(is)f(ob)o(vious)e(that)523
3058 3736 y(those)23 b(requirements)e(will)j(consume)e(much)g(resources)g
3059 (leading)g(to)h(an)h(important)d(decrease)523 3836 y(of)f(the)g(whole)g
3060 (netw)o(ork)f(lifetime.)623 3935 y(Alternati)n(v)o(ely)-5
3061 b(,)22 b(in)j([3)o(])g(the)f(authors)g(proposed)f(a)i(scalable)f
3062 (sensor)h(fusion)e(scenario)h(that)523 4035 y(performs)33
3063 b(fusion)h(of)g(sensor)h(measurements)e(combined)g(with)h(local)h
3064 (Kalman)f(\002ltering.)523 4134 y(The)o(y)19 b(de)n(v)o(eloped)e(a)j
3065 (distrib)n(uted)f(algorithm)g(that)g(allo)n(ws)i(the)e(sensor)h(nodes)f
3066 (to)h(compute)e(the)523 4234 y(a)n(v)o(erage)e(of)g(all)i(of)f(their)f
3067 (measurements.)g(It)h(is)h(w)o(orthy)d(to)i(note)g(that)g(man)o(y)f
3068 (other)g(sensor)h(data)523 4334 y(fusion)i(approaches)g(are)h(based)f
3069 (on)h(Kalman)g(\002lters)h(and)e(mobile)h(agents)g([4)o(,)g(7,)g(14)o
3070 (,)h(10)o(,)f(11)o(].)p eop end
3072 TeXDict begin 4 3 bop 523 100 a FA(4)1011 b(Jacques)20
3073 b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)623
3074 282 y FE(An)24 b(iterati)n(v)o(e)f(method)g(for)g(distrib)n(uted)g
3075 (data)h(fusion)f(in)h(sensor)g(netw)o(orks)f(based)h(on)f(the)523
3076 382 y(calculation)i(of)i(an)f(a)n(v)o(erage)f(consensus)1762
3077 352 y Fw(1)1822 382 y FE(has)i(been)f(proposed)e(in)j([2)o(].)g(The)f
3078 (authors)f(con-)523 482 y(sider)h(that)f(e)n(v)o(ery)g(node)f(tak)o(es)
3079 i(a)g(noisy)f(measurement)f(of)i(the)f(unkno)n(wn)f(parameter)-5
3080 b(.)24 b(Each)523 581 y(node)d(broadcasts)g(its)j(data)e(to)g(its)i
3081 (neighbours)19 b(and)j(updates)f(its)j(estimation)d(according)g(to)h(a)
3082 523 681 y(weighted)c(sum)h(of)f(the)h(recei)n(v)o(ed)e(data.)h(In)h
3083 (this)g(scheme)g(all)g(the)g(communications)d(are)j(direct)523
3084 780 y(ones.)623 880 y(Although)34 b(the)i(abo)o(v)o(e)e(mentioned)g(w)o
3085 (orks)h(and)h(other)f(e)o(xisting)g(data)h(fusion)f(scenar)n(-)523
3086 980 y(ios)g(guarantee)e(some)h(le)n(v)o(el)g(of)g(rob)n(ustness)g(to)h
3087 (nodes)f(f)o(ailures)g(and)g(dynamic)f(topology)523 1079
3088 y(changes)e([2)o(,)h(3,)g(4)o(,)g(9,)g(5],)f(the)o(y)g(either)h(put)f
3089 (some)h(unpractical)e(assumptions)h(lik)o(e)h(nodes)523
3090 1179 y(synchronization)17 b(or)j(do)g(not)g(support)e(practical)i
3091 (issues)h(as)g(the)f(communication)e(delays.)623 1279
3092 y(T)-7 b(o)25 b(the)g(best)g(of)g(our)f(kno)n(wledge,)e(the)j(abo)o(v)o
3093 (e)f(issues)i(which)e(are)h(e)o(xtremely)e(important,)523
3094 1378 y(especially)29 b(in)h(noisy)f(en)m(vironments,)d(are)k(not)f(tak)
3095 o(en)g(into)g(account)f(in)i(pre)n(vious)e(data)h(fu-)523
3096 1478 y(sion)d(approaches.)e(In)i(this)g(chapter)m(,)f(we)h(present)g
3097 (an)g(asynchronous)d(data)j(fusion)f(scheme,)523 1577
3098 y(particularly)g(tailored)h(to)g(perturbed)f(sensor)h(netw)o(orks.)f
3099 (It)i(focuses)f(on)h(a)g(distrib)n(uted)e(iter)n(-)523
3100 1677 y(ati)n(v)o(e)k(algorithm)e(for)i(calculating)f(a)n(v)o(erages)g
3101 (o)o(v)o(er)g(asynchronous)e(sensor)j(netw)o(orks.)f(The)523
3102 1777 y(sensor)i(nodes)g(e)o(xchange)f(and)h(update)f(their)h(data)h(by)
3103 f(the)h(mean)f(of)g(a)h(weighted)f(sum)g(in)523 1876
3104 y(order)24 b(to)h(achie)n(v)o(e)g(the)g(a)n(v)o(erage)f(consensus.)g
3105 (The)h(suggested)f(algorithm)g(does)h(not)g(rely)g(on)523
3106 1976 y(synchronization)18 b(between)i(the)h(nodes)f(nor)h(does)f(it)i
3107 (require)e(an)o(y)g(kno)n(wledge)f(of)h(the)h(global)523
3108 2076 y(topology)-5 b(.)25 b(T)-7 b(o)29 b(round)d(up,)h(the)h(con)m(v)o
3109 (er)o(gence)d(of)i(the)h(proposed)e(algorithm)h(is)i(pro)o(v)o(ed)d(in)
3110 i(a)523 2175 y(general)19 b(asynchronous)e(en)m(vironment.)523
3111 2540 y FC(1.3)41 b(Asynchr)n(onous)26 b(Fusion)f(Scheme)523
3112 2790 y Fv(1.3.1)41 b(F)-7 b(ormalization)523 3022 y FE(A)20
3113 b(sensor)e(netw)o(ork)g(is)i(modelled)e(as)i(a)f(connected)e
3114 (undirected)g(graph)h Fu(G)23 b Ft(=)g(\()p Fu(V)5 b(;)14
3115 b(E)5 b Ft(\))p FE(.)20 b(The)f(set)523 3122 y(of)26
3116 b(nodes)g(is)i(denoted)d(by)h Fu(V)46 b FE(\(the)26 b(set)i(of)e(v)o
3117 (ertices\),)g(and)g(the)g(links)h(between)f(nodes)g(by)g
3118 Fu(E)523 3221 y FE(\(the)f(set)g(of)g(edges\).)f(The)g(nodes)g(are)h
3119 (labelled)g Fu(i)31 b Ft(=)g(1)p Fu(;)14 b Ft(2)p Fu(;)g(:)g(:)g(:)f(;)
3120 h(n)p FE(,)25 b(and)f(a)h(link)g(between)f(tw)o(o)523
3121 3321 y(nodes)g Fu(i)h FE(and)f Fu(j)31 b FE(is)25 b(denoted)f(by)g
3122 Ft(\()p Fu(i;)14 b(j)5 b Ft(\))p FE(.)25 b(The)g(dynamic)e(topology)g
3123 (changes)g(are)i(represented)523 3421 y(by)e(the)g(time)g(v)n(arying)e
3124 (graph)h Fu(G)p Ft(\()p Fu(t)p Ft(\))30 b(=)e(\()p Fu(V)5
3125 b(;)14 b(E)5 b Ft(\()p Fu(t)p Ft(\)\))p FE(,)24 b(where)f
3126 Fu(E)5 b Ft(\()p Fu(t)p Ft(\))24 b FE(is)g(the)f(set)h(of)f(acti)n(v)o
3127 (e)g(edges)523 3520 y(at)28 b(time)g Fu(t)p FE(.)g(The)f(set)h(of)f
3128 (neighbours)e(of)i(node)g Fu(i)h FE(at)g(time)f Fu(t)h
3129 FE(is)h(denoted)d(by)h Fu(N)2855 3532 y FB(i)2882 3520
3130 y Ft(\()p Fu(t)p Ft(\))37 b(=)f Fx(f)p Fu(j)41 b Fx(2)523
3131 3620 y Fu(V)51 b Fx(j)32 b Ft(\()p Fu(i;)14 b(j)5 b Ft(\))31
3132 b Fx(2)i Fu(E)5 b Ft(\()p Fu(t)p Ft(\))p Fx(g)p FE(,)25
3133 b(and)f(the)h(de)o(gree)f(\(number)f(of)h(neighbours\))e(of)j(node)f
3134 Fu(i)h FE(at)g(time)g Fu(t)h FE(by)523 3719 y Fu(\021)564
3135 3731 y FB(i)592 3719 y Ft(\()p Fu(t)p Ft(\))e(=)e Fx(j)p
3136 Fu(N)887 3731 y FB(i)915 3719 y Ft(\()p Fu(t)p Ft(\))p
3137 Fx(j)p FE(.)623 3819 y(Each)28 b(node)h(tak)o(es)g(initial)h
3138 (measurement)d Fu(z)1944 3831 y FB(i)1971 3819 y FE(.)j(F)o(or)f(sak)o
3139 (e)g(of)g(simplicity)g(let)h(us)f(suppose)523 3919 y(that)24
3140 b Fu(z)711 3931 y FB(i)767 3919 y Fx(2)30 b Fs(R)p FE(.)24
3141 b(Then,)e Fu(z)28 b FE(will)c(refer)f(to)h(the)f(v)o(ector)g(whose)g
3142 Fu(i)p FE(th)g(component)e(is)k Fu(z)2883 3931 y FB(i)2934
3143 3919 y FE(in)f(case)g(we)523 4018 y(are)f(concerned)d(with)j(se)n(v)o
3144 (eral)f(parameters.)g(Each)g(node)g(on)g(the)h(netw)o(ork)f(also)h
3145 (maintains)f(a)523 4118 y(dynamic)d(state)i Fu(x)1050
3146 4130 y FB(i)1078 4118 y Ft(\()p Fu(t)p Ft(\))i Fx(2)h
3147 Fs(R)c FE(which)g(is)h(initially)f(set)h(to)g Fu(x)2179
3148 4130 y FB(i)2207 4118 y Ft(\(0\))i(=)g Fu(z)2463 4130
3149 y FB(i)2490 4118 y FE(.)623 4218 y(Intuiti)n(v)o(ely)29
3150 b(each)i(node')-5 b(s)31 b(state)h Fu(x)1661 4230 y FB(i)1689
3151 4218 y Ft(\()p Fu(t)p Ft(\))g FE(is)g(its)g(current)e(estimate)i(of)f
3152 (the)g(a)n(v)o(erage)f(v)n(alue)523 4255 y Fr(P)611 4275
3153 y FB(n)611 4342 y(i)p Fq(=1)736 4317 y Fu(z)775 4329
3154 y FB(i)802 4317 y Fu(=n)p FE(.)h(The)f(goal)g(of)h(the)f(a)n(v)o
3155 (eraging)f(algorithm,)g(is)i(to)g(let)g(all)h(the)e(states)i
3156 Fu(x)3050 4329 y FB(i)3078 4317 y Ft(\()p Fu(t)p Ft(\))g
3157 FE(go)523 4417 y(to)e(the)f(a)n(v)o(erage)1034 4355 y
3158 Fr(P)1122 4375 y FB(n)1122 4442 y(i)p Fq(=1)1247 4417
3159 y Fu(z)1286 4429 y FB(i)1314 4417 y Fu(=n)p FE(,)g(as)h
3160 Fu(t)40 b Fx(!)g(1)p FE(.)30 b(This)f(will)h(be)g(done)e(through)f
3161 (data)j(e)o(xchange)p 523 4495 851 4 v 523 4568 a Fp(1)574
3162 4591 y FA(In)23 b(the)f(rest)h(of)f(the)h(paper)m(,)g(the)f(terms)h
3163 (\224a)o(v)o(erage)h(consensus\224)i(and)d(\224parameter)h
3164 (estimation\224)e(are)i(used)f(to)523 4674 y(denote)c(the)f(same)g
3165 (mechanism)h(of)g(\002nding)f(an)h(estimate)f(of)g(the)g(unkno)n(wn)h
3166 (parameter)h(a)o(v)o(erage.)p eop end
3168 TeXDict begin 5 4 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)n
3169 (fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)581
3170 b(5)523 282 y FE(between)30 b(neighbouring)c(nodes)k(where)f(each)h
3171 (node)g(at)g(e)n(v)o(ery)f(time)i(iteration)e Fu(t)i
3172 FE(performs)523 382 y(weighted)19 b(sum)h(of)g(the)g(recei)n(v)o(ed)f
3173 (data)h(as)h(follo)n(ws)f([5)o(,)g(2]:)877 581 y Fu(x)924
3174 593 y FB(i)952 581 y Ft(\()p Fu(t)e Ft(+)g(1\))23 b(=)g
3175 Fu(x)1347 593 y FB(i)1375 581 y Ft(\()p Fu(t)p Ft(\))c
3176 Fx(\000)1588 502 y Fr(X)1571 680 y FB(j)s Fo(2)p FB(N)1699
3177 688 y Fn(i)1739 581 y Fu(\013)1792 593 y FB(ij)1851 581
3178 y Ft(\()p Fu(t)p Ft(\)\()p Fu(x)2024 593 y FB(i)2053
3179 581 y Ft(\()p Fu(t)p Ft(\))g Fx(\000)f Fu(x)2296 593
3180 y FB(j)2331 581 y Ft(\()p Fu(t)p Ft(\)\))p Fu(;)c(i)24
3181 b Ft(=)e(1)p Fu(;)14 b(:)g(:)g(:)f(;)h(n:)195 b FE(\(1.1\))623
3182 820 y(Where)20 b Fu(\013)918 832 y FB(ij)976 820 y Ft(\()p
3183 Fu(t)p Ft(\))i FE(is)f(the)f(weight)g(on)f Fu(x)1687
3184 832 y FB(j)1723 820 y Ft(\()p Fu(t)p Ft(\))i FE(at)g(node)e
3185 Fu(i)p FE(,)h(and)g Fu(\013)2365 832 y FB(ij)2423 820
3186 y Ft(\()p Fu(t)p Ft(\))k(=)f(0)d FE(for)f Fu(j)28 b Fx(62)c
3187 Fu(N)3016 832 y FB(i)3043 820 y Ft(\()p Fu(t)p Ft(\))p
3188 FE(.)623 920 y(In)18 b(order)f(to)h(handle)g(communication)d(delays,)j
3189 (we)h(consider)e(that)h(at)h(time)g Fu(t)f FE(a)h(node)f
3190 Fu(i)g FE(gets)523 1020 y(the)i(state)h(of)f(its)h(neighbour)d
3191 Fu(j)25 b FE(at)c(time)f Fu(d)1716 989 y FB(i)1716 1041
3192 y(j)1752 1020 y Ft(\()p Fu(t)p Ft(\))p FE(,)h(where)e
3193 Ft(0)k Fx(\024)g Fu(d)2307 989 y FB(i)2307 1041 y(j)2342
3194 1020 y Ft(\()p Fu(t)p Ft(\))g Fx(\024)g Fu(t)623 1129
3195 y(d)666 1099 y FB(i)666 1151 y(j)701 1129 y Ft(\()p Fu(t)p
3196 Ft(\))g FE(represents)e(the)h(transmission)f(delay)h(between)f(nodes)g
3197 Fu(i)h FE(and)g Fu(j)5 b FE(.)22 b(Therefore,)d(let)k(us)523
3198 1239 y(denote)f Fu(x)815 1209 y FB(i)815 1261 y(j)851
3199 1239 y Ft(\()p Fu(t)p Ft(\))29 b(=)f Fu(x)1114 1251 y
3200 FB(j)1150 1239 y Ft(\()p Fu(d)1225 1209 y FB(i)1225 1261
3201 y(j)1260 1239 y Ft(\()p Fu(t)p Ft(\)\))h Fx(2)h Fs(R)23
3202 b FE(the)h(state)f(of)g(node)g Fu(j)28 b FE(at)c(time)f
3203 Fu(d)2523 1209 y FB(i)2523 1261 y(j)2559 1239 y Ft(\()p
3204 Fu(t)p Ft(\))p Fu(;)h FE(recei)n(v)o(ed)e(at)h(time)h
3205 Fu(t)523 1339 y FE(by)e(node)f Fu(i)p FE(.)i(Then,)e(we)i(de\002ned)e
3206 (the)i(e)o(xtended)d(neighbourhood)e(of)k(node)f Fu(i)i
3207 FE(at)g(time)f Fu(t)h FE(as)g(the)523 1438 y(set:)p 729
3208 1654 76 4 v 729 1721 a Fu(N)805 1733 y FB(i)833 1721
3209 y Ft(\()p Fu(t)p Ft(\))g(=)1038 1653 y Fr(\010)1087 1721
3210 y Fu(j)28 b Fx(j)43 b(9)21 b Fu(d)1325 1686 y FB(i)1325
3211 1741 y(j)1360 1721 y Ft(\()p Fu(t)p Ft(\))j Fx(2)f(f)p
3212 Fu(t)18 b Fx(\000)g Fu(B)23 b Ft(+)18 b(1)p Fu(;)c(:::;)g(t)p
3213 Fx(g)f Fu(;)h FE(such)20 b(that)g Fu(j)28 b Fx(2)23 b
3214 Fu(N)2730 1733 y FB(i)2758 1721 y Ft(\()p Fu(d)2833 1686
3215 y FB(i)2833 1741 y(j)2868 1721 y Ft(\()p Fu(t)p Ft(\)\))2994
3216 1653 y Fr(\011)3057 1721 y Ft(;)623 1917 y FE(note)c(that)i
3217 Fu(N)999 1929 y FB(i)1026 1917 y Ft(\()p Fu(t)p Ft(\))j
3218 Fx(\032)p 1231 1851 V 22 w Fu(N)1307 1929 y FB(i)1335
3219 1917 y Ft(\()p Fu(t)p Ft(\))p FE(.)623 2017 y(The)34
3220 b(problem,)e(as)k(for)e(an)o(y)f(distrib)n(uted)h(algorithmic)f
3221 (approach,)f(is)k(ho)n(w)e(and)g(under)523 2116 y(which)23
3222 b(conditions,)f(will)i(we)f(ensure)g(con)m(v)o(er)o(gence)d(of)j(the)g
3223 (proposed)e(algorithm?)h(In)h(other)523 2216 y(terms,)18
3224 b(are)f(we)i(sure)e(that)h(all)h(the)f(node')-5 b(s)17
3225 b Fu(x)1785 2228 y FB(i)1831 2216 y FE(will)i(con)m(v)o(er)o(ge)c(to)j
3226 (the)f(right)h(estimate)g(of)f(the)h(un-)523 2316 y(kno)n(wn)f
3227 (parameter)g(a)n(v)o(erage)h(v)n(alue?)g(Also,)h(ho)n(w)f(can)g(we)i
3228 (choose)d(the)i(parameters)f Fu(\013)3041 2328 y FB(ij)3099
3229 2316 y Ft(\()p Fu(t)p Ft(\))i FE(so)523 2415 y(to)e(impro)o(v)o(e)e
3230 (the)j(con)m(v)o(er)o(gence)14 b(speed)k(and)g(the)g(quality)f(of)h
3231 (the)h(deri)n(v)o(ed)d(estimate?)i(Hereafter)523 2515
3232 y(we)j(present)e(and)h(analyse)f(our)h(proposal.)e(W)-7
3233 b(e)22 b(used)e(the)g(notations)f(reported)f(in)j(T)-7
3234 b(able)20 b(1.1)p 980 2703 1851 5 v 980 2707 V 978 2786
3235 5 84 v 1130 2761 a Fm(N)p FA(otation)p 1526 2786 V 637
3236 w(Description)p 2828 2786 V 980 2790 1851 5 v 978 2873
3237 5 84 v 1186 2848 a Fl(G)p Fk(\()p Fl(t)p Fk(\))p 1526
3238 2873 V 539 w FA(the)e(time)f(v)n(arying)j(graph)p 2828
3239 2873 V 980 2877 1851 5 v 978 2961 5 84 v 1172 2936 a
3240 Fl(N)1228 2946 y Fj(i)1255 2936 y Fk(\()p Fl(t)p Fk(\))p
3241 1526 2961 V 304 w FA(the)e(set)g(of)g(neighbors)i(of)e(node)h
3242 Fl(i)f FA(at)g(time)f Fl(t)p 2828 2961 V 980 2965 1851
3243 5 v 978 3048 5 84 v 1224 3023 a(z)1257 3033 y Fj(i)p
3244 1526 3048 V 1711 3023 a FA(the)h(initial)e(measurement)k(of)f(node)g
3245 Fl(i)p 2828 3048 V 980 3052 1851 5 v 978 3135 5 84 v
3246 1181 3110 a(x)1221 3120 y Fj(i)1247 3110 y Fk(\()p Fl(t)p
3247 Fk(\))p 1526 3135 V 469 w FA(the)f(dynamic)h(state)f(of)g(node)h
3248 Fl(i)p 2828 3135 V 980 3139 1851 5 v 978 3228 5 90 v
3249 1179 3197 a(d)1215 3174 y Fj(i)1215 3219 y(j)1248 3197
3250 y Fk(\()p Fl(t)p Fk(\))p 1526 3228 V 213 w FA(the)f(transmission)h
3251 (delay)g(between)g(nodes)g Fl(i)f FA(and)g Fl(j)p 2828
3252 3228 V 980 3232 1851 5 v 978 3322 5 90 v 993 3291 a(x)1033
3253 3267 y Fj(i)1033 3312 y(j)1064 3291 y Fk(\()p Fl(t)p
3254 Fk(\))j(=)f Fl(x)1279 3301 y Fj(j)1311 3291 y Fk(\()p
3255 Fl(d)1374 3267 y Fj(i)1374 3312 y(j)1407 3291 y Fk(\()p
3256 Fl(t)p Fk(\)\))p 1523 3322 V 164 w FA(the)d(state)h(of)h(node)g
3257 Fl(j)i FA(at)c(time)g Fl(t)g Fz(\000)e Fl(d)2568 3267
3258 y Fj(i)2568 3312 y(j)2601 3291 y Fk(\()p Fl(t)p Fk(\))p
3259 2828 3322 V 980 3326 1851 5 v 978 3411 5 86 v 1169 3332
3260 64 3 v 1169 3386 a Fl(N)1232 3396 y Fj(i)1258 3386 y
3261 Fk(\()p Fl(t)p Fk(\))p 1526 3411 5 86 v 272 w FA(the)j(e)o(xtended)h
3262 (neighborhood)i(of)d Fl(i)g FA(at)f(time)g Fl(t)p 2828
3263 3411 V 980 3415 1851 5 v 978 3498 5 84 v 1170 3473 a(s)1203
3264 3483 y Fj(ij)1257 3473 y Fk(\()p Fl(t)p Fk(\))p 1526
3265 3498 V 413 w FA(the)h(data)g(sent)g(by)h Fl(i)e FA(to)h
3266 Fl(j)j FA(at)c(time)g Fl(t)p 2828 3498 V 980 3502 1851
3267 5 v 978 3586 5 84 v 1170 3561 a(r)1202 3571 y Fj(j)s(i)1257
3268 3561 y Fk(\()p Fl(t)p Fk(\))p 1526 3586 V 310 w FA(the)h(data)h(recei)n
3269 (v)o(ed)g(by)g Fl(i)e FA(from)i Fl(j)i FA(at)d(time)f
3270 Fl(t)p 2828 3586 V 980 3590 1851 5 v 523 3681 a Fm(T)-6
3271 b(able)18 b(1.1)35 b FA(Notations)523 4287 y Fv(1.3.2)41
3272 b(Async)o(hronous)26 b(sc)o(heme)523 4519 y FE(Our)17
3273 b(algorithm)f(to)i(compute)e(the)i(a)n(v)o(erage)e(consensus)h(o)o(v)o
3274 (er)f(the)h(netw)o(ork)g(is)h(based)f(on)g(infor)n(-)523
3275 4619 y(mation)24 b(dif)n(fusion)f(i.e.,)i(each)g(node)f(tak)o(es)h(a)h
3276 (measurement)d(and)h(then)h(cooperates)e(with)i(its)p
3279 TeXDict begin 6 5 bop 523 100 a FA(6)1011 b(Jacques)20
3280 b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
3281 282 y FE(neighbours)j(in)i(a)h(dif)n(fusion)d(manner)h(to)h(estimate)g
3282 (the)g(a)n(v)o(erage)f(of)h(all)h(the)f(collected)f(infor)n(-)523
3283 382 y(mation.)e(It)i(is)h(inspired)d(from)h(the)g(w)o(ork)g(of)g
3284 (Bertsekas)h(and)f(Tsitsiklis)i([15)n(,)f(section)f(7.4])g(on)523
3285 482 y(load)k(balancing)f(and)i(e)o(xtends)e(it)j(to)f(cope)f(with)h
3286 (dynamic)e(topologies)g(and)i(messages)g(loss)523 581
3287 y(and)20 b(delays.)f(Algorithm)g(1)h(presents)g(the)g(main)g(steps)h
3288 (of)f(our)f(proposed)f(algorithm.)p 523 780 2764 7 v
3289 523 854 a FD(Algorithm)i(1)g FE(The)g(General)f(Algorithm.)p
3290 523 892 2764 4 v 553 958 a FA(1:)35 b(Each)18 b(node)g(maintains)f(an)g
3291 (instantaneous)i(state)e Fl(x)1916 968 y Fj(i)1942 958
3292 y Fk(\()p Fl(t)p Fk(\))k Fz(2)f Fi(R)p FA(,)c(and)i(at)e
3293 Fl(t)21 b Fk(=)e(0)e FA(\(after)i(all)d(nodes)i(ha)o(v)o(e)g(tak)o(en)
3294 643 1041 y(the)g(measurement\),)i(each)f(node)g(initializes)e(its)g
3295 (state)h(as)h Fl(x)2124 1051 y Fj(i)2150 1041 y Fk(\(0\))h(=)g
3296 Fl(z)2367 1051 y Fj(i)2393 1041 y FA(.)553 1124 y(2:)35
3297 b(At)17 b(e)n(v)o(ery)j(step)e Fl(t)g FA(each)h(node)g
3298 Fl(i)p FA(:)643 1257 y Fz(\017)65 b FA(compares)20 b(its)d(state)h(to)g
3299 (the)f(states)i(of)f(its)g(neighbours;)643 1340 y Fz(\017)65
3300 b FA(chooses)30 b(and)f(computes)g Fl(s)1455 1350 y Fj(ij)1510
3301 1340 y Fk(\()p Fl(t)p Fk(\))p FA(.)f(The)o(y)h(ha)o(v)o(e)g(to)f(be)g
3302 (chosen)i(carefully)g(in)e(order)i(to)d(ensure)k(the)743
3303 1423 y(con)m(v)o(er)o(gence)21 b(of)d(the)g(algorithm;)643
3304 1506 y Fz(\017)65 b FA(dif)n(fuses)20 b(its)d(information;)643
3305 1589 y Fz(\017)65 b FA(recei)n(v)o(es)20 b(the)e(information)g(sent)h
3306 (by)f(its)f(neighbours)j Fl(r)2110 1599 y Fj(j)s(i)2165
3307 1589 y Fk(\()p Fl(t)p Fk(\))p FA(;)643 1672 y Fz(\017)65
3308 b FA(updates)20 b(its)e(state)h(with)g(a)g(combination)g(of)h(its)e(o)n
3309 (wn)i(state)f(and)g(the)g(states)h(at)f(its)f(instantaneous)j(and)743
3310 1755 y(e)o(xtended)e(neighbours)h(\()p 1368 1701 64 3
3311 v Fl(N)1432 1765 y Fj(i)1458 1755 y Fk(\()p Fl(t)p Fk(\))p
3312 FA(\))g(as)e(follo)n(ws:)1267 1920 y Fl(x)1307 1930 y
3313 Fj(i)1333 1920 y Fk(\()p Fl(t)e Fk(+)g(1\))k(=)g Fl(x)1669
3314 1930 y Fj(i)1695 1920 y Fk(\()p Fl(t)p Fk(\))d Fz(\000)1918
3315 1857 y Fh(X)1861 2005 y Fj(j)s Fg(2)p Fj(N)1979 2016
3316 y Fn(i)2006 2005 y Ff(\()p Fj(t)p Ff(\))2089 1920 y Fl(s)2122
3317 1930 y Fj(ij)2177 1920 y Fk(\()p Fl(t)p Fk(\))g(+)2403
3318 1857 y Fh(X)2343 2014 y Fj(j)s Fg(2)p 2413 1973 54 3
3319 v Fj(N)2467 2025 y Fn(i)2493 2014 y Ff(\()p Fj(t)p Ff(\))2576
3320 1920 y Fl(r)2608 1930 y Fj(j)s(i)2663 1920 y Fk(\()p
3321 Fl(t)p Fk(\))p Fl(:)390 b FA(\(1.2\))p 523 2125 2764
3322 4 v 523 2491 a Fv(1.3.3)41 b(Theoretical)24 b(Analysis)h(\(Con)l(v)o
3323 (ergence\))523 2723 y FE(W)-7 b(e)21 b(no)n(w)f(introduce)e(three)i
3324 (assumptions)f(that)i(ensure)e(the)h(con)m(v)o(er)o(gence)d(of)i(our)h
3325 (algorithm.)523 2889 y FD(Assumption)h(1)41 b Fy(Ther)m(e)21
3326 b(e)n(xists)g Fu(B)27 b Fx(2)d Fs(N)c Fy(suc)o(h)g(that)g
3327 Fx(8)p Fu(t)j Fe(>)g Ft(0)p Fu(;)523 2989 y(t)i Fx(\000)g
3328 Fu(B)43 b(<)d(d)922 2959 y FB(i)922 3010 y(j)957 2989
3329 y Ft(\()p Fu(t)p Ft(\))g Fx(\024)f Fu(t)30 b Fy(and)e(the)h(union)f(of)
3330 h(communication)e(gr)o(aphs)2654 2927 y Fr(S)2723 2947
3331 y FB(t)p Fq(+)p FB(B)s Fo(\000)p Fq(1)2723 3014 y FB(\034)7
3332 b Fq(=)p FB(t)2955 2989 y Fu(G)p Ft(\()p Fu(\034)i Ft(\))31
3333 b Fy(is)f(a)523 3088 y(connected)18 b(gr)o(aph.)623 3254
3334 y FE(This)h(assumption,)e(kno)n(wn)h(as)i(jointly)e(connected)f
3335 (condition)g([2)o(,)j(16)o(],)f(implies)g(that)g(each)523
3336 3354 y(node)f Fu(i)h FE(is)h(connected)e(to)h(a)h(node)e
3337 Fu(j)24 b FE(within)19 b(an)o(y)f(time)i(interv)n(al)e(of)h(length)f
3338 Fu(B)24 b FE(and)18 b(that)i(the)f(de-)523 3454 y(lay)e(between)e(tw)o
3339 (o)i(nodes)f(cannot)f(e)o(xceeds)h Fu(B)t FE(.)h(Recall)g(that,)f(a)h
3340 (graph)e(is)j(connected)c(if)j(for)f(an)o(y)523 3553
3341 y(tw)o(o)g(v)o(ertices)e Fu(i)i FE(and)e Fu(j)21 b FE(there)15
3342 b(e)o(xists)g(a)h(sequence)e(of)h(edges)g Ft(\()p Fu(i;)29
3343 b(k)2374 3565 y Fq(1)2412 3553 y Ft(\))p Fu(;)14 b Ft(\()p
3344 Fu(k)2556 3565 y Fq(1)2594 3553 y Fu(;)g(k)2674 3565
3345 y Fq(2)2711 3553 y Ft(\))p Fu(;)g(:)g(:)g(:)g(;)g Ft(\()p
3346 Fu(k)3003 3565 y FB(l)p Fo(\000)p Fq(1)3114 3553 y Fu(;)30
3347 b(k)3210 3565 y FB(l)3235 3553 y Ft(\))p Fu(;)523 3653
3348 y Ft(\()p Fu(k)598 3665 y FB(l)624 3653 y Fu(;)35 b(j)5
3349 b Ft(\))p FE(.)623 3753 y(In)20 b(Figure)g(1.1)g(we)h(sho)n(w)g(an)f(e)
3350 o(xample)f(of)i(jointly)f(connected)f(graphs,)g(we)i(notice)f(that)h
3351 (at)523 3852 y Fu(t)i Ft(=)g(1)c FE(the)g(graph)e Fu(G)1119
3352 3864 y Fq(1)1176 3852 y FE(is)j(not)f(connected;)e(the)i(same)g(case)h
3353 (for)e Fu(G)2411 3864 y Fq(2)2468 3852 y FE(at)i Fu(t)j
3354 Ft(=)g(2)p FE(;)c(while)g(the)g(union)523 3952 y Fu(G)i
3355 FE(of)f Fu(G)764 3964 y Fq(1)822 3952 y FE(and)g Fu(G)1028
3356 3964 y Fq(2)1086 3952 y FE(is)h(a)g(connected)d(graph.)523
3357 4118 y FD(Assumption)j(2)41 b Fy(Ther)m(e)21 b(e)n(xists)g
3358 Fu(\013)j(>)e Ft(0)p Fu(;)14 b Fx(8)p Fu(t)23 b Fe(>)f
3359 Ft(0)p Fu(;)523 4218 y Fx(8)p Fu(i)h Fx(2)g Fu(N)t(;)14
3360 b Fx(8)p Fu(j)28 b Fx(2)c Fu(N)1061 4230 y FB(i)1088
3361 4218 y Ft(\()p Fu(t)p Ft(\))p Fy(,)d(suc)o(h)f(that)g
3362 Fu(\013)p Ft(\()p Fu(x)1678 4230 y FB(i)1707 4218 y Ft(\()p
3363 Fu(t)p Ft(\))f Fx(\000)f Fu(x)1950 4187 y FB(i)1950 4239
3364 y(j)1985 4218 y Ft(\()p Fu(t)p Ft(\)\))24 b Fx(\024)f
3365 Fu(s)2262 4230 y FB(ij)2320 4218 y Ft(\()p Fu(t)p Ft(\))p
3366 Fu(:)523 4262 y Fr(\000)561 4329 y Fu(s)600 4341 y FB(ij)658
3367 4329 y Ft(\()p Fu(t)p Ft(\))h(=)f(0)d Fy(if)h Ft(\()p
3368 Fu(x)1072 4341 y FB(i)1100 4329 y Ft(\()p Fu(t)p Ft(\))j
3369 Fx(\024)f Fu(x)1353 4299 y FB(i)1353 4351 y(j)1388 4329
3370 y Ft(\()p Fu(t)p Ft(\)\))f Fy(for)e(all)h Fu(j)28 b Fx(2)23
3371 b Fu(N)1969 4341 y FB(i)1996 4329 y Ft(\()p Fu(t)p Ft(\))2090
3372 4262 y Fr(\001)2129 4329 y Fy(.)623 4495 y FE(The)28
3373 b(second)h(assumption)e(postulates)i(that)g(when)g(a)g(node)f
3374 Fu(i)h FE(detects)g(a)h(dif)n(ference)d(be-)523 4595
3375 y(tween)20 b(its)i(state)f(and)f(the)g(states)h(of)g(its)g(neighbours,)
3376 d(it)j(therefore)d(computes)h(non)h(ne)o(gligible)523
3377 4695 y Fu(s)562 4707 y FB(ij)641 4695 y FE(to)h(all)f(nodes)g
3378 Fu(j)25 b FE(where)20 b Ft(\()p Fu(x)1407 4707 y FB(i)1435
3379 4695 y Ft(\()p Fu(t)p Ft(\))k Fu(>)f(x)1688 4664 y FB(i)1688
3380 4716 y(j)1723 4695 y Ft(\()p Fu(t)p Ft(\)\))p FE(.)p
3383 TeXDict begin 7 6 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)n
3384 (fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)581
3385 b(7)1121 1629 y @beginspecial 0 @llx 0 @lly 342 @urx
3386 312 @ury 1881 @rwi @setspecial
3387 %%BeginDocument: jointly.eps
3388 %!PS-Adobe-2.0 EPSF-2.0
3389 %%Title: jointly.fig
3390 %%Creator: fig2dev Version 3.2 Patchlevel 5-alpha7
3391 %%CreationDate: Tue Apr 8 16:04:24 2008
3392 %%For: makhoul@soleil4 (makhoul,,,)
3393 %%BoundingBox: 0 0 342 312
3394 %Magnification: 1.0000
3396 /$F2psDict 200 dict def
3398 $F2psDict /mtrx matrix put
3399 /col-1 {0 setgray} bind def
3400 /col0 {0.000 0.000 0.000 srgb} bind def
3401 /col1 {0.000 0.000 1.000 srgb} bind def
3402 /col2 {0.000 1.000 0.000 srgb} bind def
3403 /col3 {0.000 1.000 1.000 srgb} bind def
3404 /col4 {1.000 0.000 0.000 srgb} bind def
3405 /col5 {1.000 0.000 1.000 srgb} bind def
3406 /col6 {1.000 1.000 0.000 srgb} bind def
3407 /col7 {1.000 1.000 1.000 srgb} bind def
3408 /col8 {0.000 0.000 0.560 srgb} bind def
3409 /col9 {0.000 0.000 0.690 srgb} bind def
3410 /col10 {0.000 0.000 0.820 srgb} bind def
3411 /col11 {0.530 0.810 1.000 srgb} bind def
3412 /col12 {0.000 0.560 0.000 srgb} bind def
3413 /col13 {0.000 0.690 0.000 srgb} bind def
3414 /col14 {0.000 0.820 0.000 srgb} bind def
3415 /col15 {0.000 0.560 0.560 srgb} bind def
3416 /col16 {0.000 0.690 0.690 srgb} bind def
3417 /col17 {0.000 0.820 0.820 srgb} bind def
3418 /col18 {0.560 0.000 0.000 srgb} bind def
3419 /col19 {0.690 0.000 0.000 srgb} bind def
3420 /col20 {0.820 0.000 0.000 srgb} bind def
3421 /col21 {0.560 0.000 0.560 srgb} bind def
3422 /col22 {0.690 0.000 0.690 srgb} bind def
3423 /col23 {0.820 0.000 0.820 srgb} bind def
3424 /col24 {0.500 0.190 0.000 srgb} bind def
3425 /col25 {0.630 0.250 0.000 srgb} bind def
3426 /col26 {0.750 0.380 0.000 srgb} bind def
3427 /col27 {1.000 0.500 0.500 srgb} bind def
3428 /col28 {1.000 0.630 0.630 srgb} bind def
3429 /col29 {1.000 0.750 0.750 srgb} bind def
3430 /col30 {1.000 0.880 0.880 srgb} bind def
3431 /col31 {1.000 0.840 0.000 srgb} bind def
3435 newpath 0 312 moveto 0 0 lineto 342 0 lineto 342 312 lineto closepath clip newpath
3436 -155.0 429.0 translate
3439 /cp {closepath} bind def
3440 /ef {eofill} bind def
3441 /gr {grestore} bind def
3442 /gs {gsave} bind def
3444 /rs {restore} bind def
3445 /l {lineto} bind def
3446 /m {moveto} bind def
3447 /rm {rmoveto} bind def
3448 /n {newpath} bind def
3449 /s {stroke} bind def
3451 /slc {setlinecap} bind def
3452 /slj {setlinejoin} bind def
3453 /slw {setlinewidth} bind def
3454 /srgb {setrgbcolor} bind def
3455 /rot {rotate} bind def
3456 /sc {scale} bind def
3457 /sd {setdash} bind def
3458 /ff {findfont} bind def
3459 /sf {setfont} bind def
3460 /scf {scalefont} bind def
3461 /sw {stringwidth} bind def
3462 /tr {translate} bind def
3463 /tnt {dup dup currentrgbcolor
3464 4 -2 roll dup 1 exch sub 3 -1 roll mul add
3465 4 -2 roll dup 1 exch sub 3 -1 roll mul add
3466 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
3468 /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
3469 4 -2 roll mul srgb} bind def
3472 /startangle exch def
3477 /savematrix mtrx currentmatrix def
3478 x y tr xrad yrad sc 0 0 1 startangle endangle arc
3480 savematrix setmatrix
3483 /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
3484 /$F2psEnd {$F2psEnteredState restore end} def
3491 % Fig objects follow
3494 % here starts figure with depth 50
3497 n 2700 2250 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3500 n 2700 3600 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3503 n 4050 3600 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3508 n 2700 2295 m 2700 3600 l
3509 4050 3600 l gs col0 s gr
3512 3825 1935 l gs col0 s gr
3513 /Times-Bold ff 222.25 scf sf
3515 gs 1 -1 sc (1) col0 sh gr
3516 /Times-Bold ff 222.25 scf sf
3518 gs 1 -1 sc (2) col0 sh gr
3519 /Times-Bold ff 222.25 scf sf
3521 gs 1 -1 sc (4) col0 sh gr
3522 /Times-Bold ff 222.25 scf sf
3524 gs 1 -1 sc (5) col0 sh gr
3525 /Times-Bold ff 222.25 scf sf
3527 gs 1 -1 sc (3) col0 sh gr
3529 n 3825 1935 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3532 n 3330 2925 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3535 n 4545 4950 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3538 n 4545 6300 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3541 n 5895 6300 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3544 n 4545 4995 m 4545 6300 l
3545 5895 6300 l gs col0 s gr
3548 5670 4635 l gs col0 s gr
3549 /Times-Bold ff 222.25 scf sf
3551 gs 1 -1 sc (1) col0 sh gr
3552 /Times-Bold ff 222.25 scf sf
3554 gs 1 -1 sc (2) col0 sh gr
3555 /Times-Bold ff 222.25 scf sf
3557 gs 1 -1 sc (4) col0 sh gr
3558 /Times-Bold ff 222.25 scf sf
3560 gs 1 -1 sc (5) col0 sh gr
3561 /Times-Bold ff 222.25 scf sf
3563 gs 1 -1 sc (3) col0 sh gr
3565 n 5670 4635 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3568 n 5175 5625 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3571 n 6300 2250 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3574 n 6300 3600 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3577 n 7605 3600 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3580 n 6885 2880 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3583 n 7470 1935 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
3586 n 6300 2250 m 7470 1980 l
3587 6885 2880 l gs col0 s gr
3590 7650 3600 l gs col0 s gr
3593 5625 4678 l gs col0 s gr
3594 /Times-Bold ff 222.25 scf sf
3596 gs 1 -1 sc (1) col0 sh gr
3597 /Times-Bold ff 222.25 scf sf
3599 gs 1 -1 sc (4) col0 sh gr
3600 /Times-Bold ff 222.25 scf sf
3602 gs 1 -1 sc (2) col0 sh gr
3603 /Times-Bold ff 222.25 scf sf
3605 gs 1 -1 sc (5) col0 sh gr
3606 /Times-Bold ff 222.25 scf sf
3608 gs 1 -1 sc (3) col0 sh gr
3609 /Times-Bold ff 238.13 scf sf
3611 gs 1 -1 sc (G) col0 sh gr
3612 /Times-Roman ff 190.50 scf sf
3614 gs 1 -1 sc (1) col0 sh gr
3615 /Times-Bold ff 238.13 scf sf
3617 gs 1 -1 sc (@ t = 1) col0 sh gr
3618 /Times-Bold ff 238.13 scf sf
3620 gs 1 -1 sc (G) col0 sh gr
3621 /Times-Bold ff 238.13 scf sf
3623 gs 1 -1 sc (@ t = 2) col0 sh gr
3624 /Times-Roman ff 190.50 scf sf
3626 gs 1 -1 sc (2) col0 sh gr
3627 /Times-Bold ff 238.13 scf sf
3629 gs 1 -1 sc (G) col0 sh gr
3630 /Times-Bold ff 238.13 scf sf
3632 gs 1 -1 sc (=) col0 sh gr
3633 /Times-Bold ff 238.13 scf sf
3635 gs 1 -1 sc (G) col0 sh gr
3636 /Times-Bold ff 238.13 scf sf
3638 gs 1 -1 sc (G) col0 sh gr
3639 /Times-Roman ff 190.50 scf sf
3641 gs 1 -1 sc (2) col0 sh gr
3642 /Times-Roman ff 190.50 scf sf
3644 gs 1 -1 sc (1) col0 sh gr
3645 /Times-Bold ff 206.38 scf sf
3647 gs 1 -1 sc (U) col0 sh gr
3656 @endspecial 523 1754 a Fm(Fig)o(.)17 b(1.1)36 b FA(Example)18
3657 b(of)h(jointly)e(connected)i(graphs)523 2051 y FD(Assumption)i(3)1254
3658 2164 y Fu(x)1301 2176 y FB(i)1329 2164 y Ft(\()p Fu(t)p
3659 Ft(\))e Fx(\000)1584 2085 y Fr(X)1525 2267 y FB(k)q Fo(2)p
3660 FB(N)1659 2275 y Fn(i)1686 2267 y Fq(\()p FB(t)p Fq(\))1777
3661 2164 y Fu(s)1816 2176 y FB(ik)1880 2164 y Ft(\()p Fu(t)p
3662 Ft(\))k Fx(\025)g Fu(x)2132 2129 y FB(i)2132 2184 y(j)2168
3663 2164 y Ft(\()p Fu(t)p Ft(\))c(+)f Fu(s)2403 2176 y FB(ij)2461
3664 2164 y Ft(\()p Fu(t)p Ft(\))573 b FE(\(1.3\))523 2421
3665 y(The)29 b(third)f(assumption)g(prohibits)g(node)g Fu(i)h
3666 FE(to)h(compute)d(v)o(ery)h(lar)o(ge)g Fu(s)2669 2433
3667 y FB(ij)2757 2421 y FE(which)h(creates)g(a)523 2521 y(ping-pong)15
3668 b(state.)j(Recall)g(that,)g(the)g(ping-pong)c(state)19
3669 b(is)f(established)g(when)f(tw)o(o)h(nodes)f(k)o(eep)523
3670 2620 y(sending)k(data)h(to)g(each)g(other)f(back)h(and)f(forth,)g
3671 (without)h(e)n(v)o(er)f(reaching)g(equilibrium.)e(Note)523
3672 2720 y(that)30 b(these)h(tw)o(o)g(assumptions)e(are)h(similar)h(to)f
3673 (assumption)g(4.2)f(introduced)f(in)j([15)n(,)g(sec-)523
3674 2819 y(tion)20 b(7.4].)523 2994 y FD(Theor)o(em)g(1.)k
3675 Fy(if)c(the)e(assumptions)g(1,)h(2)f(and)g(3)h(ar)m(e)g(satis\002ed,)f
3676 (Algorithm)g(1)h(guar)o(antees)e(that)1515 3239 y Ft(lim)1494
3677 3289 y FB(t)p Fo(!1)1665 3239 y Fu(x)1712 3251 y FB(i)1740
3678 3239 y Ft(\()p Fu(t)p Ft(\))24 b(=)1959 3183 y(1)p 1955
3679 3220 50 4 v 1955 3296 a Fu(n)2055 3135 y FB(n)2015 3160
3680 y Fr(X)2021 3337 y FB(i)p Fq(=1)2135 3239 y Fu(x)2182
3681 3251 y FB(i)2210 3239 y Ft(\(0\))812 b FE(\(1.4\))623
3682 3460 y Fy(i.e)o(.,)27 b(all)i(node)e(states)i(con)m(ver)m(g)o(e)e(to)i
3683 (the)f(aver)o(a)o(g)o(e)f(of)i(the)f(initial)g(measur)m(ements)g(of)g
3684 (the)523 3560 y(network.)523 3734 y(Pr)l(oof)623 3834
3685 y FE(Let)20 b Fu(m)p Ft(\()p Fu(t)p Ft(\))k(=)e(min)1171
3686 3846 y FB(i)1212 3834 y Ft(min)1350 3846 y FB(t)p Fo(\000)p
3687 FB(B)s(<\034)7 b Fo(\024)p FB(t)1665 3834 y Fu(x)1712
3688 3846 y FB(i)1740 3834 y Ft(\()p Fu(\034)i Ft(\))p Fu(:)22
3689 b FE(Note)e(that)g Fu(x)2268 3804 y FB(i)2268 3855 y(j)2304
3690 3834 y Ft(\()p Fu(\034)9 b Ft(\))24 b Fx(\025)f Fu(m)p
3691 Ft(\()p Fu(t)p Ft(\))p Fu(;)e Fx(8)p Fu(i;)14 b(j;)g(t:)523
3692 3933 y FE(Lemma)22 b(1)g(and)h(2)f(belo)n(w)g(can)h(be)f(pro)o(v)o(en)e
3693 (similarly)j(to)f(the)h(lemma)f(of)g(pages)h(521)e(and)h(522)523
3694 4033 y(in)e([15)o(].)623 4179 y(Denote)e(by)g Fu(v)1024
3695 4191 y FB(ij)1083 4179 y Ft(\()p Fu(t)p Ft(\))24 b(=)1291
3696 4100 y FB(t)p Fo(\000)p Fq(1)1302 4117 y Fr(P)1288 4251
3697 y FB(s)p Fq(=0)1418 4179 y Ft(\()p Fu(s)1489 4191 y FB(ij)1547
3698 4179 y Ft(\()p Fu(s)p Ft(\))19 b Fx(\000)f Fu(r)1789
3699 4191 y FB(ij)1848 4179 y Ft(\()p Fu(s)p Ft(\)\))d Fu(;)k
3700 FE(the)g(data)g(sent)g(by)g Fu(i)g FE(and)f(not)h(yet)g(recei)n(v)o(ed)
3701 523 4330 y(by)h Fu(j)26 b FE(at)20 b(time)h Fu(t:)f FE(W)-7
3702 b(e)22 b(suppose)d(that)h Fu(v)1612 4342 y FB(ij)1671
3703 4330 y Ft(\(0\))j(=)g(0)p Fu(:)d FE(Then)f(by)h(data)g(conserv)n
3704 (ation,)e(we)j(obtain)1022 4511 y FB(n)982 4536 y Fr(X)988
3705 4713 y FB(i)p Fq(=1)1116 4448 y Fr(0)1116 4598 y(@)1189
3706 4615 y Fu(x)1236 4627 y FB(i)1264 4615 y Ft(\()p Fu(t)p
3707 Ft(\))e(+)1515 4536 y Fr(X)1460 4718 y FB(j)s Fo(2)p
3708 FB(N)1588 4726 y Fn(i)1614 4718 y Fq(\()p FB(t)p Fq(\))1705
3709 4615 y Fu(v)1745 4627 y FB(ij)1804 4615 y Ft(\()p Fu(t)p
3710 Ft(\))1898 4448 y Fr(1)1898 4598 y(A)1994 4615 y Ft(=)2121
3711 4511 y FB(n)2082 4536 y Fr(X)2088 4713 y FB(i)p Fq(=1)2215
3712 4615 y Fu(x)2262 4627 y FB(i)2290 4615 y Ft(\(0\))p Fu(;)180
3713 b Fx(8)p Fu(t)24 b Fe(>)e Ft(0)300 b FE(\(1.5\))p eop
3716 TeXDict begin 8 7 bop 523 100 a FA(8)1011 b(Jacques)20
3717 b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
3718 282 y FE(\277From)30 b(assumption)g(1)h(we)g(can)g(conclude)e(that)i
3719 (the)g(data)g Fu(v)2359 294 y FB(ij)2417 282 y Ft(\()p
3720 Fu(t)p Ft(\))h FE(in)f(the)g(netw)o(ork)f(before)523
3721 382 y(time)23 b Fu(t)h FE(consists)g(in)f(data)g(sent)g(in)g(the)h
3722 (interv)n(al)e(time)h Fx(f)o Fu(t)c Fx(\000)f Fu(B)23
3723 b Ft(+)18 b(1)p Fu(;)c(:::;)g(t)j Fx(\000)i Ft(1)p Fx(g)12
3724 b Fu(;)24 b FE(so)g Fu(v)3041 394 y FB(ij)3099 382 y
3725 Ft(\()p Fu(t)p Ft(\))29 b Fx(\024)523 431 y Fr(P)611
3726 451 y FB(t)p Fo(\000)p Fq(1)611 518 y FB(\034)7 b Fq(=)p
3727 FB(t)p Fo(\000)p FB(B)s Fq(+1)931 493 y Fu(s)970 505
3728 y FB(ij)1028 493 y Ft(\()p Fu(t)p Ft(\))p Fu(;)22 b Fx(8)p
3729 Fu(nodei;)14 b Fx(8)p Fu(j)27 b Fx(2)d Fu(N)1704 505
3730 y FB(i)1731 493 y Ft(\()p Fu(t)p Ft(\))p Fu(:)523 664
3731 y FD(Lemma)d(1.)j Fy(The)40 b(sequence)e Fu(m)p Ft(\()p
3732 Fu(t)p Ft(\))j Fy(is)f(monotone)o(,)d(nondecr)m(easing)g(and)i(con)m
3733 (ver)m(g)o(es)f(and)523 763 y Fx(8)p Fu(i;)14 b Fx(8)p
3734 Fu(s)23 b Fx(\025)f Ft(0)p Fu(;)1120 924 y(x)1167 936
3735 y FB(i)1195 924 y Ft(\()p Fu(t)d Ft(+)f Fu(s)p Ft(\))23
3736 b Fx(\025)g Fu(m)p Ft(\()p Fu(t)p Ft(\))c(+)1810 806
3737 y Fr(\022)1885 867 y Ft(1)p 1881 904 50 4 v 1881 981
3738 a Fu(n)1941 806 y Fr(\023)2002 824 y FB(t)2027 832 y
3739 Fd(1)2059 824 y Fo(\000)p FB(t)2136 832 y Fd(0)2187 924
3740 y Ft(\()p Fu(x)2266 936 y FB(i)2294 924 y Ft(\()p Fu(t)p
3741 Ft(\))g Fx(\000)f Fu(m)p Ft(\()p Fu(t)p Ft(\)\))623 1144
3742 y FE(Let)i Fu(i)k Fx(2)g Fu(V)5 b(;)14 b(t)1006 1156
3743 y Fq(0)1067 1144 y Fx(2)24 b Fs(N)p Fu(;)d FE(and)f Fu(t)k
3744 Fx(\025)f Fu(t)1563 1156 y Fq(0)1600 1144 y Fu(;)f(j)28
3745 b Fx(2)c Fu(V)5 b(;)22 b FE(we)f(say)f(that)h(the)g(e)n(v)o(ent)e
3746 Fu(E)2660 1156 y FB(j)2696 1144 y Ft(\()p Fu(t)p Ft(\))i
3747 FE(occurs)f(if)h(there)523 1244 y(e)o(xists)g Fu(j)28
3748 b Fx(2)p 872 1177 76 4 v 23 w Fu(N)948 1256 y FB(i)975
3749 1244 y Ft(\()p Fu(t)p Ft(\))22 b FE(such)e(that)1187
3750 1447 y Fu(x)1234 1413 y FB(i)1234 1468 y(j)1270 1447
3751 y Ft(\()p Fu(t)p Ft(\))j Fu(<)g(m)p Ft(\()p Fu(t)1610
3752 1459 y Fq(0)1647 1447 y Ft(\))c(+)1879 1391 y Fu(\013)p
3753 1791 1428 230 4 v 1791 1504 a Ft(2)p Fu(n)1883 1480 y
3754 FB(t)p Fo(\000)p FB(t)1985 1488 y Fd(0)2045 1447 y Ft(\()p
3755 Fu(x)2124 1459 y FB(i)2152 1447 y Ft(\()p Fu(t)2214 1459
3756 y Fq(0)2252 1447 y Ft(\))g Fx(\000)f Fu(m)p Ft(\()p Fu(t)2521
3757 1459 y Fq(0)2558 1447 y Ft(\)\))506 b FE(\(1.6\))523
3758 1652 y(and)1439 1752 y Fu(s)1478 1764 y FB(ij)1537 1752
3759 y Ft(\()p Fu(t)p Ft(\))23 b Fx(\025)g Fu(\013)1809 1685
3760 y Fr(\000)1847 1752 y Fu(x)1894 1764 y FB(i)1922 1752
3761 y Ft(\()p Fu(t)p Ft(\))c Fx(\000)f Fu(x)2165 1718 y FB(i)2165
3762 1773 y(j)2201 1752 y Ft(\()p Fu(t)p Ft(\))2295 1685 y
3763 Fr(\001)2347 1752 y Fu(;)758 b FE(\(1.7\))523 1901 y(where)20
3764 b Fu(\013)h FE(is)g(de\002ned)e(in)h(assumption)f(2,)h(and)g
3765 Fu(V)40 b FE(is)21 b(the)f(set)h(of)f(all)h(nodes.)523
3766 2072 y FD(Lemma)g(2.)j Fy(Let)29 b Fu(t)1068 2084 y Fq(1)1143
3767 2072 y Fx(\025)38 b Fu(t)1276 2084 y Fq(0)1313 2072 y
3768 Fu(;)29 b Fy(if)g Fu(E)1501 2084 y FB(j)1537 2072 y Ft(\()p
3769 Fu(t)1599 2084 y Fq(1)1636 2072 y Ft(\))g Fy(occur)o(s,)g(then)f
3770 Fu(E)2201 2084 y FB(j)2236 2072 y Ft(\()p Fu(\034)9 b
3771 Ft(\))30 b Fy(doesn')n(t)d(occur)h(for)h(any)e Fu(\034)48
3772 b Fx(\025)523 2172 y Fu(t)553 2184 y Fq(1)609 2172 y
3773 Ft(+)18 b(2)p Fu(B)t Fy(.)523 2342 y FD(Lemma)j(3.)j
3774 Fx(8)p Fu(i)f Fx(2)g Fu(V)5 b(;)14 b Fx(8)p Fu(t)1245
3775 2354 y Fq(0)1306 2342 y Fx(2)23 b Fs(N)p Fu(;)14 b Fx(8)p
3776 Fu(j)28 b Fx(2)p 1667 2275 76 4 v 23 w Fu(N)1743 2354
3777 y FB(i)1771 2342 y Ft(\()p Fu(t)p Ft(\))p Fu(;)808 2590
3778 y(t)23 b Fx(\025)g Fu(t)979 2602 y Fq(0)1034 2590 y Ft(+)18
3779 b(3)p Fu(nB)27 b Fx(\))c Fu(x)1452 2602 y FB(j)1487 2590
3780 y Ft(\()p Fu(t)p Ft(\))h Fx(\025)f Fu(m)p Ft(\()p Fu(t)1828
3781 2602 y Fq(0)1865 2590 y Ft(\))c(+)f Fu(\021)2057 2473
3782 y Fr(\022)2132 2534 y Ft(1)p 2128 2571 50 4 v 2128 2647
3783 a Fu(n)2188 2473 y Fr(\023)2249 2490 y FB(t)p Fo(\000)p
3784 FB(t)2351 2498 y Fd(0)2401 2590 y Ft(\()p Fu(x)2480 2602
3785 y FB(i)2509 2590 y Ft(\()p Fu(t)2571 2602 y Fq(0)2608
3786 2590 y Ft(\))h Fx(\000)f Fu(m)p Ft(\()p Fu(t)2877 2602
3787 y Fq(0)2914 2590 y Ft(\)\))p Fu(:)523 2850 y Fy(wher)m(e)j
3788 Fu(\021)26 b Ft(=)908 2817 y FB(\013)p 908 2831 44 4
3789 v 913 2879 a Fq(2)975 2783 y Fr(\000)1027 2817 y Fq(1)p
3790 1023 2831 42 4 v 1023 2879 a FB(n)1074 2783 y Fr(\001)1113
3791 2800 y FB(B)1183 2850 y Fu(:)523 3020 y Fy(Pr)l(oof)o(.)40
3792 b FE(Let)26 b(us)f(\002x)h Fu(i)f FE(and)g Fu(t)1349
3793 3032 y Fq(0)1386 3020 y Fu(:)h FE(Let)f(us)h(consider)e
3794 Fu(t)2008 3032 y Fq(1)2045 3020 y Fu(;)14 b(:::;)g(t)2218
3795 3032 y FB(n)2289 3020 y FE(such)25 b(that)g Fu(t)2647
3796 3032 y FB(k)q Fo(\000)p Fq(1)2795 3020 y Ft(+)c(2)p Fu(B)36
3797 b Fx(\024)c Fu(t)3149 3032 y FB(k)3222 3020 y Fx(\024)523
3798 3120 y Fu(t)553 3132 y FB(k)q Fo(\000)p Fq(1)700 3120
3799 y Ft(+)21 b(3)p Fu(B)t(:)j FE(Lemma)g(2)g(implies)g(that)g(if)g
3800 Fu(k)34 b Fx(6)p Ft(=)29 b Fu(l)r(;)c FE(then)e Fu(E)2254
3801 3132 y FB(j)2289 3120 y Ft(\()p Fu(t)2351 3132 y FB(k)2392
3802 3120 y Ft(\))i FE(and)f Fu(E)2655 3132 y FB(j)2690 3120
3803 y Ft(\()p Fu(t)2752 3132 y FB(l)2778 3120 y Ft(\))h FE(doesn')o(t)d
3804 (occur)523 3220 y(together)-5 b(.)31 b(Hence,)h(there)g(e)o(xists)i
3805 Fu(t)1561 3232 y FB(k)1634 3220 y FE(for)e(which)g(\(1.6\))g(is)h(not)f
3806 (satis\002ed)i(for)e(all)h Fu(d)3015 3190 y FB(i)3015
3807 3241 y(j)3050 3220 y Ft(\()p Fu(t)3112 3232 y FB(k)3153
3808 3220 y Ft(\))46 b Fx(2)523 3329 y(f)p Fu(t)595 3341 y
3809 FB(k)654 3329 y Fx(\000)18 b Fu(B)k Ft(+)c(1)p Fu(;)c(:::;)g(t)1120
3810 3341 y FB(k)1161 3329 y Fx(g)f Fu(;)21 b FE(and)f Fu(j)28
3811 b Fx(2)23 b Fu(N)1608 3341 y FB(i)1635 3329 y Ft(\()p
3812 Fu(d)1710 3299 y FB(i)1710 3351 y(j)1746 3329 y Ft(\()p
3813 Fu(t)1808 3341 y FB(k)1849 3329 y Ft(\)\))p Fu(:)623
3814 3439 y FE(Let)g Fu(j)796 3409 y Fo(\003)864 3439 y Fx(2)29
3815 b Fu(N)1015 3451 y FB(i)1043 3439 y Ft(\()p Fu(d)1118
3816 3409 y FB(i)1118 3461 y(j)1153 3439 y Ft(\()p Fu(t)1215
3817 3451 y FB(k)1256 3439 y Ft(\)\))c FE(such)e(that)h Fu(x)1717
3818 3409 y FB(i)1717 3461 y(j)1747 3444 y Fc(\003)1787 3439
3819 y Ft(\()p Fu(t)1849 3451 y FB(k)1890 3439 y Ft(\))30
3820 b Fx(\024)f Fu(x)2093 3409 y FB(i)2093 3461 y(j)2128
3821 3439 y Ft(\()p Fu(t)2190 3451 y FB(k)2231 3439 y Ft(\))p
3822 Fu(;)14 b Fx(8)p Fu(j)35 b Fx(2)29 b Fu(N)2566 3451 y
3823 FB(i)2594 3439 y Ft(\()p Fu(d)2669 3409 y FB(i)2669 3461
3824 y(j)2704 3439 y Ft(\()p Fu(t)2766 3451 y FB(k)2807 3439
3825 y Ft(\)\))p Fu(:)c FE(Since)f(\(1.6\))523 3539 y(is)d(not)f
3826 (satis\002ed)h(for)e Fu(j)28 b Ft(=)23 b Fu(j)1325 3509
3827 y Fo(\003)1363 3539 y Fu(;)e FE(we)g(ha)n(v)o(e)787 3800
3828 y Fu(x)834 3769 y FB(i)834 3821 y(j)869 3800 y Ft(\()p
3829 Fu(t)931 3812 y FB(k)973 3800 y Ft(\))i Fx(\025)h Fu(x)1164
3830 3769 y FB(i)1164 3821 y(j)1194 3805 y Fc(\003)1235 3800
3831 y Ft(\()p Fu(t)1297 3812 y FB(k)1338 3800 y Ft(\))752
3832 3919 y Fu(x)799 3888 y FB(i)799 3940 y(j)829 3924 y Fc(\003)869
3833 3919 y Ft(\()p Fu(t)931 3931 y FB(k)973 3919 y Ft(\))f
3834 Fx(\025)h Fu(m)p Ft(\()p Fu(t)1252 3931 y Fq(0)1290 3919
3835 y Ft(\))19 b(+)1434 3886 y FB(\013)p 1434 3900 44 4 v
3836 1439 3947 a Fq(2)1500 3851 y Fr(\000)1552 3886 y Fq(1)p
3837 1549 3900 42 4 v 1549 3947 a FB(n)1600 3851 y Fr(\001)1638
3838 3868 y FB(t)1663 3877 y Fn(k)1699 3868 y Fo(\000)p FB(t)1776
3839 3876 y Fd(0)1826 3919 y Ft(\()q Fu(x)1906 3931 y FB(i)1934
3840 3919 y Ft(\()p Fu(t)1996 3931 y Fq(0)2033 3919 y Ft(\))g
3841 Fx(\000)f Fu(m)p Ft(\()p Fu(t)2302 3931 y Fq(0)2339 3919
3842 y Ft(\)\))d Fu(;)34 b Fx(8)p Fu(j)29 b Fx(2)23 b Fu(N)2729
3843 3931 y FB(i)2756 3919 y Ft(\()p Fu(d)2831 3888 y FB(i)2831
3844 3940 y(j)2867 3919 y Ft(\()p Fu(t)2929 3931 y FB(k)2970
3845 3919 y Ft(\)\))p Fu(:)623 4111 y FE(F)o(or)c Fu(t)24
3846 b Fx(\025)e Fu(t)928 4123 y Fq(0)984 4111 y Ft(+)c(3)p
3847 Fu(nB)t(;)i FE(we)h(ha)n(v)o(e)e Fu(t)k Fx(\025)g Fu(t)1732
3848 4123 y FB(k)1796 4111 y Fx(\025)g Fu(d)1927 4081 y FB(i)1927
3849 4133 y(j)1962 4111 y Ft(\()p Fu(t)2024 4123 y FB(k)2065
3850 4111 y Ft(\))p Fu(:)e FE(Lemma)e(1)i(gi)n(v)o(es,)e Fx(8)p
3851 Fu(j)28 b Fx(2)c Fu(N)2945 4123 y FB(i)2972 4111 y Ft(\()p
3852 Fu(d)3047 4081 y FB(i)3047 4133 y(j)3082 4111 y Ft(\()p
3853 Fu(t)3144 4123 y FB(k)3186 4111 y Ft(\)\))890 4322 y
3854 Fu(x)937 4334 y FB(j)972 4322 y Ft(\()p Fu(t)p Ft(\))g
3855 Fx(\025)g Fu(m)p Ft(\()p Fu(d)1327 4292 y FB(i)1327 4344
3856 y(j)1363 4322 y Ft(\()p Fu(t)1425 4334 y FB(k)1466 4322
3857 y Ft(\)\))19 b(+)1632 4255 y Fr(\000)1684 4289 y Fq(1)p
3858 1680 4303 V 1680 4351 a FB(n)1731 4255 y Fr(\001)1769
3859 4272 y FB(t)p Fo(\000)p FB(d)1881 4247 y Fn(i)1881 4289
3860 y(j)1911 4272 y Fq(\()p FB(t)1962 4281 y Fn(k)1999 4272
3861 y Fq(\))2043 4322 y Ft(\()p Fu(x)2122 4334 y FB(j)2157
3862 4322 y Ft(\()p Fu(d)2232 4292 y FB(i)2232 4344 y(j)2268
3863 4322 y Ft(\()p Fu(t)2330 4334 y FB(k)2371 4322 y Ft(\)\))g
3864 Fx(\000)f Fu(m)p Ft(\()p Fu(d)2685 4292 y FB(i)2685 4344
3865 y(j)2720 4322 y Ft(\()p Fu(t)2782 4334 y FB(k)2823 4322
3866 y Ft(\)\)\))1090 4445 y Fx(\025)24 b Fu(m)p Ft(\()p Fu(t)1314
3867 4457 y Fq(0)1352 4445 y Ft(\))18 b(+)1495 4412 y FB(\013)p
3868 1495 4426 44 4 v 1500 4473 a Fq(2)1562 4377 y Fr(\000)1614
3869 4412 y Fq(1)p 1610 4426 42 4 v 1610 4473 a FB(n)1661
3870 4377 y Fr(\001)1699 4395 y FB(B)1770 4377 y Fr(\000)1822
3871 4412 y Fq(1)p 1818 4426 V 1818 4473 a FB(n)1869 4377
3872 y Fr(\001)1907 4395 y FB(t)p Fo(\000)p FB(t)2009 4403
3873 y Fd(0)2060 4445 y Ft(\()p Fu(x)2139 4457 y FB(i)2167
3874 4445 y Ft(\()p Fu(t)2229 4457 y Fq(0)2267 4445 y Ft(\))g
3875 Fx(\000)g Fu(m)p Ft(\()p Fu(t)2535 4457 y Fq(0)2573 4445
3876 y Ft(\)\))c Fu(:)523 4611 y FD(De\002nition)20 b(1.)25
3877 b FE(W)-7 b(e)39 b(say)f(that)g(a)g(sensor)f Fu(j)44
3878 b FE(is)39 b Fu(l)r FE(-connected)c(to)j(a)g(sensor)f
3879 Fu(i)h FE(if)h(it)f(is)h(logi-)523 4711 y(cally)g(connected)e(to)i
3880 Fu(i)g FE(by)f Fu(l)j FE(communication)36 b(graphs,)h(i.e.)i(if)g
3881 (there)f(e)o(xists)h Fu(r)2999 4681 y FB(i)2997 4735
3882 y(k)3039 4711 y Ft(\()p Fu(t)3101 4723 y FB(k)3142 4711
3883 y Ft(\))57 b Fx(2)p eop end
3885 TeXDict begin 9 8 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)n
3886 (fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)581
3887 b(9)523 282 y Fx(f)p Fu(t)595 294 y FB(k)654 282 y Fx(\000)18
3888 b Fu(B)k Ft(+)c(1)p Fu(;)c(:::;)g(t)1120 294 y FB(k)1161
3889 282 y Fx(g)f Fu(;)23 b FE(where)f Fu(k)30 b Fx(2)d(f)p
3890 Fu(i)1714 294 y Fq(1)1751 282 y Fu(;)14 b(:::;)g(i)1923
3891 294 y FB(l)1948 282 y Fx(g)o FE(,)23 b(such)f(that)h
3892 Fu(i)j Ft(=)h Fu(i)2532 294 y Fq(1)2596 282 y Fx(2)h
3893 Fu(N)2746 294 y FB(i)2769 302 y Fd(2)2805 282 y Ft(\()p
3894 Fu(r)2876 245 y FB(i)2899 253 y Fd(2)2874 305 y FB(i)2897
3895 313 y Fd(1)2937 282 y Ft(\()p Fu(t)2999 294 y Fq(1)3037
3896 282 y Ft(\)\))p Fu(;)14 b(i)3167 294 y Fq(2)3231 282
3897 y Fx(2)523 397 y Fu(N)590 409 y FB(i)613 417 y Fd(3)650
3898 397 y Ft(\()p Fu(r)721 360 y FB(i)744 368 y Fd(3)719
3899 421 y FB(i)742 429 y Fd(2)782 397 y Ft(\()p Fu(t)844
3900 409 y Fq(2)881 397 y Ft(\)\))p Fu(;)g(:::;)523 515 y(i)552
3901 527 y FB(l)600 515 y Fx(2)24 b Fu(N)746 527 y FB(j)780
3902 515 y Ft(\()p Fu(r)851 476 y FB(j)849 541 y(l)887 515
3903 y Ft(\()p Fu(t)949 527 y FB(l)975 515 y Ft(\)\))p Fu(:)523
3904 690 y FD(Lemma)d(4.)j Fy(If)d(sensor)f Fu(j)26 b Fy(is)21
3905 b Fu(l)r Fy(-connected)c(to)k(sensor)f Fu(i)g Fy(then)746
3906 908 y Fx(8)p Fu(t)j Fx(\025)g Fu(t)963 920 y Fq(0)1019
3907 908 y Ft(+)18 b(3)p Fu(nl)r(B)t(;)33 b(x)1391 920 y FB(j)1427
3908 908 y Ft(\()p Fu(t)p Ft(\))23 b Fx(\025)g Fu(m)p Ft(\()p
3909 Fu(t)1767 920 y Fq(0)1804 908 y Ft(\))c(+)f(\()p Fu(\021)s
3910 Ft(\))2047 866 y FB(l)2086 908 y Ft(\()2133 852 y(1)p
3911 2128 889 50 4 v 2128 965 a Fu(n)2188 908 y Ft(\))2220
3912 874 y Fq(\()p FB(t)p Fo(\000)p FB(t)2348 882 y Fd(0)2381
3913 874 y Fq(\))2407 849 y Fn(l)2449 908 y Ft(\()p Fu(x)2528
3914 920 y FB(i)2556 908 y Ft(\()p Fu(t)2618 920 y Fq(0)2656
3915 908 y Ft(\))h Fx(\000)f Fu(m)p Ft(\()p Fu(t)2925 920
3916 y Fq(0)2962 908 y Ft(\)\))c Fu(:)523 1114 y Fy(Pr)l(oof)o(.)40
3917 b FE(By)32 b(induction.)d(Suppose)i(that)g(the)g(lemma)g(is)h(true)f
3918 (for)g Fu(t)2532 1126 y Fq(0)2595 1114 y Ft(+)c(3)p Fu(nl)r(B)34
3919 b FE(then)d(if)h Fu(j)k FE(is)523 1214 y Fu(l)r FE(-connected)17
3920 b(to)k Fu(j)5 b FE(,)20 b(we)h(ha)n(v)o(e)819 1462 y
3921 Fu(x)866 1474 y FB(l)892 1462 y Ft(\()p Fu(t)954 1474
3922 y Fq(0)1010 1462 y Ft(+)d(3)p Fu(nl)r(B)t Ft(\))23 b
3923 Fx(\025)f Fu(m)p Ft(\()p Fu(t)1556 1474 y Fq(0)1594 1462
3924 y Ft(\))c(+)g(\()q Fu(\021)s Ft(\))1836 1420 y FB(l)1875
3925 1345 y Fr(\022)1937 1462 y Ft(\()1983 1405 y(1)p 1979
3926 1443 V 1979 1519 a Fu(n)2039 1462 y Ft(\))2071 1427 y
3927 Fq(\(3)p FB(nlB)s Fq(\))2275 1345 y Fr(\023)2337 1362
3928 y FB(l)2376 1462 y Ft(\()p Fu(x)2455 1474 y FB(i)2483
3929 1462 y Ft(\()p Fu(t)2545 1474 y Fq(0)2583 1462 y Ft(\))g
3930 Fx(\000)h Fu(m)p Ft(\()p Fu(t)2852 1474 y Fq(0)2889 1462
3931 y Ft(\)\))14 b Fu(:)623 1661 y FE(Consider)23 b(a)i(sensor)f
3932 Fu(k)j FE(connected)22 b(to)j Fu(j)k FE(\()p Fu(k)e FE(is)f
3933 Ft(\()p Fu(l)20 b Ft(+)e(1\))o FE(-connected)k(to)j Fu(i)p
3934 FE(\),)e(Lemma)h(3)g(and)523 1761 y(the)c(abo)o(v)o(e)f(inequality)g
3935 (gi)n(v)o(e)g(\(replacing)f Fu(t)1762 1773 y Fq(0)1820
3936 1761 y FE(by)i Fu(t)1954 1773 y Fq(0)2010 1761 y Ft(+)e(3)p
3937 Fu(nl)r(B)t Ft(\))p Fu(;)2799 2021 y(x)2846 2033 y FB(k)2887
3938 2021 y Ft(\()p Fu(t)p Ft(\))24 b Fx(\025)716 2147 y Fu(m)p
3939 Ft(\()p Fu(t)851 2159 y Fq(0)907 2147 y Ft(+)18 b(3)p
3940 Fu(nl)r(B)t Ft(\))f(+)h Fu(\021)s Ft(\()1399 2114 y Fq(1)p
3941 1395 2128 42 4 v 1395 2175 a FB(n)1446 2147 y Ft(\))1478
3942 2091 y Fn(t)p Fc(\000)p Fn(t)1569 2103 y Fd(0)1602 2091
3943 y Fc(\000)p Fd(3)p Fn(nlB)1799 2054 y Fr(\020)1849 2147
3944 y Ft(\()p Fu(\021)s Ft(\))1957 2105 y FB(l)1997 2079
3945 y Fr(\000)2035 2147 y Ft(\()2081 2114 y Fq(1)p 2077 2128
3946 V 2077 2175 a FB(n)2128 2147 y Ft(\))2160 2116 y Fq(\(3)p
3947 FB(nlB)s Fq(\))2365 2079 y Fr(\001)2403 2093 y FB(l)2442
3948 2147 y Ft(\()p Fu(x)2521 2159 y FB(i)2549 2147 y Ft(\()p
3949 Fu(t)2611 2159 y Fq(0)2649 2147 y Ft(\))h Fx(\000)f Fu(m)p
3950 Ft(\()p Fu(t)2918 2159 y Fq(0)2955 2147 y Ft(\)\))3020
3951 2054 y Fr(\021)3005 2270 y Fx(\025)1401 2394 y Fu(m)p
3952 Ft(\()p Fu(t)1536 2406 y Fq(0)1573 2394 y Ft(\))h(+)f(\()p
3953 Fu(\021)s Ft(\))1816 2352 y FB(l)p Fq(+1)1939 2326 y
3954 Fr(\000)1977 2394 y Ft(\()2024 2361 y Fq(1)p 2020 2375
3955 V 2020 2422 a FB(n)2071 2394 y Ft(\))2103 2364 y Fq(\()p
3956 FB(t)p Fo(\000)p FB(t)2231 2372 y Fd(0)2263 2364 y Fq(\))2293
3957 2326 y Fr(\001)2331 2341 y FB(l)p Fq(+1)2455 2394 y Ft(\()p
3958 Fu(x)2534 2406 y FB(i)2562 2394 y Ft(\()p Fu(t)2624 2406
3959 y Fq(0)2662 2394 y Ft(\))g Fx(\000)g Fu(m)p Ft(\()p Fu(t)2930
3960 2406 y Fq(0)2968 2394 y Ft(\)\))c Fu(:)523 2572 y Fy(Pr)l(oof)41
3961 b(\(Pr)l(oof)35 b(of)g(Theor)m(em)f(1\).)h FE(Consider)f(a)i(sensor)e
3962 Fu(i)h FE(and)g(a)g(time)h Fu(t)2713 2584 y Fq(0)2750
3963 2572 y Fu(:)f FE(Assumption)f(1)523 2671 y(implies)40
3964 b(that)h(sensor)f Fu(i)h FE(is)g Fu(B)t FE(-connected)d(to)j(an)o(y)e
3965 (sensor)i Fu(j:)g FE(Lemma)e(4)i(gi)n(v)o(es:)f Fx(8)p
3966 Fu(t)60 b Fx(2)523 2771 y Ft([)p Fu(t)576 2783 y Fq(0)632
3967 2771 y Ft(+)18 b(3)p Fu(nM)9 b(B)t(;)14 b(t)1031 2783
3968 y Fq(0)1085 2771 y Ft(+)k(3)p Fu(nM)9 b(B)22 b Ft(+)c
3969 Fu(B)t Ft(])c Fu(;)21 b Fx(8)p Fu(j)28 b Fx(2)23 b Fu(V)5
3970 b(;)996 2954 y(x)1043 2966 y FB(j)1079 2954 y Ft(\()p
3971 Fu(t)1141 2966 y Fq(0)1196 2954 y Ft(+)19 b(3)p Fu(nM)9
3972 b(B)21 b Ft(+)d Fu(B)t Ft(\))24 b Fx(\025)e Fu(m)p Ft(\()p
3973 Fu(t)1974 2966 y Fq(0)2012 2954 y Ft(\))c(+)g Fu(\016)f
3974 Ft(\()q Fu(x)2279 2966 y FB(i)2307 2954 y Ft(\()p Fu(t)2369
3975 2966 y Fq(0)2406 2954 y Ft(\))i Fx(\000)f Fu(m)p Ft(\()p
3976 Fu(t)2675 2966 y Fq(0)2712 2954 y Ft(\)\))d Fu(;)523
3977 3136 y FE(where)20 b Fu(\016)26 b(>)c Ft(0)p Fu(:)f FE(Thus,)899
3978 3335 y Fu(m)p Ft(\()p Fu(t)1034 3347 y Fq(0)1090 3335
3979 y Ft(+)d(3)p Fu(nM)9 b(B)22 b Ft(+)c Fu(B)t Ft(\))23
3980 b Fx(\025)g Fu(m)p Ft(\()p Fu(t)1868 3347 y Fq(0)1905
3981 3335 y Ft(\))c(+)f Fu(\016)2093 3243 y Fr(\020)2143 3335
3982 y Ft(max)2208 3387 y FB(i)2311 3335 y Fu(x)2358 3347
3983 y FB(i)2386 3335 y Ft(\()p Fu(t)2448 3347 y Fq(0)2486
3984 3335 y Ft(\))g Fx(\000)g Fu(m)p Ft(\()p Fu(t)2754 3347
3985 y Fq(0)2792 3335 y Ft(\))2824 3243 y Fr(\021)2887 3335
3986 y Fu(:)523 3549 y FE(Note)i(that)g Ft(lim)966 3561 y
3987 FB(t)991 3569 y Fd(0)1023 3561 y Fo(!1)1174 3549 y Ft(max)1328
3988 3561 y FB(i)1370 3549 y Fu(x)1417 3561 y FB(i)1445 3549
3989 y Ft(\()p Fu(t)1507 3561 y Fq(0)1544 3549 y Ft(\))f Fx(\000)f
3990 Fu(m)p Ft(\()p Fu(t)1813 3561 y Fq(0)1850 3549 y Ft(\))24
3991 b(=)e(0)f FE(\(otherwise)523 3649 y Ft(lim)638 3661 y
3992 FB(t)663 3669 y Fd(0)696 3661 y Fo(!1)846 3649 y Fu(m)p
3993 Ft(\()p Fu(t)981 3661 y Fq(0)1019 3649 y Ft(\))30 b(=)g(+)p
3994 Fx(1)p FE(\).)23 b(On)h(the)g(other)f(hand,)g(as)h Ft(lim)2259
3995 3661 y FB(t)p Fo(!1)2434 3649 y Fu(m)p Ft(\()p Fu(t)p
3996 Ft(\))31 b(=)e Fu(c)c FE(and)e(as)i Fu(m)p Ft(\()p Fu(t)p
3997 Ft(\))30 b Fx(\024)523 3748 y Fu(x)570 3760 y FB(j)605
3998 3748 y Ft(\()p Fu(t)p Ft(\))24 b Fx(\024)f Ft(max)965
3999 3760 y FB(i)1007 3748 y Fu(x)1054 3760 y FB(i)1082 3748
4000 y Ft(\()p Fu(t)p Ft(\))p Fu(;)d FE(we)g(deduce)e(that)h
4001 Fx(8)p Fu(j)28 b Fx(2)c Fu(V)5 b(;)20 b Ft(lim)2133 3760
4002 y FB(t)p Fo(!1)2309 3748 y Fu(x)2356 3760 y FB(j)2391
4003 3748 y Ft(\()p Fu(t)p Ft(\))k(=)e Fu(c;)e FE(which)f(implies)g(that)523
4004 3848 y Ft(lim)638 3860 y FB(t)p Fo(!1)814 3848 y Fu(s)853
4005 3860 y FB(ij)911 3848 y Ft(\()p Fu(t)p Ft(\))33 b(=)f(0)p
4006 FE(.)25 b(Thanks)f(to)h(assumption)f(1,)h(we)h(deduce)e(that)h
4007 Ft(lim)2724 3860 y FB(t)p Fo(!1)2900 3848 y Fu(v)2940
4008 3860 y FB(ij)2999 3848 y Ft(\()p Fu(t)p Ft(\))32 b(=)g(0)p
4009 Fu(;)523 3948 y FE(and)c(thanks)h(to)g(\(1.5\),)e(we)i(deduce)f(that)h
4010 Fu(nc)39 b Ft(=)f(lim)2111 3960 y FB(t)p Fo(!1)2286 3948
4011 y Fu(x)2333 3960 y FB(i)2361 3948 y Ft(\()p Fu(t)p Ft(\))i(=)2599
4012 3885 y Fr(P)2686 3906 y FB(n)2686 3972 y(i)p Fq(=1)2812
4013 3948 y Fu(x)2859 3960 y FB(i)2887 3948 y Ft(\(0\))p Fu(;)p
4014 FE(i.e.)29 b Fu(c)39 b Ft(=)523 4056 y Fr(P)611 4076
4015 y FB(n)611 4143 y(i)p Fq(=1)736 4118 y Fu(x)783 4130
4016 y FB(i)811 4118 y Ft(\(0\))p Fu(=n;)21 b FE(which)e(yields)h(to)h
4017 Ft(lim)1696 4130 y FB(t)p Fo(!1)1871 4118 y Fu(x)1918
4018 4130 y FB(i)1946 4118 y Ft(\()p Fu(t)p Ft(\))j(=)2166
4019 4085 y Fq(1)p 2162 4099 V 2162 4146 a FB(n)2252 4014
4020 y(n)2213 4039 y Fr(X)2219 4216 y FB(i)p Fq(=1)2333 4118
4021 y Fu(x)2380 4130 y FB(i)2408 4118 y Ft(\(0\))d FE(pro)o(ving)c(Theorem)
4024 TeXDict begin 10 9 bop 523 100 a FA(10)976 b(Jacques)20
4025 b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
4026 282 y Fv(1.3.4)41 b(Practical)24 b(Issues)523 515 y FE(W)-7
4027 b(e)37 b(no)n(w)e(discuss)h(some)f(practical)g(aspects)h(related)f(to)h
4028 (the)f(implementation)f(of)h(Algo-)523 614 y(rithm)27
4029 b(1.)g(The)g(main)g(tw)o(o)h(points)f(are)g(ho)n(w)g(to)g(choose)g
4030 Fu(s)2243 626 y FB(ij)2301 614 y Ft(\()p Fu(t)p Ft(\))h
4031 FE(and)f(ho)n(w)g(to)h(o)o(v)o(ercome)c(the)523 714 y(loss)d(of)f
4032 (messages?)623 814 y(Each)g(node)g(updates)f(its)j(state)g(follo)n
4033 (wing)d(equation)g(\(1.2\).)g(This)i(is)h(achie)n(v)o(ed,)c(by)j
4034 (updat-)523 913 y(ing)26 b(each)f(sensors)h Fu(s)1144
4035 925 y FB(ij)1202 913 y Ft(\()p Fu(t)p Ft(\))h FE(through)d(time.)i(F)o
4036 (or)f(sak)o(e)h(of)g(simplicity)-5 b(,)25 b(the)g(v)n(alue)h(of)f
4037 Fu(s)3052 925 y FB(ij)3111 913 y Ft(\()p Fu(t)p Ft(\))h
4038 FE(is)523 1013 y(chosen)18 b(to)g(be)g(computed)f(by)h(the)g(weighted)g
4039 (dif)n(ference)e(between)i(the)g(states)i(of)e(nodes)f
4040 Fu(i)i FE(and)523 1112 y Fu(j)26 b FE(as)21 b(follo)n(ws:)933
4041 1342 y Fu(s)972 1354 y FB(ij)1030 1342 y Ft(\()p Fu(t)p
4042 Ft(\))j(=)1235 1225 y Fr(\032)1310 1290 y Fu(\013)1363
4043 1302 y FB(ij)1422 1290 y Ft(\()p Fu(t)p Ft(\)\()p Fu(x)1595
4044 1302 y FB(i)1624 1290 y Ft(\()p Fu(t)p Ft(\))19 b Fx(\000)f
4045 Fu(x)1867 1260 y FB(i)1867 1312 y(j)1902 1290 y Ft(\()p
4046 Fu(t)p Ft(\)\))192 b FE(if)83 b Fu(x)2401 1302 y FB(i)2429
4047 1290 y Ft(\()p Fu(t)p Ft(\))23 b Fu(>)g(x)2681 1260 y
4048 FB(i)2681 1312 y(j)2716 1290 y Ft(\()p Fu(t)p Ft(\))f
4049 Fu(;)1310 1393 y Ft(0)868 b FE(otherwise)o Fu(:)623 1543
4050 y FE(The)15 b(choice)g(of)h Fu(s)1126 1555 y FB(ij)1184
4051 1543 y Ft(\()p Fu(t)p Ft(\))h FE(is)g(then)f(deduced)e(from)h(the)g
4052 (proper)g(choice)g(of)g(the)h(weights)g Fu(\013)3113
4053 1555 y FB(ij)3172 1543 y Ft(\()p Fu(t)p Ft(\))p FE(.)523
4054 1643 y(Hence,)24 b Fu(\013)834 1655 y FB(ij)893 1643
4055 y Ft(\()p Fu(t)p Ft(\))i FE(must)e(be)h(chosen)f(such)h(that)g(the)f
4056 (states)i(of)f(all)g(the)g(nodes)f(con)m(v)o(er)o(ge)d(to)k(the)523
4057 1742 y(a)n(v)o(erage)799 1680 y Fr(P)887 1701 y FB(n)887
4058 1767 y(i)p Fq(=1)1012 1742 y Fu(z)1051 1754 y FB(i)1078
4059 1742 y Fu(=n)p FE(,)20 b(i.e.,)g(assumptions)g(2)g(and)f(3)i(must)f(be)
4060 g(satis\002ed.)623 1842 y(Denote)25 b(by)h Fu(j)1038
4061 1812 y Fo(\003)1103 1842 y FE(the)g(sensor)g(node)f(satisfying)h
4062 Fu(x)2055 1812 y FB(i)2055 1864 y(j)2085 1847 y Fc(\003)2159
4063 1842 y Ft(=)34 b(min)2396 1857 y FB(k)q Fo(2)p FB(N)2530
4064 1865 y Fn(i)2556 1857 y Fq(\()p FB(t)p Fq(\))2651 1842
4065 y Fu(x)2698 1812 y FB(i)2698 1865 y(k)2740 1842 y Ft(\()p
4066 Fu(t)p Ft(\))27 b FE(\(note)e(that)i Fu(j)3249 1812 y
4067 Fo(\003)523 1942 y FE(depends)20 b(on)g Fu(i)h FE(and)f(time)h
4068 Fu(t)p FE(\))p Fu(:)h FE(The)e(v)n(alues)h(of)f Fu(\013)1909
4069 1954 y FB(ij)1968 1942 y Ft(\()p Fu(t)p Ft(\))i FE(must)f(be)g
4070 (selected)f(so)i(that)f(to)g(a)n(v)n(oid)f(the)523 2041
4071 y(ping)f(pong)g(condition)g(presented)g(in)h(assumption)f(3.)623
4072 2141 y(This)i(is)i(equi)n(v)n(alent)c(to)j(choose)e Fu(\013)1625
4073 2153 y FB(ij)1684 2141 y Ft(\()p Fu(t)p Ft(\))j FE(so)e(that)h
4074 Fx(8)p Fu(t)j Fe(>)g Ft(0)p Fu(;)14 b Fx(8)p Fu(i)25
4075 b Fx(2)g Fu(N)t(;)e FE(and)e Fu(j)30 b Fx(6)p Ft(=)25
4076 b Fu(j)2945 2111 y Fo(\003)3008 2141 y Fx(2)p 3089 2074
4077 76 4 v 26 w Fu(N)3165 2153 y FB(i)3192 2141 y Ft(\()p
4078 Fu(t)p Ft(\))523 2240 y FE(satisfying)20 b Fu(x)914 2252
4079 y FB(i)942 2240 y Ft(\()p Fu(t)p Ft(\))j Fu(>)g(x)1194
4080 2210 y FB(i)1194 2262 y(j)1229 2240 y Ft(\()p Fu(t)p
4081 Ft(\))p Fu(;)1015 2494 y Ft(0)f Fx(\024)h Fu(\013)1220
4082 2506 y FB(ij)1279 2494 y Ft(\()p Fu(t)p Ft(\))g Fx(\024)1494
4083 2438 y Ft(1)p 1494 2475 42 4 v 1494 2551 a(2)1559 2352
4084 y Fr( )1625 2494 y Ft(1)18 b Fx(\000)1778 2363 y Fr(P)1865
4085 2450 y FB(j)s Fo(6)p Fq(=)p FB(i)1989 2425 y Fu(\013)2042
4086 2437 y FB(ik)2106 2425 y Ft(\()p Fu(t)p Ft(\)\()p Fu(x)2279
4087 2437 y FB(i)2308 2425 y Ft(\()p Fu(t)p Ft(\))h Fx(\000)f
4088 Fu(x)2551 2395 y FB(k)2551 2447 y(i)2592 2425 y Ft(\()p
4089 Fu(t)p Ft(\)\))p 1778 2475 942 4 v 1992 2563 a(\()p Fu(x)2071
4090 2575 y FB(i)2100 2563 y Ft(\()p Fu(t)p Ft(\))h Fx(\000)f
4091 Fu(x)2343 2523 y FB(j)2343 2586 y(i)2378 2563 y Ft(\()p
4092 Fu(t)p Ft(\)\))2729 2352 y Fr(!)3128 2494 y FE(\(1.8\))623
4093 2718 y(The)25 b(weights)g Fu(\013)1115 2730 y FB(ij)1174
4094 2718 y Ft(\()p Fu(t)p Ft(\))h FE(must)g(also)g(be)f(chosen)g(in)g
4095 (order)g(to)g(respect)h(assumption)e(2.)h(This)523 2817
4096 y(assumption)19 b(can)h(be)g(carried)f(out)h(by)g(\002xing)g(a)g
4097 (constant)g Fu(\014)27 b Fx(2)c Ft([0)p Fu(;)14 b Ft(1])20
4098 b FE(and)g(choosing)889 2930 y Fr(8)889 3005 y(<)889
4099 3154 y(:)976 2933 y(P)1063 3020 y FB(k)q Fo(6)p Fq(=)p
4100 FB(j)1180 3003 y Fc(\003)1216 3020 y Fo(2)p FB(N)1314
4101 3028 y Fn(i)1340 3020 y Fq(\()p FB(t)p Fq(\))1435 2995
4102 y Fu(\013)1488 3007 y FB(ik)1552 2995 y Ft(\()p Fu(t)p
4103 Ft(\)\()p Fu(x)1725 3007 y FB(i)1754 2995 y Ft(\()p Fu(t)p
4104 Ft(\))f Fx(\000)f Fu(x)1997 2965 y FB(i)1997 3019 y(k)2039
4105 2995 y Ft(\()p Fu(t)p Ft(\)\))24 b Fx(\024)e Fu(\014)t
4106 Ft(\()p Fu(x)2406 3007 y FB(i)2435 2995 y Ft(\()p Fu(t)p
4107 Ft(\))d Fx(\000)f Fu(x)2678 2965 y FB(i)2678 3017 y(j)2708
4108 3000 y Fc(\003)2748 2995 y Ft(\()p Fu(t)p Ft(\)\))p Fu(;)976
4109 3155 y(\013)1029 3167 y FB(ij)1082 3151 y Fc(\003)1122
4110 3155 y Ft(\()p Fu(t)p Ft(\))24 b(=)1337 3122 y Fq(1)p
4111 1337 3136 34 4 v 1337 3184 a(2)1394 3038 y Fr(\022)1455
4112 3155 y Ft(1)18 b Fx(\000)1608 3059 y Fb(P)1678 3121 y
4113 Fn(k)q Fc(6)p Fd(=)p Fn(j)1779 3109 y Fc(\003)1830 3102
4114 y FB(\013)1873 3111 y Fn(ik)1931 3102 y Fq(\()p FB(t)p
4115 Fq(\)\()p FB(x)2072 3110 y Fn(i)2098 3102 y Fq(\()p FB(t)p
4116 Fq(\))p Fo(\000)p FB(x)2265 3077 y Fn(i)2265 3119 y(k)2301
4117 3102 y Fq(\()p FB(t)p Fq(\)\))p 1608 3136 796 4 v 1793
4118 3187 a(\()p FB(x)1857 3195 y Fn(i)1883 3187 y Fq(\()p
4119 FB(t)p Fq(\))p Fo(\000)p FB(x)2050 3167 y Fn(i)2050 3210
4120 y(j)2076 3198 y Fc(\003)2116 3187 y Fq(\()p FB(t)p Fq(\)\))2414
4121 3038 y Fr(\023)3128 3100 y FE(\(1.9\))523 3349 y(Indeed,)g(from)i
4122 (\(1.9\))e(we)j(deduce)839 3588 y Fu(\013)892 3600 y
4123 FB(ij)945 3584 y Fc(\003)986 3588 y Ft(\()p Fu(t)p Ft(\))i
4124 Fx(\025)1201 3523 y Ft(\()p Fu(x)1280 3535 y FB(i)1308
4125 3523 y Ft(\()p Fu(t)p Ft(\))c Fx(\000)f Fu(x)1551 3493
4126 y FB(i)1551 3545 y(j)1581 3528 y Fc(\003)1621 3523 y
4127 Ft(\()p Fu(t)p Ft(\)\))i Fx(\000)e Fu(\014)t Ft(\()p
4128 Fu(x)1980 3535 y FB(i)2008 3523 y Ft(\()p Fu(t)p Ft(\))h
4129 Fx(\000)f Fu(x)2251 3493 y FB(i)2251 3545 y(j)2281 3528
4130 y Fc(\003)2322 3523 y Ft(\()p Fu(t)p Ft(\)\))p 1201 3569
4131 1248 4 v 1530 3646 a(2\()p Fu(x)1651 3658 y FB(i)1679
4132 3646 y Ft(\()p Fu(t)p Ft(\))h Fx(\000)f Fu(x)1922 3618
4133 y FB(i)1922 3670 y(j)1952 3653 y Fc(\003)1992 3646 y
4134 Ft(\()p Fu(t)p Ft(\)\))2481 3588 y(=)2579 3532 y(1)g
4135 Fx(\000)g Fu(\014)p 2579 3569 195 4 v 2655 3645 a Ft(2)2806
4136 3588 y(=)23 b Fu(\013:)523 3846 y FE(Hence,)d Fx(8)p
4137 Fu(i;)14 b(j)928 3815 y Fo(\003)965 3846 y Fu(;)g(t)21
4138 b FE(such)f(that)g Fu(j)1410 3815 y Fo(\003)1471 3846
4139 y Fx(2)p 1550 3779 76 4 v 24 w Fu(N)1626 3858 y FB(i)1653
4140 3846 y Ft(\()p Fu(t)p Ft(\))h FE(and)f Fu(x)1956 3815
4141 y FB(i)1956 3867 y(j)1986 3851 y Fc(\003)2026 3846 y
4142 Ft(\()p Fu(t)p Ft(\))k(=)e(min)2370 3861 y FB(k)q Fo(2)p
4143 FB(N)2504 3869 y Fn(i)2530 3861 y Fq(\()p FB(t)p Fq(\))2625
4144 3846 y Fu(x)2672 3815 y FB(i)2672 3869 y(k)2713 3846
4145 y Ft(\()p Fu(t)p Ft(\))p Fu(;)943 4042 y(s)982 4054 y
4146 FB(ij)1035 4038 y Fc(\003)1075 4042 y Ft(\()p Fu(t)p
4147 Ft(\))h(=)g Fu(\013)1333 4054 y FB(ij)1386 4038 y Fc(\003)1426
4148 4042 y Ft(\()p Fu(t)p Ft(\))1534 3975 y Fr(\000)1573
4149 4042 y Fu(x)1620 4054 y FB(i)1648 4042 y Ft(\()p Fu(t)p
4150 Ft(\))c Fx(\000)f Fu(x)1891 4008 y FB(i)1891 4063 y(j)1921
4151 4046 y Fc(\003)1961 4042 y Ft(\()p Fu(t)p Ft(\))2055
4152 3975 y Fr(\001)2117 4042 y Fx(\025)k Fu(\013)2271 3975
4153 y Fr(\000)2310 4042 y Fu(x)2357 4054 y FB(i)2385 4042
4154 y Ft(\()p Fu(t)p Ft(\))d Fx(\000)f Fu(x)2628 4008 y FB(i)2628
4155 4063 y(j)2658 4046 y Fc(\003)2698 4042 y Ft(\()p Fu(t)p
4156 Ft(\))2792 3975 y Fr(\001)2844 4042 y Fu(:)623 4225 y
4157 FE(The)23 b(\002rst)i(inequation)d(of)i(\(1.9\))f(can)g(be)h(written)g
4158 (as)2179 4163 y Fr(P)2267 4250 y FB(k)q Fo(6)p Fq(=)p
4159 FB(j)2384 4233 y Fc(\003)2420 4250 y Fo(2)p FB(V)2504
4160 4258 y Fn(i)2530 4250 y Fq(\()p FB(t)p Fq(\))2625 4225
4161 y Fu(s)2664 4237 y FB(ik)2728 4225 y Ft(\()p Fu(t)p Ft(\))31
4162 b Fx(\024)f Fu(\014)t Ft(\()p Fu(x)3078 4237 y FB(i)3106
4163 4225 y Ft(\()p Fu(t)p Ft(\))22 b Fx(\000)523 4341 y Fu(x)570
4164 4311 y FB(i)570 4363 y(j)600 4346 y Fc(\003)640 4341
4165 y Ft(\()p Fu(t)p Ft(\)\))p Fu(;)27 b FE(this)e(means)f(that)h(the)g
4166 (totality)g(of)g(data)f(sent)i(to)f(the)g(neighbours)d(of)i
4167 Fu(i)i FE(\(e)o(xcept)d Fu(j)3221 4311 y Fo(\003)3259
4168 4341 y FE(\))523 4451 y(doesn')o(t)c(e)o(xceed)g(a)h(portion)f
4169 Fu(\014)25 b FE(of)20 b Ft(\()p Fu(x)1596 4463 y FB(i)1624
4170 4451 y Ft(\()p Fu(t)p Ft(\))f Fx(\000)f Fu(x)1867 4421
4171 y FB(i)1867 4473 y(j)1897 4456 y Fc(\003)1937 4451 y
4172 Ft(\()p Fu(t)p Ft(\)\))p Fu(:)623 4551 y FE(Equations)25
4173 b(\(1.8\))g(and)g(\(1.9\))g(are)i(deri)n(v)o(ed)d(from)h(the)i
4174 (assumptions)e(2)i(and)e(3.)i(Therefore)523 4651 y(the)20
4175 b(choice)g(of)g(the)g(weights)g Fu(\013)1427 4663 y FB(ij)1506
4176 4651 y FE(must)g(tak)o(e)h(into)f(consideration)e(these)i(tw)o(o)g
4177 (equations.)p eop end
4179 TeXDict begin 11 10 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)
4180 n(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)545
4181 b(11)p 523 206 2764 7 v 523 280 a FD(Algorithm)20 b(2)g
4182 FE(T)-6 b(emporally)18 b(updating)h(weights)h(of)g(node)f
4183 Fu(i)p FE(.)p 523 318 2764 4 v 553 383 a FA(1:)35 b Fm(f)n(or)19
4184 b Fl(j)k Fz( )c Fk(1)f FA(to)g Fl(n)f Fm(do)553 466 y
4185 FA(2:)118 b Fm(if)18 b Fl(j)23 b Fz(6)p Fk(=)c Fl(i)f
4186 Fm(then)553 549 y FA(3:)201 b Fl(s)842 559 y Fj(ij)916
4187 549 y Fz( )19 b Fk(0)553 632 y FA(4:)201 b Fl(\013)854
4188 642 y Fj(ij)929 632 y Fz( )19 b Fk(0)553 715 y FA(5:)118
4189 b Fm(end)18 b(if)553 798 y FA(6:)35 b Fm(end)18 b(f)n(or)553
4190 881 y FA(7:)35 b Fl(k)21 b Fz( )e Fk(0)553 964 y FA(8:)35
4191 b Fl(S)t(um)20 b Fz( )f Fk(0)553 1047 y FA(9:)35 b(\002nd)18
4192 b Fl(`)g FA(such)h(that)e Fl(\001)1146 1024 y Fj(`)1146
4193 1069 y(i)1196 1047 y Fk(=)i Fl(D)r(el)q(ta)1447 1057
4194 y Fj(i)1474 1047 y Fk([)p Fl(k)r Fk(])523 1130 y FA(10:)36
4195 b Fl(\013)694 1142 y Fj(i`)766 1130 y Fk(=)19 b(1)p Fl(=)p
4196 Fk(\()p Fl(\021)972 1140 y Fj(i)1016 1130 y Fk(+)c(1\))523
4197 1213 y FA(11:)36 b Fl(s)682 1225 y Fj(i`)753 1213 y Fk(=)19
4198 b Fl(\013)872 1225 y Fj(i`)941 1213 y Fz(\002)c Fl(\001)1070
4199 1190 y Fj(`)1070 1235 y(i)523 1296 y FA(12:)36 b Fm(r)o(epeat)523
4200 1379 y FA(13:)119 b Fl(S)t(um)19 b Fz( )g Fl(S)t(um)d
4201 Fk(+)f Fl(s)1260 1391 y Fj(il)523 1462 y FA(14:)119 b
4202 Fl(k)21 b Fz( )e Fl(k)e Fk(+)f(1)523 1545 y FA(15:)119
4203 b(\002nd)18 b Fl(`)f FA(such)i(that)f Fl(\001)1235 1522
4204 y Fj(`)1235 1567 y(i)1284 1545 y Fk(=)i Fl(D)r(el)q(ta)1536
4205 1555 y Fj(i)1563 1545 y Fk([)p Fl(k)r Fk(])523 1628 y
4206 FA(16:)119 b Fl(\013)777 1640 y Fj(i`)849 1628 y Fz( )19
4207 b Fk(1)p Fl(=)p Fk(\()p Fl(\021)1071 1638 y Fj(i)1114
4208 1628 y Fk(+)d(1\))523 1711 y FA(17:)119 b Fl(s)765 1723
4209 y Fj(i`)836 1711 y Fz( )19 b Fl(\013)971 1723 y Fj(i`)1039
4210 1711 y Fz(\002)d Fl(\001)1169 1688 y Fj(`)1169 1733 y(i)523
4211 1794 y FA(18:)36 b Fm(until)f Fl(N)7 b(O)r(T)27 b FA(\()p
4212 Fk(\()p Fl(x)1102 1804 y Fj(i)1145 1794 y Fz(\000)15
4213 b Fl(S)t(um)20 b Fz(\025)f Fl(x)1499 1771 y Fj(i)1499
4214 1817 y(`)1545 1794 y Fk(+)c Fl(s)1648 1806 y Fj(i`)1700
4215 1794 y Fk(\))j Fl(AN)7 b(D)20 b Fk(\()p Fl(k)h(<)f(n)p
4216 Fk(\))p FA(\))p 523 1851 V 623 2134 a FE(First)h(let)f(de\002ne)g(the)g
4217 (de)n(viation)f Fu(\001)1642 2094 y FB(j)1642 2157 y(i)1677
4218 2134 y Ft(\()p Fu(t)p Ft(\))i FE(of)f(node)g Fu(i)g FE(as:)861
4219 2363 y Fu(\001)930 2324 y FB(j)930 2387 y(i)965 2363
4220 y Ft(\()p Fu(t)p Ft(\))k(=)1170 2246 y Fr(\032)1245 2311
4221 y Fu(x)1292 2323 y FB(i)1320 2311 y Ft(\()p Fu(t)p Ft(\))19
4222 b Fx(\000)f Fu(x)1563 2281 y FB(i)1563 2333 y(j)1599
4223 2311 y Ft(\()p Fu(t)p Ft(\))191 b FE(if)p Fu(j)28 b Fx(2)23
4224 b Fu(N)2142 2323 y FB(i)2170 2311 y Ft(\()p Fu(t)p Ft(\))e
4225 FE(and)e Fu(x)2472 2323 y FB(i)2501 2311 y Ft(\()p Fu(t)p
4226 Ft(\))k Fu(>)g(x)2753 2281 y FB(i)2753 2333 y(j)2788
4227 2311 y Ft(\()p Fu(t)p Ft(\))f Fu(;)1245 2414 y Ft(0)597
4228 b FE(otherwise.)623 2559 y(Algorithm)17 b(2)i(presents)f(our)g(method)f
4229 (for)h(temporally)f(updating)g(the)i(a)n(v)o(eraging)e(weights.)523
4230 2658 y(Node)27 b Fu(i)i FE(computes)d(the)j(dif)n(ference)d(between)h
4231 (its)i(current)e(state)h(and)g(current)f(states)i(of)e(its)523
4232 2758 y(neighbours.)16 b(The)i(positi)n(v)o(e)f(de)n(viations)h(\()p
4233 Fu(\001)1814 2718 y FB(j)1814 2781 y(i)1871 2758 y Fu(>)23
4234 b Ft(0)p FE(\))18 b(are)h(then)f(stored)f(in)i(the)f(array)g
4235 Fu(D)r(el)r(ta)3156 2770 y FB(i)3182 2758 y FE(,)h(in)523
4236 2857 y(a)j(decreasing)f(order)-5 b(.)21 b(Then,)f(it)j(sets)g(the)f
4237 (weight)f Fu(\013)2028 2869 y FB(ij)2110 2857 y FE(to)h
4238 Ft(1)p Fu(=)p Ft(\()p Fu(\021)2354 2869 y FB(i)2381 2857
4239 y Ft(\()p Fu(t)p Ft(\))e(+)f(1\))p FE(,)j(where)g Fu(\021)2963
4240 2869 y FB(i)2991 2857 y Ft(\()p Fu(t)p Ft(\))h FE(is)f(the)523
4241 2957 y(current)c(number)g(of)h(its)h(neighbours,)c(starting)j(by)g(its)
4242 i(neighbours)16 b(nodes)j Fu(j)25 b FE(whose)19 b(ha)n(v)o(e)f(the)523
4243 3057 y(lar)o(ger)h(de)n(viations)g(while)h(respecting)f(assumption)g
4244 (3.)623 3156 y(In)29 b(order)f(to)i(cope)e(with)i(the)g(problem)d(of)j
4245 (message)f(loss,)h(we)g(adopted)e(the)h(follo)n(wing)523
4246 3256 y(strate)o(gy:)c(instead)h(of)g(sending)f Fu(s)1516
4247 3268 y FB(ij)1574 3256 y Ft(\()p Fu(t)p Ft(\))i FE(from)f(node)f
4248 Fu(i)h FE(to)g(node)f Fu(j)5 b FE(,)26 b(it)h(is)g(the)f(sum)g
4249 Fu(\006)3005 3268 y FB(s)3036 3276 y Fn(ij)3094 3256
4250 y Ft(\()p Fu(t)p Ft(\))34 b(=)523 3293 y Fr(P)611 3380
4251 y Fq(0)p Fo(\024)p FB(\034)7 b Fo(\024)p FB(t)828 3356
4252 y Fu(s)867 3368 y FB(ij)925 3356 y Ft(\()p Fu(\034)i
4253 Ft(\))29 b FE(that)d(is)h(sent.)g(Symmetrically)e(the)h(recei)n(v)o
4254 (ers)g(maintains)f(the)i(sum)f(of)g(the)523 3455 y(recei)n(v)o(ed)i
4255 (data)h Fu(\006)1064 3467 y FB(r)1095 3475 y Fn(j)r(i)1152
4256 3455 y Ft(\()p Fu(t)p Ft(\))40 b(=)1391 3393 y Fr(P)1478
4257 3480 y Fq(0)p Fo(\024)p FB(\034)7 b Fo(\024)p FB(t)1696
4258 3455 y Fu(r)1733 3467 y FB(j)s(i)1792 3455 y Ft(\()p
4259 Fu(\034)i Ft(\))p FE(.)30 b(Upon)f(recei)n(ving,)e(at)j(a)g(time)f
4260 Fu(t)p FE(,)h(a)g(message)523 3578 y(from)17 b(node)g
4261 Fu(i)p FE(,)i(a)f(node)g Fu(j)23 b FE(can)18 b(no)n(w)g(reco)o(v)o(er)e
4262 (all)j(the)f(data)g(that)h(w)o(as)g(sent)f(before)f(time)i
4263 Fu(d)3067 3538 y FB(j)3067 3601 y(i)3102 3578 y Ft(\()p
4264 Fu(t)p Ft(\))p FE(.)g(It)523 3687 y(has)f(only)e(to)i(calculate)f(the)g
4265 (dif)n(ference)f(between)g(the)i(recei)n(v)o(ed)e Fu(\006)2460
4266 3699 y FB(s)2491 3707 y Fn(ij)2548 3687 y Ft(\()p Fu(d)2623
4267 3647 y FB(j)2623 3710 y(i)2659 3687 y Ft(\()p Fu(t)p
4268 Ft(\)\))i FE(and)f(the)h(locally)523 3787 y(stored)i
4269 Fu(\006)812 3799 y FB(r)843 3807 y Fn(j)r(i)900 3787
4270 y Ft(\()p Fu(t)p Ft(\))p FE(.)623 3887 y(T)-7 b(o)18
4271 b(conclude,)e(the)i(state)h(messages)f(e)o(xchanged)e(during)g(the)i(e)
4272 o(x)o(ecution)e(of)i(the)g(algorithm)523 3986 y(are)h(composed)e(of)i
4273 (tw)o(o)h(scalar)f(v)n(alues)g(:)g(the)g(current)f(state)i(of)f(the)g
4274 (node,)f Fu(x)2725 3998 y FB(i)2753 3986 y Ft(\()p Fu(t)p
4275 Ft(\))p FE(,)i(and)e(the)h(sum)523 4086 y(of)h(the)g(sent)h(data)f
4276 Fu(\006)1114 4098 y FB(s)1145 4106 y Fn(ij)1202 4086
4277 y Ft(\()p Fu(t)p Ft(\))p FE(.)p eop end
4279 TeXDict begin 12 11 bop 523 100 a FA(12)976 b(Jacques)20
4280 b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
4281 282 y Fv(1.3.5)41 b(Illustrativ)o(e)23 b(Example)523
4282 515 y FE(T)-7 b(o)26 b(illustrate)g(the)g(beha)n(viour)e(of)i(our)f
4283 (proposed)f(approach,)f(les)k(us)f(consider)f(the)h(e)o(xample)523
4284 614 y(presented)20 b(in)h(Figure)g(1.2.)f(It)h(consists)h(in)f(a)h
4285 (netw)o(ork)e(of)h(four)f(nodes.)g(The)h(initial)h(measure-)523
4286 714 y(ment)e(of)g(each)g(node)f Fu(i)h FE(is)h(kno)n(wn)e(by)h
4287 Fu(z)1668 726 y FB(i)1716 714 y FE(and)f(the)i(initial)f(state)h
4288 Fu(x)2413 726 y FB(i)2441 714 y Ft(\(0\))i(=)g Fu(z)2697
4289 726 y FB(i)2724 714 y FE(.)881 1808 y @beginspecial 0
4290 @llx 0 @lly 447 @urx 198 @ury 2458 @rwi @setspecial
4291 %%BeginDocument: exampleFusion.eps
4292 %!PS-Adobe-2.0 EPSF-2.0
4293 %%Title: example.fig
4294 %%Creator: fig2dev Version 3.2 Patchlevel 5-alpha7
4295 %%CreationDate: Wed Apr 9 11:24:09 2008
4296 %%For: makhoul@soleil4 (makhoul,,,)
4297 %%BoundingBox: 0 0 447 198
4298 %Magnification: 1.0000
4300 /$F2psDict 200 dict def
4302 $F2psDict /mtrx matrix put
4303 /col-1 {0 setgray} bind def
4304 /col0 {0.000 0.000 0.000 srgb} bind def
4305 /col1 {0.000 0.000 1.000 srgb} bind def
4306 /col2 {0.000 1.000 0.000 srgb} bind def
4307 /col3 {0.000 1.000 1.000 srgb} bind def
4308 /col4 {1.000 0.000 0.000 srgb} bind def
4309 /col5 {1.000 0.000 1.000 srgb} bind def
4310 /col6 {1.000 1.000 0.000 srgb} bind def
4311 /col7 {1.000 1.000 1.000 srgb} bind def
4312 /col8 {0.000 0.000 0.560 srgb} bind def
4313 /col9 {0.000 0.000 0.690 srgb} bind def
4314 /col10 {0.000 0.000 0.820 srgb} bind def
4315 /col11 {0.530 0.810 1.000 srgb} bind def
4316 /col12 {0.000 0.560 0.000 srgb} bind def
4317 /col13 {0.000 0.690 0.000 srgb} bind def
4318 /col14 {0.000 0.820 0.000 srgb} bind def
4319 /col15 {0.000 0.560 0.560 srgb} bind def
4320 /col16 {0.000 0.690 0.690 srgb} bind def
4321 /col17 {0.000 0.820 0.820 srgb} bind def
4322 /col18 {0.560 0.000 0.000 srgb} bind def
4323 /col19 {0.690 0.000 0.000 srgb} bind def
4324 /col20 {0.820 0.000 0.000 srgb} bind def
4325 /col21 {0.560 0.000 0.560 srgb} bind def
4326 /col22 {0.690 0.000 0.690 srgb} bind def
4327 /col23 {0.820 0.000 0.820 srgb} bind def
4328 /col24 {0.500 0.190 0.000 srgb} bind def
4329 /col25 {0.630 0.250 0.000 srgb} bind def
4330 /col26 {0.750 0.380 0.000 srgb} bind def
4331 /col27 {1.000 0.500 0.500 srgb} bind def
4332 /col28 {1.000 0.630 0.630 srgb} bind def
4333 /col29 {1.000 0.750 0.750 srgb} bind def
4334 /col30 {1.000 0.880 0.880 srgb} bind def
4335 /col31 {1.000 0.840 0.000 srgb} bind def
4339 newpath 0 198 moveto 0 0 lineto 447 0 lineto 447 198 lineto closepath clip newpath
4340 -208.8 326.9 translate
4343 /cp {closepath} bind def
4344 /ef {eofill} bind def
4345 /gr {grestore} bind def
4346 /gs {gsave} bind def
4348 /rs {restore} bind def
4349 /l {lineto} bind def
4350 /m {moveto} bind def
4351 /rm {rmoveto} bind def
4352 /n {newpath} bind def
4353 /s {stroke} bind def
4355 /slc {setlinecap} bind def
4356 /slj {setlinejoin} bind def
4357 /slw {setlinewidth} bind def
4358 /srgb {setrgbcolor} bind def
4359 /rot {rotate} bind def
4360 /sc {scale} bind def
4361 /sd {setdash} bind def
4362 /ff {findfont} bind def
4363 /sf {setfont} bind def
4364 /scf {scalefont} bind def
4365 /sw {stringwidth} bind def
4366 /tr {translate} bind def
4367 /tnt {dup dup currentrgbcolor
4368 4 -2 roll dup 1 exch sub 3 -1 roll mul add
4369 4 -2 roll dup 1 exch sub 3 -1 roll mul add
4370 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
4372 /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
4373 4 -2 roll mul srgb} bind def
4376 /startangle exch def
4381 /savematrix mtrx currentmatrix def
4382 x y tr xrad yrad sc 0 0 1 startangle endangle arc
4384 savematrix setmatrix
4387 /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
4388 /$F2psEnd {$F2psEnteredState restore end} def
4395 % Fig objects follow
4398 % here starts figure with depth 50
4401 n 3825 2565 487 487 0 360 DrawEllipse gs col0 s gr
4404 n 7380 2565 487 487 0 360 DrawEllipse gs col0 s gr
4407 n 4320 4680 487 487 0 360 DrawEllipse gs col0 s gr
4410 n 9900 4455 487 487 0 360 DrawEllipse gs col0 s gr
4416 4185 4230 l gs col0 s gr
4419 6885 2565 l gs col0 s gr
4422 7110 2970 l gs col0 s gr
4425 9585 4095 l gs col0 s gr
4426 /Times-Bold ff 254.00 scf sf
4428 gs 1 -1 sc (z) col0 sh gr
4429 /Times-Roman ff 190.50 scf sf
4431 gs 1 -1 sc (2) col0 sh gr
4432 /Times-Bold ff 222.25 scf sf
4434 gs 1 -1 sc (= 0.5) col0 sh gr
4435 /Times-Roman ff 190.50 scf sf
4437 gs 1 -1 sc (4) col0 sh gr
4438 /Times-Bold ff 222.25 scf sf
4440 gs 1 -1 sc (= 0.9) col0 sh gr
4441 /Times-Bold ff 254.00 scf sf
4443 gs 1 -1 sc (z) col0 sh gr
4444 /Times-Bold ff 254.00 scf sf
4446 gs 1 -1 sc (z) col0 sh gr
4447 /Times-Roman ff 190.50 scf sf
4449 gs 1 -1 sc (1) col0 sh gr
4450 /Times-Bold ff 222.25 scf sf
4452 gs 1 -1 sc (= 0.7) col0 sh gr
4453 /Times-Bold ff 254.00 scf sf
4455 gs 1 -1 sc (z) col0 sh gr
4456 /Times-Bold ff 222.25 scf sf
4458 gs 1 -1 sc (= 0.2) col0 sh gr
4459 /Times-Roman ff 190.50 scf sf
4461 gs 1 -1 sc (3) col0 sh gr
4470 @endspecial 523 1933 a Fm(Fig)o(.)16 b(1.2)36 b FA(An)17
4471 b(e)o(xample)g(of)h(a)f(sensor)h(netw)o(ork)h(composed)f(of)g(four)g
4472 (nodes)g(with)e(their)h(initial)e(measurements.)623 2193
4473 y FE(F)o(ollo)n(wing)21 b(the)i(second)f(step)h(of)f(Algorithm)g(1,)g
4474 (each)h(node)e(computes)h(the)h(weights)f Fu(\013)3228
4475 2205 y FB(ij)523 2293 y FE(for)e(its)h(neighbours.)c(This)k(is)g(done)e
4476 (by)h(using)f(Algorithm)g(2.)623 2392 y(Let)36 b(us)g(focus)f(on)h(the)
4477 f(case)i(of)e Fu(node)1810 2404 y Fq(4)1884 2392 y FE(for)g(instance.)g
4478 (W)-7 b(e)37 b(notice)e(that)h(it)h(has)f(three)523 2492
4479 y(neighbours)19 b(and)i(the)g(high)g(de)n(viation)f Fu(\001)i
4480 FE(corresponds)d(to)j Fu(node)2451 2504 y Fq(3)2488 2492
4481 y FE(.)f(Therefore,)e(it)k(computes)523 2592 y Fu(\013)576
4482 2604 y Fq(43)646 2592 y Ft(\(0\))45 b(=)976 2559 y Fq(1)p
4483 917 2573 151 4 v 917 2620 a FB(\021)951 2628 y Fd(4)983
4484 2620 y Fq(+1)1122 2592 y Ft(=)1242 2559 y Fq(1)p 1242
4485 2573 34 4 v 1242 2620 a(4)1317 2592 y FE(\002rst,)33
4486 b(such)e(that)i Fu(\021)1883 2604 y Fq(4)1953 2592 y
4487 FE(is)f(the)g(number)f(of)g(its)i(neighbours.)c(Then,)523
4488 2710 y Fu(s)562 2722 y Fq(43)632 2710 y Ft(\(0\))e(=)867
4489 2677 y Fq(1)p 867 2691 V 867 2739 a(4)910 2710 y Ft(\()p
4490 Fu(x)989 2722 y Fq(4)1027 2710 y Ft(\(0\))20 b Fx(\000)g
4491 Fu(x)1285 2722 y Fq(3)1323 2710 y Ft(\(0\)\))27 b(=)g(0)p
4492 Fu(:)p Ft(175)p FE(.)20 b(F)o(or)i(the)h(tw)o(o)f(reminder)f
4493 (neighbours)f Fu(node)3107 2722 y Fq(1)3167 2710 y FE(and)523
4494 2810 y Fu(node)695 2822 y Fq(2)732 2810 y FE(,)25 b Fu(node)950
4495 2822 y Fq(4)1013 2810 y FE(computes)f Fu(\013)1410 2822
4496 y Fq(42)1480 2810 y Ft(\(0\))i FE(\002rst)f(for)f(the)h(reason)f(that)h
4497 Fu(\001)2476 2779 y Fq(2)2476 2830 y(4)2539 2810 y FE(is)h(higher)d
4498 (than)i Fu(\001)3095 2779 y Fq(1)3095 2830 y(4)3132 2810
4499 y FE(.)g(W)-7 b(e)523 2909 y(note)24 b(that)h(for)e Fu(node)1134
4500 2921 y Fq(2)1196 2909 y FE(the)i(Assumption)e(3)i(\(ping)e(pong)g
4501 (condition\))f(is)k(satis\002ed)f(while)f(it)h(is)523
4502 3009 y(not)20 b(the)g(case)h(for)e Fu(node)1225 3021
4503 y Fq(1)1283 3009 y FE(which)h(leads)g(to)h Fu(\013)1837
4504 3021 y Fq(41)1907 3009 y Ft(\(0\))i(=)g(0)p FE(.)623
4505 3108 y(All)j(the)g(nodes)e(compute)h(their)g(weights)g(and)g(then)h
4506 (dif)n(fuse)e(their)i(information)d(to)j(their)523 3208
4507 y(neighbours)c(to)k(update)d(their)i(states)h(follo)n(wing)d(Equation)h
4508 (\(1.2\).)f(F)o(or)i(the)g(abo)o(v)o(e)e(e)o(xample)523
4509 3308 y(after)d(the)g(\002rst)h(step)g(we)f(obtain:)623
4510 3474 y Fu(x)670 3486 y Fq(1)707 3474 y Ft(\(1\))k(=)e(0)p
4511 Fu(:)p Ft(7)623 3573 y Fu(x)670 3585 y Fq(2)707 3573
4512 y Ft(\(1\))i(=)e(0)p Fu(:)p Ft(5)c(+)g(0)p Fu(:)p Ft(1)f
4513 Fx(\000)h Ft(0)p Fu(:)p Ft(1)k(=)h(0)p Fu(:)p Ft(5)623
4514 3673 y Fu(x)670 3685 y Fq(3)707 3673 y Ft(\(1\))h(=)e(0)p
4515 Fu(:)p Ft(2)c(+)g(0)p Fu(:)p Ft(1)f(+)h(0)p Fu(:)p Ft(175)j(=)i(0)p
4516 Fu(:)p Ft(475)623 3773 y Fu(x)670 3785 y Fq(4)707 3773
4517 y Ft(\(1\))h(=)e(0)p Fu(:)p Ft(9)c Fx(\000)g Ft(0)p Fu(:)p
4518 Ft(1)f Fx(\000)h Ft(0)p Fu(:)p Ft(175)j(=)i(0)p Fu(:)p
4519 Ft(625)623 3939 y FE(This)31 b(process)f(is)i(repeated)d(for)i(se)n(v)o
4520 (eral)f(iterations)g(until)h(all)g(the)g(states)h(of)e(the)h(nodes)523
4521 4038 y(con)m(v)o(er)o(ge)26 b(to)k(the)g(a)n(v)o(erage)e(of)i(the)g
4522 (initial)g(measurements.)e(W)-7 b(e)30 b(note)g(that)f(our)g(scheme)g
4523 (is)523 4138 y(rob)n(ust)c(to)g(the)h(topology)d(changes)h(and)h(the)g
4524 (loss)h(of)f(messages)h(as)g(discussed)f(in)h(details)f(in)523
4525 4238 y(the)20 b(ne)o(xt)g(section.)p eop end
4527 TeXDict begin 13 12 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)
4528 n(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)545
4529 b(13)523 282 y FC(1.4)41 b(Experimental)26 b(Results)523
4530 515 y FE(In)21 b(order)g(to)g(e)n(v)n(aluate)g(the)h(performance)c(of)k
4531 (our)e(approach,)g(we)i(ha)n(v)o(e)f(implemented)e(a)j(sim-)523
4532 614 y(ulation)j(package)f(using)i(the)g(discrete)f(e)n(v)o(ent)g
4533 (simulator)g(OMNET++)g([17)o(].)h(This)g(package)523
4534 714 y(includes)f(our)g(asynchronous)e(algorithm)h(as)j(well)f(as)g(a)h
4535 (synchronous)c(one.)i(As)h(con\002rmed)523 814 y(in)c(pre)n(vious)d
4536 (related)i(w)o(orks)g([2)o(,)h(5],)f(distrib)n(uted)f(approaches)g(out)
4537 h(perform)e(centralised)i(ap-)523 913 y(proaches,)h(in)i(particular)f
4538 (in)h(noisy)f(netw)o(orks.)g(F)o(or)h(this)g(reason,)f(we)h(ha)n(v)o(e)
4539 f(not)h(included)e(in)523 1013 y(our)30 b(comparison)e(centralised)i
4540 (approaches,)f(and)h(focuses)g(instead)g(on)g(synchronous)e(dis-)523
4541 1112 y(trib)n(uted)19 b(approaches)g(that)h(are)g(more)f(closed)h(to)h
4542 (our)e(w)o(ork.)623 1212 y(W)-7 b(e)27 b(performed)c(se)n(v)o(eral)i
4543 (runs)g(of)g(the)h(algorithms)f(\(an)g(a)n(v)o(erage)f(of)i(100)f
4544 (runs\).)f(In)i(each)523 1312 y(e)o(xperimental)h(run,)g(the)i(netw)o
4545 (ork)e(graph)h(is)h(randomly)e(generated,)g(where)h(the)g(nodes)g(are)
4546 523 1411 y(distrib)n(uted)17 b(o)o(v)o(er)f(a)i Ft([0)p
4547 Fu(;)c Ft(100])c Fx(\002)g Ft([0)p Fu(;)k Ft(100])g FE(\002eld.)j(The)h
4548 (node)e(communication)f(range)i(w)o(as)i(set)f(to)523
4549 1511 y(30.)23 b(The)h(initial)g(node)f(measurements)g
4550 Fu(z)1748 1523 y FB(i)1800 1511 y FE(were)h(also)g(randomly)e
4551 (generated.)g(Each)h(node)g(is)523 1611 y(a)o(w)o(are)d(of)f(its)i
4552 (immediate)e(neighbours)e(through)h(a)i(\224hello\224)f(message.)h
4553 (Once)f(the)h(neighbour)n(-)523 1710 y(hood)27 b(is)j(identi\002ed,)d
4554 (each)i(node)e(run)h(the)g(algorithm)f(i.e.,)i(be)o(gins)e(e)o
4555 (xchanging)f(data)j(until)523 1810 y(con)m(v)o(er)o(gence.)623
4556 1910 y(W)-7 b(e)18 b(studied)e(the)i(performance)c(of)j(our)f
4557 (algorithm)f(with)j(re)o(gard)d(to)i(the)g(follo)n(wing)f(param-)523
4558 2009 y(eters:)523 2159 y Fx(\017)58 b FE(Rob)n(ustness)20
4559 b(in)g(front)f(of)h(communication)d(f)o(ailures:)j(we)g(mainly)f(v)n
4560 (aried)g(the)h(probability)623 2258 y(of)32 b(communication)d(f)o
4561 (ailure,)i(noted)h Fu(p)p FE(.)g(This)g(parameter)f(allo)n(ws)i(us)f
4562 (to)h(highlight)d(the)623 2358 y(beha)n(viour)18 b(of)i(our)f(scheme)h
4563 (in)g(noisy)g(en)m(vironment)d(and)j(in)g(dynamic)f(topologies.)523
4564 2457 y Fx(\017)58 b FE(Scalability:)23 b(we)h(v)n(aried)e(the)h(number)
4565 f(of)h(sensor)g(nodes)f(deplo)o(yed)g(in)h(the)h(same)f(area)g(to)623
4566 2557 y(see)d(ho)n(w)g(our)g(proposed)e(approach)g(scales?)623
4567 2707 y(The)30 b(main)g(metrics)h(we)g(measured)e(in)i(this)g(paper)e
4568 (are:)i(\(a\))f(the)h(mean)f(error)f(between)523 2806
4569 y(the)24 b(current)g(estimate)g Fu(x)1258 2818 y FB(i)1311
4570 2806 y FE(and)g(the)h(a)n(v)o(erage)e(of)h(the)g(initial)h(data,)f
4571 (\(b\))g(the)g(mean)g(number)f(of)523 2906 y(iterations)i(necessary)g
4572 (to)h(reach)f(con)m(v)o(er)o(gence)c(and)k(\(c\))g(the)h(o)o(v)o(erall)
4573 e(time)i(before)e(reaching)523 3005 y(the)h(global)e(con)m(v)o(er)o
4574 (gence.)d(W)-7 b(e)26 b(note)e(here)g(that)g(in)h(asynchronous)c
4575 (algorithms,)i(there)h(is)i(no)523 3105 y(direct)15 b(correlation)e
4576 (between)i(the)g(number)f(of)h(iterations)f(and)h(the)g(total)h(time)f
4577 (to)h(con)m(v)o(er)o(gence,)523 3205 y(contrary)k(to)j(synchronous)c
4578 (approaches.)h(In)i(f)o(act,)g(as)h(there)e(are)h(no)g(delays)g
4579 (between)f(nodes,)523 3304 y(the)i(number)e(of)i(iterations)f(could)h
4580 (be)f(relati)n(v)o(ely)g(high.)g(This)h(does)g(not)g(mean)f(that)h(the)
4581 g(total)523 3404 y(time)17 b(to)g(con)m(v)o(er)o(gence)d(could)i(be)h
4582 (long)f(too.)g(F)o(or)h(this)h(reason,)e(we)h(ha)n(v)o(e)g(made)f(the)h
4583 (distinction)523 3504 y(between)25 b(the)g(number)f(of)h(iterations)g
4584 (and)g(the)g(time)h(tak)o(en)f(to)h(reach)f(con)m(v)o(er)o(gence.)c(As)
4585 26 b(we)523 3603 y(run)f(a)h(discrete)g(e)n(v)o(ent)f(simulation)g
4586 (package,)f(this)j(time)f(is)g(the)g(one)g(gi)n(v)o(en)e(by)i(the)g
4587 (discrete)523 3703 y(simulator)17 b(OMNET++)h([17)n(];)h(we)f(named)f
4588 (it)i Fy(simulated)f(time)p FE(.)g(F)o(or)g(all)g(the)g(e)o
4589 (xperiments,)e(the)523 3802 y(global)g(con)m(v)o(er)o(gence)e(state)k
4590 (is)g(said)g(to)f(be)g(reached)f(when)h Fu(")2266 3814
4591 y FB(i)2317 3802 y Ft(=)22 b Fx(j)p Fu(x)2474 3814 y
4592 FB(i)2510 3802 y Fx(\000)2583 3740 y Fr(P)2670 3761 y
4593 FB(n)2670 3827 y(i)p Fq(=1)2796 3802 y Fu(y)2837 3814
4594 y FB(i)2864 3802 y Fu(=n)p Fx(j)17 b FE(becomes)523 3902
4595 y(less)k(than)f(some)g(\002x)o(ed)g(constant)f Fu(")p
4596 FE(.)623 4002 y(Note)26 b(that,)g(in)h(the)f(\002gures)g(ne)o(xt)f
4597 (sections,)i(the)f(points)g(represent)f(the)h(obtained)f(results)523
4598 4101 y(and)20 b(the)g(curv)o(es)f(are)h(an)g(e)o(xtrapolation)e(of)i
4599 (these)g(points.)p eop end
4601 TeXDict begin 14 13 bop 523 100 a FA(14)976 b(Jacques)20
4602 b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
4603 282 y Fv(1.4.1)41 b(Basic)25 b(Behaviour)523 515 y FE(First,)e(we)f
4604 (sho)n(w)f(simulation)g(results)i(for)e(the)h(case)g(where)f(we)i(ha)n
4605 (v)o(e)e(a)h(\002x)o(ed)g(topology)d(with)523 614 y(a)28
4606 b(\002x)o(ed)e(number)g(of)h(nodes)g(\(50)f(nodes\))g(and)h
4607 Fu(")36 b Ft(=)g(10)2176 584 y Fo(\000)p Fq(4)2264 614
4608 y FE(.)28 b(The)f(mean)g(error)f(of)h(the)g(nodes)523
4609 714 y Fu(")562 684 y Fo(0)626 714 y Ft(=)732 652 y Fr(P)820
4610 672 y FB(n)820 739 y(i)p Fq(=1)946 714 y Fu(")985 726
4611 y FB(i)1012 714 y Fu(=n)j FE(w)o(as)h(plotted)e(in)h(Figure)g(1.3.)f
4612 (As)i(e)o(xpected,)d(it)j(can)f(be)g(seen)g(that)g(the)523
4613 814 y(con)m(v)o(er)o(gence)24 b(in)j(the)h(synchronous)d(mode)h(is)j(f)
4614 o(aster)e(than)h(the)f(con)m(v)o(er)o(gence)d(in)j(the)h(asyn-)523
4615 913 y(chronous)18 b(one.)i(It)g(is)h(also)g(noticed)e(that)h(the)g(tw)o
4616 (o)h(graphs)e(ha)n(v)o(e)g(the)i(same)f(pace.)623 1013
4617 y(Ho)n(we)n(v)o(er)m(,)25 b(in)j(man)o(y)e(scenarios)h(an)g(e)o(xact)g
4618 (a)n(v)o(erage)f(is)i(not)f(required,)f(and)h(one)g(may)f(be)523
4619 1112 y(willing)k(to)g(trade)f(precision)g(for)g(simplicity)-5
4620 b(.)29 b(F)o(or)h(instance,)f(minimizing)g(the)h(number)e(of)523
4621 1212 y(iterations)f(to)g(reduce)g(the)g(ener)o(gy)e(consumption)g(can)i
4622 (be)h(pri)n(vile)o(ged)d(in)i(sensor)g(netw)o(orks)523
4623 1312 y(applications)19 b(where)h(e)o(xact)f(a)n(v)o(eraging)f(is)k(not)
4624 d(essential.)1080 2651 y @beginspecial 50 @llx 50 @lly
4625 410 @urx 302 @ury 1980 @rwi @setspecial
4626 %%BeginDocument: ErrorNbIteration.ps
4627 %!PS-Adobe-2.0 EPSF-2.0
4628 %%Title: ErrorNbIteration.ps
4629 %%Creator: gnuplot 4.0 patchlevel 0
4630 %%CreationDate: Tue Feb 5 17:27:47 2008
4631 %%DocumentFonts: (atend)
4632 %%BoundingBox: 50 50 410 302
4633 %%Orientation: Portrait
4635 /gnudict 256 dict def
4639 /gnulinewidth 5.000 def
4640 /userlinewidth gnulinewidth def
4648 /M {moveto} bind def
4649 /L {lineto} bind def
4650 /R {rmoveto} bind def
4651 /V {rlineto} bind def
4652 /N {newpath moveto} bind def
4653 /C {setrgbcolor} bind def
4654 /f {rlineto fill} bind def
4657 /Lshow { currentpoint stroke M
4658 0 vshift R show } def
4659 /Rshow { currentpoint stroke M
4660 dup stringwidth pop neg vshift R show } def
4661 /Cshow { currentpoint stroke M
4662 dup stringwidth pop -2 div vshift R show } def
4663 /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
4664 /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
4665 /DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
4666 {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def
4667 /BL { stroke userlinewidth 2 mul setlinewidth
4668 Rounded { 1 setlinejoin 1 setlinecap } if } def
4669 /AL { stroke userlinewidth 2 div setlinewidth
4670 Rounded { 1 setlinejoin 1 setlinecap } if } def
4671 /UL { dup gnulinewidth mul /userlinewidth exch def
4672 dup 1 lt {pop 1} if 10 mul /udl exch def } def
4673 /PL { stroke userlinewidth setlinewidth
4674 Rounded { 1 setlinejoin 1 setlinecap } if } def
4675 /LTw { PL [] 1 setgray } def
4676 /LTb { BL [] 0 0 0 DL } def
4677 /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def
4678 /LT0 { PL [] 1 0 0 DL } def
4679 /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
4680 /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
4681 /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
4682 /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
4683 /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
4684 /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
4685 /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
4686 /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
4687 /Pnt { stroke [] 0 setdash
4688 gsave 1 setlinecap M 0 0 V stroke grestore } def
4689 /Dia { stroke [] 0 setdash 2 copy vpt add M
4690 hpt neg vpt neg V hpt vpt neg V
4691 hpt vpt V hpt neg vpt V closepath stroke
4693 /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
4694 currentpoint stroke M
4695 hpt neg vpt neg R hpt2 0 V stroke
4697 /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
4698 0 vpt2 neg V hpt2 0 V 0 vpt2 V
4699 hpt2 neg 0 V closepath stroke
4701 /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
4702 hpt2 vpt2 neg V currentpoint stroke M
4703 hpt2 neg 0 R hpt2 vpt2 V stroke } def
4704 /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
4705 hpt neg vpt -1.62 mul V
4707 hpt neg vpt 1.62 mul V closepath stroke
4709 /Star { 2 copy Pls Crs } def
4710 /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
4711 0 vpt2 neg V hpt2 0 V 0 vpt2 V
4712 hpt2 neg 0 V closepath fill } def
4713 /TriUF { stroke [] 0 setdash vpt 1.12 mul add M
4714 hpt neg vpt -1.62 mul V
4716 hpt neg vpt 1.62 mul V closepath fill } def
4717 /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
4718 hpt neg vpt 1.62 mul V
4720 hpt neg vpt -1.62 mul V closepath stroke
4722 /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
4723 hpt neg vpt 1.62 mul V
4725 hpt neg vpt -1.62 mul V closepath fill} def
4726 /DiaF { stroke [] 0 setdash vpt add M
4727 hpt neg vpt neg V hpt vpt neg V
4728 hpt vpt V hpt neg vpt V closepath fill } def
4729 /Pent { stroke [] 0 setdash 2 copy gsave
4730 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
4731 closepath stroke grestore Pnt } def
4732 /PentF { stroke [] 0 setdash gsave
4733 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
4734 closepath fill grestore } def
4735 /Circle { stroke [] 0 setdash 2 copy
4736 hpt 0 360 arc stroke Pnt } def
4737 /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
4738 /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def
4739 /C1 { BL [] 0 setdash 2 copy moveto
4740 2 copy vpt 0 90 arc closepath fill
4741 vpt 0 360 arc closepath } bind def
4742 /C2 { BL [] 0 setdash 2 copy moveto
4743 2 copy vpt 90 180 arc closepath fill
4744 vpt 0 360 arc closepath } bind def
4745 /C3 { BL [] 0 setdash 2 copy moveto
4746 2 copy vpt 0 180 arc closepath fill
4747 vpt 0 360 arc closepath } bind def
4748 /C4 { BL [] 0 setdash 2 copy moveto
4749 2 copy vpt 180 270 arc closepath fill
4750 vpt 0 360 arc closepath } bind def
4751 /C5 { BL [] 0 setdash 2 copy moveto
4754 2 copy vpt 180 270 arc closepath fill
4755 vpt 0 360 arc } bind def
4756 /C6 { BL [] 0 setdash 2 copy moveto
4757 2 copy vpt 90 270 arc closepath fill
4758 vpt 0 360 arc closepath } bind def
4759 /C7 { BL [] 0 setdash 2 copy moveto
4760 2 copy vpt 0 270 arc closepath fill
4761 vpt 0 360 arc closepath } bind def
4762 /C8 { BL [] 0 setdash 2 copy moveto
4763 2 copy vpt 270 360 arc closepath fill
4764 vpt 0 360 arc closepath } bind def
4765 /C9 { BL [] 0 setdash 2 copy moveto
4766 2 copy vpt 270 450 arc closepath fill
4767 vpt 0 360 arc closepath } bind def
4768 /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
4770 2 copy vpt 90 180 arc closepath fill
4771 vpt 0 360 arc closepath } bind def
4772 /C11 { BL [] 0 setdash 2 copy moveto
4773 2 copy vpt 0 180 arc closepath fill
4775 2 copy vpt 270 360 arc closepath fill
4776 vpt 0 360 arc closepath } bind def
4777 /C12 { BL [] 0 setdash 2 copy moveto
4778 2 copy vpt 180 360 arc closepath fill
4779 vpt 0 360 arc closepath } bind def
4780 /C13 { BL [] 0 setdash 2 copy moveto
4781 2 copy vpt 0 90 arc closepath fill
4783 2 copy vpt 180 360 arc closepath fill
4784 vpt 0 360 arc closepath } bind def
4785 /C14 { BL [] 0 setdash 2 copy moveto
4786 2 copy vpt 90 360 arc closepath fill
4787 vpt 0 360 arc } bind def
4788 /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
4789 vpt 0 360 arc closepath } bind def
4790 /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
4791 neg 0 rlineto closepath } bind def
4792 /Square { dup Rec } bind def
4793 /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
4794 /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
4795 /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
4796 /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
4797 /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
4798 /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
4799 /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
4800 exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
4801 /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
4802 /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
4803 2 copy vpt Square fill
4805 /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
4806 /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
4807 /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
4809 /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
4811 /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
4812 /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
4813 2 copy vpt Square fill Bsquare } bind def
4814 /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
4815 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
4816 /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
4817 /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
4818 /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
4819 /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
4820 /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
4821 /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
4822 /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
4823 /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
4824 /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
4825 /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
4826 /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
4827 /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
4828 /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
4829 /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
4830 /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
4831 /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
4832 /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
4833 /DiaE { stroke [] 0 setdash vpt add M
4834 hpt neg vpt neg V hpt vpt neg V
4835 hpt vpt V hpt neg vpt V closepath stroke } def
4836 /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
4837 0 vpt2 neg V hpt2 0 V 0 vpt2 V
4838 hpt2 neg 0 V closepath stroke } def
4839 /TriUE { stroke [] 0 setdash vpt 1.12 mul add M
4840 hpt neg vpt -1.62 mul V
4842 hpt neg vpt 1.62 mul V closepath stroke } def
4843 /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
4844 hpt neg vpt 1.62 mul V
4846 hpt neg vpt -1.62 mul V closepath stroke } def
4847 /PentE { stroke [] 0 setdash gsave
4848 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
4849 closepath stroke grestore } def
4850 /CircE { stroke [] 0 setdash
4851 hpt 0 360 arc stroke } def
4852 /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
4853 /DiaW { stroke [] 0 setdash vpt add M
4854 hpt neg vpt neg V hpt vpt neg V
4855 hpt vpt V hpt neg vpt V Opaque stroke } def
4856 /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
4857 0 vpt2 neg V hpt2 0 V 0 vpt2 V
4858 hpt2 neg 0 V Opaque stroke } def
4859 /TriUW { stroke [] 0 setdash vpt 1.12 mul add M
4860 hpt neg vpt -1.62 mul V
4862 hpt neg vpt 1.62 mul V Opaque stroke } def
4863 /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
4864 hpt neg vpt 1.62 mul V
4866 hpt neg vpt -1.62 mul V Opaque stroke } def
4867 /PentW { stroke [] 0 setdash gsave
4868 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
4869 Opaque stroke grestore } def
4870 /CircW { stroke [] 0 setdash
4871 hpt 0 360 arc Opaque stroke } def
4872 /BoxFill { gsave Rec 1 setgray fill grestore } def
4877 /ColB exch def /ColG exch def /ColR exch def
4878 /ColR ColR Fillden mul Fillden sub 1 add def
4879 /ColG ColG Fillden mul Fillden sub 1 add def
4880 /ColB ColB Fillden mul Fillden sub 1 add def
4881 ColR ColG ColB setrgbcolor
4884 % PostScript Level 1 Pattern Fill routine
4885 % Usage: x y w h s a XX PatternFill
4886 % x,y = lower left corner of box to be filled
4887 % w,h = width and height of box
4888 % a = angle in degrees between lines and x-axis
4889 % XX = 0/1 for no/yes cross-hatch
4891 /PatternFill { gsave /PFa [ 9 2 roll ] def
4892 PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
4893 PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
4894 gsave 1 setgray fill grestore clip
4895 currentlinewidth 0.5 mul setlinewidth
4896 /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
4897 0 0 M PFa 5 get rotate PFs -2 div dup translate
4898 0 1 PFs PFa 4 get div 1 add floor cvi
4899 { PFa 4 get mul 0 M 0 PFs V } for
4901 0 1 PFs PFa 4 get div 1 add floor cvi
4902 { PFa 4 get mul 0 2 1 roll M PFs 0 V } for
4904 stroke grestore } def
4906 /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
4907 dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
4908 currentdict end definefont pop
4917 (Helvetica) findfont 200 scalefont setfont
5152 currentpoint gsave translate 90 rotate 0 0 M
5159 (Number of Iterations) Cshow
5167 (Synchronous Algorithm) Rshow
5277 (Asynchronous Algorithm) Rshow
5395 %%DocumentFonts: Helvetica
5398 @endspecial 523 2775 a Fm(Fig)o(.)e(1.3)36 b FA(The)18
5399 b(Mean)g(Error)i Fl(")523 3303 y Fv(1.4.2)41 b(Dynamic)25
5400 b(topology)523 3535 y FE(In)g(a)h(ne)o(xt)e(step,)h(we)h(simulated)f
5401 (the)g(proposed)e(sensor)i(fusion)f(scheme)h(with)g(dynamically)523
5402 3635 y(changing)32 b(communication)f(graphs.)i(W)-7 b(e)36
5403 b(generated)c(the)i(sequence)f(of)h(communication)523
5404 3735 y(graphs)24 b(as)h(follo)n(ws:)f(at)h(each)g(time)g(step,)f(each)h
5405 (edge)f(in)h(the)f(graph)g(is)h(only)f(a)n(v)n(ailable)g(with)523
5406 3834 y(a)i(selected)f(probability)f Fu(p)p FE(,)h(independent)e(of)i
5407 (the)g(other)g(edges)g(and)g(all)h(pre)n(vious)d(steps.)j(T)-7
5408 b(o)523 3934 y(ensure)18 b(the)h(jointly)f(connected)e(condition)h(of)h
5409 (the)h(generated)e(graphs,)g(we)i(selected)g(a)g(period)523
5410 4034 y(of)h(time)g Fu(\034)31 b FE(in)20 b(which)g(an)g(edge)f(cannot)g
5411 (stay)i(disconnected)d(more)i(than)f Fu(\034)31 b FE(time.)623
5412 4133 y(W)-7 b(e)29 b(\002x)o(ed)e(the)i(number)d(of)i(sensor)g(nodes)f
5413 (to)h(50)g(and)f Fu(")38 b Ft(=)f(10)2543 4103 y Fo(\000)p
5414 Fq(4)2631 4133 y FE(.)29 b(In)f(preliminary)e(re-)523
5415 4233 y(sults,)i(the)g(period)e Fu(\034)38 b FE(w)o(as)29
5416 b(chosen)e(in)g(a)i(w)o(ay)e(that)h(is)h(equal)e(to)h(three)f(times)h
5417 (the)g(time)g(of)f(a)523 4333 y(communication.)16 b(W)-7
5418 b(e)21 b(sho)n(w)e(in)g(\002gure)f(1.4)h(and)g(\002gure)f(1.5)h(the)g
5419 (v)n(ariation)f(of)h(the)g(number)f(of)523 4432 y(iterations)25
5420 b(and)f(the)h(time)h(simulation)e(with)h(the)g(probability)e(of)i(link)
5421 g(f)o(ailure)f Fu(p)p FE(.)i(W)-7 b(e)26 b(notice)523
5422 4532 y(that)e(the)g(number)f(of)g(iterations)h(and)g(the)g(o)o(v)o
5423 (erall)f(time)h(increase)f(with)i(the)f(increase)g(of)f(the)523
5424 4631 y(probability)-5 b(,)18 b(b)n(ut)i(not)g(in)g(an)g(e)o(xponential)
5425 e(w)o(ay)-5 b(.)p eop end
5427 TeXDict begin 15 14 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)
5428 n(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)545
5429 b(15)1080 1354 y @beginspecial 50 @llx 50 @lly 410 @urx
5430 302 @ury 1980 @rwi @setspecial
5431 %%BeginDocument: DynamicTopology.ps
5432 %!PS-Adobe-2.0 EPSF-2.0
5433 %%Title: DynamicTopology.ps
5434 %%Creator: gnuplot 4.0 patchlevel 0
5435 %%CreationDate: Tue Feb 5 17:23:08 2008
5436 %%DocumentFonts: (atend)
5437 %%BoundingBox: 50 50 410 302
5438 %%Orientation: Portrait
5440 /gnudict 256 dict def
5444 /gnulinewidth 5.000 def
5445 /userlinewidth gnulinewidth def
5453 /M {moveto} bind def
5454 /L {lineto} bind def
5455 /R {rmoveto} bind def
5456 /V {rlineto} bind def
5457 /N {newpath moveto} bind def
5458 /C {setrgbcolor} bind def
5459 /f {rlineto fill} bind def
5462 /Lshow { currentpoint stroke M
5463 0 vshift R show } def
5464 /Rshow { currentpoint stroke M
5465 dup stringwidth pop neg vshift R show } def
5466 /Cshow { currentpoint stroke M
5467 dup stringwidth pop -2 div vshift R show } def
5468 /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
5469 /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
5470 /DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
5471 {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def
5472 /BL { stroke userlinewidth 2 mul setlinewidth
5473 Rounded { 1 setlinejoin 1 setlinecap } if } def
5474 /AL { stroke userlinewidth 2 div setlinewidth
5475 Rounded { 1 setlinejoin 1 setlinecap } if } def
5476 /UL { dup gnulinewidth mul /userlinewidth exch def
5477 dup 1 lt {pop 1} if 10 mul /udl exch def } def
5478 /PL { stroke userlinewidth setlinewidth
5479 Rounded { 1 setlinejoin 1 setlinecap } if } def
5480 /LTw { PL [] 1 setgray } def
5481 /LTb { BL [] 0 0 0 DL } def
5482 /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def
5483 /LT0 { PL [] 1 0 0 DL } def
5484 /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
5485 /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
5486 /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
5487 /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
5488 /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
5489 /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
5490 /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
5491 /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
5492 /Pnt { stroke [] 0 setdash
5493 gsave 1 setlinecap M 0 0 V stroke grestore } def
5494 /Dia { stroke [] 0 setdash 2 copy vpt add M
5495 hpt neg vpt neg V hpt vpt neg V
5496 hpt vpt V hpt neg vpt V closepath stroke
5498 /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
5499 currentpoint stroke M
5500 hpt neg vpt neg R hpt2 0 V stroke
5502 /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
5503 0 vpt2 neg V hpt2 0 V 0 vpt2 V
5504 hpt2 neg 0 V closepath stroke
5506 /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
5507 hpt2 vpt2 neg V currentpoint stroke M
5508 hpt2 neg 0 R hpt2 vpt2 V stroke } def
5509 /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
5510 hpt neg vpt -1.62 mul V
5512 hpt neg vpt 1.62 mul V closepath stroke
5514 /Star { 2 copy Pls Crs } def
5515 /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
5516 0 vpt2 neg V hpt2 0 V 0 vpt2 V
5517 hpt2 neg 0 V closepath fill } def
5518 /TriUF { stroke [] 0 setdash vpt 1.12 mul add M
5519 hpt neg vpt -1.62 mul V
5521 hpt neg vpt 1.62 mul V closepath fill } def
5522 /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
5523 hpt neg vpt 1.62 mul V
5525 hpt neg vpt -1.62 mul V closepath stroke
5527 /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
5528 hpt neg vpt 1.62 mul V
5530 hpt neg vpt -1.62 mul V closepath fill} def
5531 /DiaF { stroke [] 0 setdash vpt add M
5532 hpt neg vpt neg V hpt vpt neg V
5533 hpt vpt V hpt neg vpt V closepath fill } def
5534 /Pent { stroke [] 0 setdash 2 copy gsave
5535 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
5536 closepath stroke grestore Pnt } def
5537 /PentF { stroke [] 0 setdash gsave
5538 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
5539 closepath fill grestore } def
5540 /Circle { stroke [] 0 setdash 2 copy
5541 hpt 0 360 arc stroke Pnt } def
5542 /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
5543 /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def
5544 /C1 { BL [] 0 setdash 2 copy moveto
5545 2 copy vpt 0 90 arc closepath fill
5546 vpt 0 360 arc closepath } bind def
5547 /C2 { BL [] 0 setdash 2 copy moveto
5548 2 copy vpt 90 180 arc closepath fill
5549 vpt 0 360 arc closepath } bind def
5550 /C3 { BL [] 0 setdash 2 copy moveto
5551 2 copy vpt 0 180 arc closepath fill
5552 vpt 0 360 arc closepath } bind def
5553 /C4 { BL [] 0 setdash 2 copy moveto
5554 2 copy vpt 180 270 arc closepath fill
5555 vpt 0 360 arc closepath } bind def
5556 /C5 { BL [] 0 setdash 2 copy moveto
5559 2 copy vpt 180 270 arc closepath fill
5560 vpt 0 360 arc } bind def
5561 /C6 { BL [] 0 setdash 2 copy moveto
5562 2 copy vpt 90 270 arc closepath fill
5563 vpt 0 360 arc closepath } bind def
5564 /C7 { BL [] 0 setdash 2 copy moveto
5565 2 copy vpt 0 270 arc closepath fill
5566 vpt 0 360 arc closepath } bind def
5567 /C8 { BL [] 0 setdash 2 copy moveto
5568 2 copy vpt 270 360 arc closepath fill
5569 vpt 0 360 arc closepath } bind def
5570 /C9 { BL [] 0 setdash 2 copy moveto
5571 2 copy vpt 270 450 arc closepath fill
5572 vpt 0 360 arc closepath } bind def
5573 /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
5575 2 copy vpt 90 180 arc closepath fill
5576 vpt 0 360 arc closepath } bind def
5577 /C11 { BL [] 0 setdash 2 copy moveto
5578 2 copy vpt 0 180 arc closepath fill
5580 2 copy vpt 270 360 arc closepath fill
5581 vpt 0 360 arc closepath } bind def
5582 /C12 { BL [] 0 setdash 2 copy moveto
5583 2 copy vpt 180 360 arc closepath fill
5584 vpt 0 360 arc closepath } bind def
5585 /C13 { BL [] 0 setdash 2 copy moveto
5586 2 copy vpt 0 90 arc closepath fill
5588 2 copy vpt 180 360 arc closepath fill
5589 vpt 0 360 arc closepath } bind def
5590 /C14 { BL [] 0 setdash 2 copy moveto
5591 2 copy vpt 90 360 arc closepath fill
5592 vpt 0 360 arc } bind def
5593 /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
5594 vpt 0 360 arc closepath } bind def
5595 /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
5596 neg 0 rlineto closepath } bind def
5597 /Square { dup Rec } bind def
5598 /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
5599 /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
5600 /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
5601 /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
5602 /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
5603 /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
5604 /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
5605 exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
5606 /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
5607 /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
5608 2 copy vpt Square fill
5610 /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
5611 /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
5612 /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
5614 /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
5616 /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
5617 /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
5618 2 copy vpt Square fill Bsquare } bind def
5619 /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
5620 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
5621 /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
5622 /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
5623 /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
5624 /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
5625 /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
5626 /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
5627 /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
5628 /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
5629 /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
5630 /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
5631 /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
5632 /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
5633 /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
5634 /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
5635 /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
5636 /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
5637 /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
5638 /DiaE { stroke [] 0 setdash vpt add M
5639 hpt neg vpt neg V hpt vpt neg V
5640 hpt vpt V hpt neg vpt V closepath stroke } def
5641 /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
5642 0 vpt2 neg V hpt2 0 V 0 vpt2 V
5643 hpt2 neg 0 V closepath stroke } def
5644 /TriUE { stroke [] 0 setdash vpt 1.12 mul add M
5645 hpt neg vpt -1.62 mul V
5647 hpt neg vpt 1.62 mul V closepath stroke } def
5648 /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
5649 hpt neg vpt 1.62 mul V
5651 hpt neg vpt -1.62 mul V closepath stroke } def
5652 /PentE { stroke [] 0 setdash gsave
5653 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
5654 closepath stroke grestore } def
5655 /CircE { stroke [] 0 setdash
5656 hpt 0 360 arc stroke } def
5657 /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
5658 /DiaW { stroke [] 0 setdash vpt add M
5659 hpt neg vpt neg V hpt vpt neg V
5660 hpt vpt V hpt neg vpt V Opaque stroke } def
5661 /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
5662 0 vpt2 neg V hpt2 0 V 0 vpt2 V
5663 hpt2 neg 0 V Opaque stroke } def
5664 /TriUW { stroke [] 0 setdash vpt 1.12 mul add M
5665 hpt neg vpt -1.62 mul V
5667 hpt neg vpt 1.62 mul V Opaque stroke } def
5668 /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
5669 hpt neg vpt 1.62 mul V
5671 hpt neg vpt -1.62 mul V Opaque stroke } def
5672 /PentW { stroke [] 0 setdash gsave
5673 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
5674 Opaque stroke grestore } def
5675 /CircW { stroke [] 0 setdash
5676 hpt 0 360 arc Opaque stroke } def
5677 /BoxFill { gsave Rec 1 setgray fill grestore } def
5682 /ColB exch def /ColG exch def /ColR exch def
5683 /ColR ColR Fillden mul Fillden sub 1 add def
5684 /ColG ColG Fillden mul Fillden sub 1 add def
5685 /ColB ColB Fillden mul Fillden sub 1 add def
5686 ColR ColG ColB setrgbcolor
5689 % PostScript Level 1 Pattern Fill routine
5690 % Usage: x y w h s a XX PatternFill
5691 % x,y = lower left corner of box to be filled
5692 % w,h = width and height of box
5693 % a = angle in degrees between lines and x-axis
5694 % XX = 0/1 for no/yes cross-hatch
5696 /PatternFill { gsave /PFa [ 9 2 roll ] def
5697 PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
5698 PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
5699 gsave 1 setgray fill grestore clip
5700 currentlinewidth 0.5 mul setlinewidth
5701 /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
5702 0 0 M PFa 5 get rotate PFs -2 div dup translate
5703 0 1 PFs PFa 4 get div 1 add floor cvi
5704 { PFa 4 get mul 0 M 0 PFs V } for
5706 0 1 PFs PFa 4 get div 1 add floor cvi
5707 { PFa 4 get mul 0 2 1 roll M PFs 0 V } for
5709 stroke grestore } def
5711 /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
5712 dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
5713 currentdict end definefont pop
5722 (Helvetica) findfont 200 scalefont setfont
5895 currentpoint gsave translate 90 rotate 0 0 M
5896 (number of iterations) Cshow
5902 (Probability of link failure) Cshow
5910 (Asynchronous Algorithm) Rshow
6041 %%DocumentFonts: Helvetica
6044 @endspecial 523 1479 a Fm(Fig)o(.)17 b(1.4)36 b FA(Number)19
6045 b(of)f(Iterations)1080 2748 y @beginspecial 50 @llx 50
6046 @lly 410 @urx 302 @ury 1980 @rwi @setspecial
6047 %%BeginDocument: DynamicTopologyTime.ps
6048 %!PS-Adobe-2.0 EPSF-2.0
6049 %%Title: DynamicTopologyTime.ps
6050 %%Creator: gnuplot 4.0 patchlevel 0
6051 %%CreationDate: Tue Apr 8 13:22:28 2008
6052 %%DocumentFonts: (atend)
6053 %%BoundingBox: 50 50 410 302
6054 %%Orientation: Portrait
6056 /gnudict 256 dict def
6060 /gnulinewidth 5.000 def
6061 /userlinewidth gnulinewidth def
6069 /M {moveto} bind def
6070 /L {lineto} bind def
6071 /R {rmoveto} bind def
6072 /V {rlineto} bind def
6073 /N {newpath moveto} bind def
6074 /C {setrgbcolor} bind def
6075 /f {rlineto fill} bind def
6078 /Lshow { currentpoint stroke M
6079 0 vshift R show } def
6080 /Rshow { currentpoint stroke M
6081 dup stringwidth pop neg vshift R show } def
6082 /Cshow { currentpoint stroke M
6083 dup stringwidth pop -2 div vshift R show } def
6084 /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
6085 /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
6086 /DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
6087 {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def
6088 /BL { stroke userlinewidth 2 mul setlinewidth
6089 Rounded { 1 setlinejoin 1 setlinecap } if } def
6090 /AL { stroke userlinewidth 2 div setlinewidth
6091 Rounded { 1 setlinejoin 1 setlinecap } if } def
6092 /UL { dup gnulinewidth mul /userlinewidth exch def
6093 dup 1 lt {pop 1} if 10 mul /udl exch def } def
6094 /PL { stroke userlinewidth setlinewidth
6095 Rounded { 1 setlinejoin 1 setlinecap } if } def
6096 /LTw { PL [] 1 setgray } def
6097 /LTb { BL [] 0 0 0 DL } def
6098 /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def
6099 /LT0 { PL [] 1 0 0 DL } def
6100 /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
6101 /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
6102 /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
6103 /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
6104 /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
6105 /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
6106 /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
6107 /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
6108 /Pnt { stroke [] 0 setdash
6109 gsave 1 setlinecap M 0 0 V stroke grestore } def
6110 /Dia { stroke [] 0 setdash 2 copy vpt add M
6111 hpt neg vpt neg V hpt vpt neg V
6112 hpt vpt V hpt neg vpt V closepath stroke
6114 /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
6115 currentpoint stroke M
6116 hpt neg vpt neg R hpt2 0 V stroke
6118 /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
6119 0 vpt2 neg V hpt2 0 V 0 vpt2 V
6120 hpt2 neg 0 V closepath stroke
6122 /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
6123 hpt2 vpt2 neg V currentpoint stroke M
6124 hpt2 neg 0 R hpt2 vpt2 V stroke } def
6125 /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
6126 hpt neg vpt -1.62 mul V
6128 hpt neg vpt 1.62 mul V closepath stroke
6130 /Star { 2 copy Pls Crs } def
6131 /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
6132 0 vpt2 neg V hpt2 0 V 0 vpt2 V
6133 hpt2 neg 0 V closepath fill } def
6134 /TriUF { stroke [] 0 setdash vpt 1.12 mul add M
6135 hpt neg vpt -1.62 mul V
6137 hpt neg vpt 1.62 mul V closepath fill } def
6138 /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
6139 hpt neg vpt 1.62 mul V
6141 hpt neg vpt -1.62 mul V closepath stroke
6143 /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
6144 hpt neg vpt 1.62 mul V
6146 hpt neg vpt -1.62 mul V closepath fill} def
6147 /DiaF { stroke [] 0 setdash vpt add M
6148 hpt neg vpt neg V hpt vpt neg V
6149 hpt vpt V hpt neg vpt V closepath fill } def
6150 /Pent { stroke [] 0 setdash 2 copy gsave
6151 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
6152 closepath stroke grestore Pnt } def
6153 /PentF { stroke [] 0 setdash gsave
6154 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
6155 closepath fill grestore } def
6156 /Circle { stroke [] 0 setdash 2 copy
6157 hpt 0 360 arc stroke Pnt } def
6158 /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
6159 /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def
6160 /C1 { BL [] 0 setdash 2 copy moveto
6161 2 copy vpt 0 90 arc closepath fill
6162 vpt 0 360 arc closepath } bind def
6163 /C2 { BL [] 0 setdash 2 copy moveto
6164 2 copy vpt 90 180 arc closepath fill
6165 vpt 0 360 arc closepath } bind def
6166 /C3 { BL [] 0 setdash 2 copy moveto
6167 2 copy vpt 0 180 arc closepath fill
6168 vpt 0 360 arc closepath } bind def
6169 /C4 { BL [] 0 setdash 2 copy moveto
6170 2 copy vpt 180 270 arc closepath fill
6171 vpt 0 360 arc closepath } bind def
6172 /C5 { BL [] 0 setdash 2 copy moveto
6175 2 copy vpt 180 270 arc closepath fill
6176 vpt 0 360 arc } bind def
6177 /C6 { BL [] 0 setdash 2 copy moveto
6178 2 copy vpt 90 270 arc closepath fill
6179 vpt 0 360 arc closepath } bind def
6180 /C7 { BL [] 0 setdash 2 copy moveto
6181 2 copy vpt 0 270 arc closepath fill
6182 vpt 0 360 arc closepath } bind def
6183 /C8 { BL [] 0 setdash 2 copy moveto
6184 2 copy vpt 270 360 arc closepath fill
6185 vpt 0 360 arc closepath } bind def
6186 /C9 { BL [] 0 setdash 2 copy moveto
6187 2 copy vpt 270 450 arc closepath fill
6188 vpt 0 360 arc closepath } bind def
6189 /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
6191 2 copy vpt 90 180 arc closepath fill
6192 vpt 0 360 arc closepath } bind def
6193 /C11 { BL [] 0 setdash 2 copy moveto
6194 2 copy vpt 0 180 arc closepath fill
6196 2 copy vpt 270 360 arc closepath fill
6197 vpt 0 360 arc closepath } bind def
6198 /C12 { BL [] 0 setdash 2 copy moveto
6199 2 copy vpt 180 360 arc closepath fill
6200 vpt 0 360 arc closepath } bind def
6201 /C13 { BL [] 0 setdash 2 copy moveto
6202 2 copy vpt 0 90 arc closepath fill
6204 2 copy vpt 180 360 arc closepath fill
6205 vpt 0 360 arc closepath } bind def
6206 /C14 { BL [] 0 setdash 2 copy moveto
6207 2 copy vpt 90 360 arc closepath fill
6208 vpt 0 360 arc } bind def
6209 /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
6210 vpt 0 360 arc closepath } bind def
6211 /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
6212 neg 0 rlineto closepath } bind def
6213 /Square { dup Rec } bind def
6214 /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
6215 /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
6216 /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
6217 /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
6218 /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
6219 /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
6220 /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
6221 exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
6222 /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
6223 /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
6224 2 copy vpt Square fill
6226 /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
6227 /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
6228 /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
6230 /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
6232 /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
6233 /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
6234 2 copy vpt Square fill Bsquare } bind def
6235 /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
6236 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
6237 /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
6238 /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
6239 /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
6240 /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
6241 /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
6242 /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
6243 /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
6244 /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
6245 /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
6246 /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
6247 /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
6248 /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
6249 /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
6250 /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
6251 /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
6252 /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
6253 /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
6254 /DiaE { stroke [] 0 setdash vpt add M
6255 hpt neg vpt neg V hpt vpt neg V
6256 hpt vpt V hpt neg vpt V closepath stroke } def
6257 /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
6258 0 vpt2 neg V hpt2 0 V 0 vpt2 V
6259 hpt2 neg 0 V closepath stroke } def
6260 /TriUE { stroke [] 0 setdash vpt 1.12 mul add M
6261 hpt neg vpt -1.62 mul V
6263 hpt neg vpt 1.62 mul V closepath stroke } def
6264 /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
6265 hpt neg vpt 1.62 mul V
6267 hpt neg vpt -1.62 mul V closepath stroke } def
6268 /PentE { stroke [] 0 setdash gsave
6269 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
6270 closepath stroke grestore } def
6271 /CircE { stroke [] 0 setdash
6272 hpt 0 360 arc stroke } def
6273 /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
6274 /DiaW { stroke [] 0 setdash vpt add M
6275 hpt neg vpt neg V hpt vpt neg V
6276 hpt vpt V hpt neg vpt V Opaque stroke } def
6277 /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
6278 0 vpt2 neg V hpt2 0 V 0 vpt2 V
6279 hpt2 neg 0 V Opaque stroke } def
6280 /TriUW { stroke [] 0 setdash vpt 1.12 mul add M
6281 hpt neg vpt -1.62 mul V
6283 hpt neg vpt 1.62 mul V Opaque stroke } def
6284 /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
6285 hpt neg vpt 1.62 mul V
6287 hpt neg vpt -1.62 mul V Opaque stroke } def
6288 /PentW { stroke [] 0 setdash gsave
6289 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
6290 Opaque stroke grestore } def
6291 /CircW { stroke [] 0 setdash
6292 hpt 0 360 arc Opaque stroke } def
6293 /BoxFill { gsave Rec 1 setgray fill grestore } def
6298 /ColB exch def /ColG exch def /ColR exch def
6299 /ColR ColR Fillden mul Fillden sub 1 add def
6300 /ColG ColG Fillden mul Fillden sub 1 add def
6301 /ColB ColB Fillden mul Fillden sub 1 add def
6302 ColR ColG ColB setrgbcolor
6305 % PostScript Level 1 Pattern Fill routine
6306 % Usage: x y w h s a XX PatternFill
6307 % x,y = lower left corner of box to be filled
6308 % w,h = width and height of box
6309 % a = angle in degrees between lines and x-axis
6310 % XX = 0/1 for no/yes cross-hatch
6312 /PatternFill { gsave /PFa [ 9 2 roll ] def
6313 PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
6314 PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
6315 gsave 1 setgray fill grestore clip
6316 currentlinewidth 0.5 mul setlinewidth
6317 /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
6318 0 0 M PFa 5 get rotate PFs -2 div dup translate
6319 0 1 PFs PFa 4 get div 1 add floor cvi
6320 { PFa 4 get mul 0 M 0 PFs V } for
6322 0 1 PFs PFa 4 get div 1 add floor cvi
6323 { PFa 4 get mul 0 2 1 roll M PFs 0 V } for
6325 stroke grestore } def
6327 /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
6328 dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
6329 currentdict end definefont pop
6338 (Helvetica) findfont 200 scalefont setfont
6491 currentpoint gsave translate 90 rotate 0 0 M
6492 (Simulated time) Cshow
6498 (Probability of link failure) Cshow
6506 (Asynchronous Algorithm) Rshow
6637 %%DocumentFonts: Helvetica
6640 @endspecial 523 2872 a Fm(Fig)o(.)f(1.5)36 b FA(Simulated)18
6641 b(T)n(ime)623 3169 y FE(Note)i(that)g(we)g(also)h(tried)e(to)i(run)e
6642 (the)h(synchronous)d(algorithm)i(with)h(dynamic)f(topology)523
6643 3269 y(changes,)k(b)n(ut)g(the)h(e)o(x)o(ecution)e(times)i(were)f(so)i
6644 (prohibiti)n(v)o(e,)c(that)i(we)i(abandoned)20 b(those)k(e)o(x-)523
6645 3368 y(periments.)18 b(These)h(results)h(con\002rm)e(that)h
6646 (synchronous)d(algorithms)i(are)h(infeasible)g(for)f(real)523
6647 3468 y(sensor)i(netw)o(orks.)523 3833 y Fv(1.4.3)41 b(Larger)24
6648 b(Sensor)h(Netw)o(ork)523 4066 y FE(Our)16 b(scheme)g(can)g(be)g
6649 (applied)f(to)h(sensor)g(netw)o(orks)f(where)h(a)h(lar)o(ge)e(number)f
6650 (of)i(sensor)g(nodes)523 4165 y(are)23 b(deplo)o(yed,)e(since)i(it)h
6651 (is)g(fully)f(distrib)n(uted)f(and)g(there)h(is)h(no)f(centralized)f
6652 (control.)f(In)i(our)523 4265 y(simulations)f(we)g(v)n(aried)g(the)g
6653 (number)e(of)j(sensor)e(nodes)h(from)f(20)h(to)h(200)e(nodes,)g(deplo)o
6654 (yed)523 4364 y(in)f(the)h(re)o(gion)d Ft([0)p Fu(;)c
6655 Ft(100])j Fx(\002)h Ft([0)p Fu(;)c Ft(100])p FE(,)k(we)j(selected)f
6656 (for)g(all)g(nodes)g Fu(i)p FE(,)g Fu(")j Ft(=)f(10)2748
6657 4334 y Fo(\000)p Fq(4)2837 4364 y FE(.)623 4464 y(Ho)n(we)n(v)o(er)m(,)
6658 16 b(as)j(sho)n(wn)e(in)i(the)f(tw)o(o)h(Figures)f(\(Figure)f(1.6)g
6659 (and)h(Figure)g(1.7\),)f(as)i(the)f(number)523 4564 y(of)24
6660 b(sensor)f(nodes)h(increases,)f(the)h(a)n(v)o(erage)f(of)h(the)g
6661 (iterations)f(number)f(as)j(well)g(as)f(the)g(time)523
6662 4663 y(needed)29 b(to)i(reach)e(global)h(con)m(v)o(er)o(gence)c
6663 (decreases)k(in)h(the)f(tw)o(o)h(cases)g(synchronous)d(and)p
6666 TeXDict begin 16 15 bop 523 100 a FA(16)976 b(Jacques)20
6667 b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
6668 282 y FE(asynchronous.)f(W)-7 b(e)22 b(notice)d(that)i(in)f(the)h
6669 (synchronous)c(mode)i(we)i(obtained)e(less)i(number)e(of)523
6670 382 y(iterations,)f(on)h(the)g(other)f(hand)g(it)i(tak)o(es)f(more)f
6671 (time)h(to)g(reach)g(the)g(global)f(con)m(v)o(er)o(gence)d(than)523
6672 482 y(the)20 b(asynchronous)e(one.)1080 1816 y @beginspecial
6673 50 @llx 50 @lly 410 @urx 302 @ury 1980 @rwi @setspecial
6674 %%BeginDocument: Density.ps
6675 %!PS-Adobe-2.0 EPSF-2.0
6677 %%Creator: gnuplot 4.0 patchlevel 0
6678 %%CreationDate: Tue Feb 5 17:29:59 2008
6679 %%DocumentFonts: (atend)
6680 %%BoundingBox: 50 50 410 302
6681 %%Orientation: Portrait
6683 /gnudict 256 dict def
6687 /gnulinewidth 5.000 def
6688 /userlinewidth gnulinewidth def
6696 /M {moveto} bind def
6697 /L {lineto} bind def
6698 /R {rmoveto} bind def
6699 /V {rlineto} bind def
6700 /N {newpath moveto} bind def
6701 /C {setrgbcolor} bind def
6702 /f {rlineto fill} bind def
6705 /Lshow { currentpoint stroke M
6706 0 vshift R show } def
6707 /Rshow { currentpoint stroke M
6708 dup stringwidth pop neg vshift R show } def
6709 /Cshow { currentpoint stroke M
6710 dup stringwidth pop -2 div vshift R show } def
6711 /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
6712 /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
6713 /DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
6714 {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def
6715 /BL { stroke userlinewidth 2 mul setlinewidth
6716 Rounded { 1 setlinejoin 1 setlinecap } if } def
6717 /AL { stroke userlinewidth 2 div setlinewidth
6718 Rounded { 1 setlinejoin 1 setlinecap } if } def
6719 /UL { dup gnulinewidth mul /userlinewidth exch def
6720 dup 1 lt {pop 1} if 10 mul /udl exch def } def
6721 /PL { stroke userlinewidth setlinewidth
6722 Rounded { 1 setlinejoin 1 setlinecap } if } def
6723 /LTw { PL [] 1 setgray } def
6724 /LTb { BL [] 0 0 0 DL } def
6725 /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def
6726 /LT0 { PL [] 1 0 0 DL } def
6727 /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
6728 /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
6729 /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
6730 /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
6731 /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
6732 /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
6733 /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
6734 /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
6735 /Pnt { stroke [] 0 setdash
6736 gsave 1 setlinecap M 0 0 V stroke grestore } def
6737 /Dia { stroke [] 0 setdash 2 copy vpt add M
6738 hpt neg vpt neg V hpt vpt neg V
6739 hpt vpt V hpt neg vpt V closepath stroke
6741 /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
6742 currentpoint stroke M
6743 hpt neg vpt neg R hpt2 0 V stroke
6745 /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
6746 0 vpt2 neg V hpt2 0 V 0 vpt2 V
6747 hpt2 neg 0 V closepath stroke
6749 /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
6750 hpt2 vpt2 neg V currentpoint stroke M
6751 hpt2 neg 0 R hpt2 vpt2 V stroke } def
6752 /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
6753 hpt neg vpt -1.62 mul V
6755 hpt neg vpt 1.62 mul V closepath stroke
6757 /Star { 2 copy Pls Crs } def
6758 /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
6759 0 vpt2 neg V hpt2 0 V 0 vpt2 V
6760 hpt2 neg 0 V closepath fill } def
6761 /TriUF { stroke [] 0 setdash vpt 1.12 mul add M
6762 hpt neg vpt -1.62 mul V
6764 hpt neg vpt 1.62 mul V closepath fill } def
6765 /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
6766 hpt neg vpt 1.62 mul V
6768 hpt neg vpt -1.62 mul V closepath stroke
6770 /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
6771 hpt neg vpt 1.62 mul V
6773 hpt neg vpt -1.62 mul V closepath fill} def
6774 /DiaF { stroke [] 0 setdash vpt add M
6775 hpt neg vpt neg V hpt vpt neg V
6776 hpt vpt V hpt neg vpt V closepath fill } def
6777 /Pent { stroke [] 0 setdash 2 copy gsave
6778 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
6779 closepath stroke grestore Pnt } def
6780 /PentF { stroke [] 0 setdash gsave
6781 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
6782 closepath fill grestore } def
6783 /Circle { stroke [] 0 setdash 2 copy
6784 hpt 0 360 arc stroke Pnt } def
6785 /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
6786 /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def
6787 /C1 { BL [] 0 setdash 2 copy moveto
6788 2 copy vpt 0 90 arc closepath fill
6789 vpt 0 360 arc closepath } bind def
6790 /C2 { BL [] 0 setdash 2 copy moveto
6791 2 copy vpt 90 180 arc closepath fill
6792 vpt 0 360 arc closepath } bind def
6793 /C3 { BL [] 0 setdash 2 copy moveto
6794 2 copy vpt 0 180 arc closepath fill
6795 vpt 0 360 arc closepath } bind def
6796 /C4 { BL [] 0 setdash 2 copy moveto
6797 2 copy vpt 180 270 arc closepath fill
6798 vpt 0 360 arc closepath } bind def
6799 /C5 { BL [] 0 setdash 2 copy moveto
6802 2 copy vpt 180 270 arc closepath fill
6803 vpt 0 360 arc } bind def
6804 /C6 { BL [] 0 setdash 2 copy moveto
6805 2 copy vpt 90 270 arc closepath fill
6806 vpt 0 360 arc closepath } bind def
6807 /C7 { BL [] 0 setdash 2 copy moveto
6808 2 copy vpt 0 270 arc closepath fill
6809 vpt 0 360 arc closepath } bind def
6810 /C8 { BL [] 0 setdash 2 copy moveto
6811 2 copy vpt 270 360 arc closepath fill
6812 vpt 0 360 arc closepath } bind def
6813 /C9 { BL [] 0 setdash 2 copy moveto
6814 2 copy vpt 270 450 arc closepath fill
6815 vpt 0 360 arc closepath } bind def
6816 /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
6818 2 copy vpt 90 180 arc closepath fill
6819 vpt 0 360 arc closepath } bind def
6820 /C11 { BL [] 0 setdash 2 copy moveto
6821 2 copy vpt 0 180 arc closepath fill
6823 2 copy vpt 270 360 arc closepath fill
6824 vpt 0 360 arc closepath } bind def
6825 /C12 { BL [] 0 setdash 2 copy moveto
6826 2 copy vpt 180 360 arc closepath fill
6827 vpt 0 360 arc closepath } bind def
6828 /C13 { BL [] 0 setdash 2 copy moveto
6829 2 copy vpt 0 90 arc closepath fill
6831 2 copy vpt 180 360 arc closepath fill
6832 vpt 0 360 arc closepath } bind def
6833 /C14 { BL [] 0 setdash 2 copy moveto
6834 2 copy vpt 90 360 arc closepath fill
6835 vpt 0 360 arc } bind def
6836 /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
6837 vpt 0 360 arc closepath } bind def
6838 /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
6839 neg 0 rlineto closepath } bind def
6840 /Square { dup Rec } bind def
6841 /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
6842 /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
6843 /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
6844 /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
6845 /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
6846 /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
6847 /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
6848 exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
6849 /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
6850 /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
6851 2 copy vpt Square fill
6853 /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
6854 /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
6855 /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
6857 /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
6859 /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
6860 /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
6861 2 copy vpt Square fill Bsquare } bind def
6862 /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
6863 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
6864 /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
6865 /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
6866 /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
6867 /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
6868 /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
6869 /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
6870 /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
6871 /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
6872 /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
6873 /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
6874 /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
6875 /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
6876 /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
6877 /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
6878 /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
6879 /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
6880 /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
6881 /DiaE { stroke [] 0 setdash vpt add M
6882 hpt neg vpt neg V hpt vpt neg V
6883 hpt vpt V hpt neg vpt V closepath stroke } def
6884 /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
6885 0 vpt2 neg V hpt2 0 V 0 vpt2 V
6886 hpt2 neg 0 V closepath stroke } def
6887 /TriUE { stroke [] 0 setdash vpt 1.12 mul add M
6888 hpt neg vpt -1.62 mul V
6890 hpt neg vpt 1.62 mul V closepath stroke } def
6891 /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
6892 hpt neg vpt 1.62 mul V
6894 hpt neg vpt -1.62 mul V closepath stroke } def
6895 /PentE { stroke [] 0 setdash gsave
6896 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
6897 closepath stroke grestore } def
6898 /CircE { stroke [] 0 setdash
6899 hpt 0 360 arc stroke } def
6900 /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
6901 /DiaW { stroke [] 0 setdash vpt add M
6902 hpt neg vpt neg V hpt vpt neg V
6903 hpt vpt V hpt neg vpt V Opaque stroke } def
6904 /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
6905 0 vpt2 neg V hpt2 0 V 0 vpt2 V
6906 hpt2 neg 0 V Opaque stroke } def
6907 /TriUW { stroke [] 0 setdash vpt 1.12 mul add M
6908 hpt neg vpt -1.62 mul V
6910 hpt neg vpt 1.62 mul V Opaque stroke } def
6911 /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
6912 hpt neg vpt 1.62 mul V
6914 hpt neg vpt -1.62 mul V Opaque stroke } def
6915 /PentW { stroke [] 0 setdash gsave
6916 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
6917 Opaque stroke grestore } def
6918 /CircW { stroke [] 0 setdash
6919 hpt 0 360 arc Opaque stroke } def
6920 /BoxFill { gsave Rec 1 setgray fill grestore } def
6925 /ColB exch def /ColG exch def /ColR exch def
6926 /ColR ColR Fillden mul Fillden sub 1 add def
6927 /ColG ColG Fillden mul Fillden sub 1 add def
6928 /ColB ColB Fillden mul Fillden sub 1 add def
6929 ColR ColG ColB setrgbcolor
6932 % PostScript Level 1 Pattern Fill routine
6933 % Usage: x y w h s a XX PatternFill
6934 % x,y = lower left corner of box to be filled
6935 % w,h = width and height of box
6936 % a = angle in degrees between lines and x-axis
6937 % XX = 0/1 for no/yes cross-hatch
6939 /PatternFill { gsave /PFa [ 9 2 roll ] def
6940 PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
6941 PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
6942 gsave 1 setgray fill grestore clip
6943 currentlinewidth 0.5 mul setlinewidth
6944 /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
6945 0 0 M PFa 5 get rotate PFs -2 div dup translate
6946 0 1 PFs PFa 4 get div 1 add floor cvi
6947 { PFa 4 get mul 0 M 0 PFs V } for
6949 0 1 PFs PFa 4 get div 1 add floor cvi
6950 { PFa 4 get mul 0 2 1 roll M PFs 0 V } for
6952 stroke grestore } def
6954 /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
6955 dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
6956 currentdict end definefont pop
6965 (Helvetica) findfont 200 scalefont setfont
7168 currentpoint gsave translate 90 rotate 0 0 M
7169 (Number of Iterations) Cshow
7175 (Nodes Density) Cshow
7183 (Synchronous Algorithm) Rshow
7293 (Asynchronous Algorithm) Rshow
7429 %%DocumentFonts: Helvetica
7432 @endspecial 523 1940 a Fm(Fig)o(.)f(1.6)36 b FA(Number)19
7433 b(of)f(iterations)1080 3433 y @beginspecial 50 @llx 50
7434 @lly 410 @urx 302 @ury 1980 @rwi @setspecial
7435 %%BeginDocument: TimeDensity.ps
7436 %!PS-Adobe-2.0 EPSF-2.0
7437 %%Title: TimeDensity.ps
7438 %%Creator: gnuplot 4.0 patchlevel 0
7439 %%CreationDate: Tue Feb 5 17:29:16 2008
7440 %%DocumentFonts: (atend)
7441 %%BoundingBox: 50 50 410 302
7442 %%Orientation: Portrait
7444 /gnudict 256 dict def
7448 /gnulinewidth 5.000 def
7449 /userlinewidth gnulinewidth def
7457 /M {moveto} bind def
7458 /L {lineto} bind def
7459 /R {rmoveto} bind def
7460 /V {rlineto} bind def
7461 /N {newpath moveto} bind def
7462 /C {setrgbcolor} bind def
7463 /f {rlineto fill} bind def
7466 /Lshow { currentpoint stroke M
7467 0 vshift R show } def
7468 /Rshow { currentpoint stroke M
7469 dup stringwidth pop neg vshift R show } def
7470 /Cshow { currentpoint stroke M
7471 dup stringwidth pop -2 div vshift R show } def
7472 /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
7473 /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
7474 /DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
7475 {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def
7476 /BL { stroke userlinewidth 2 mul setlinewidth
7477 Rounded { 1 setlinejoin 1 setlinecap } if } def
7478 /AL { stroke userlinewidth 2 div setlinewidth
7479 Rounded { 1 setlinejoin 1 setlinecap } if } def
7480 /UL { dup gnulinewidth mul /userlinewidth exch def
7481 dup 1 lt {pop 1} if 10 mul /udl exch def } def
7482 /PL { stroke userlinewidth setlinewidth
7483 Rounded { 1 setlinejoin 1 setlinecap } if } def
7484 /LTw { PL [] 1 setgray } def
7485 /LTb { BL [] 0 0 0 DL } def
7486 /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def
7487 /LT0 { PL [] 1 0 0 DL } def
7488 /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
7489 /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
7490 /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
7491 /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
7492 /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
7493 /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
7494 /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
7495 /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
7496 /Pnt { stroke [] 0 setdash
7497 gsave 1 setlinecap M 0 0 V stroke grestore } def
7498 /Dia { stroke [] 0 setdash 2 copy vpt add M
7499 hpt neg vpt neg V hpt vpt neg V
7500 hpt vpt V hpt neg vpt V closepath stroke
7502 /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
7503 currentpoint stroke M
7504 hpt neg vpt neg R hpt2 0 V stroke
7506 /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
7507 0 vpt2 neg V hpt2 0 V 0 vpt2 V
7508 hpt2 neg 0 V closepath stroke
7510 /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
7511 hpt2 vpt2 neg V currentpoint stroke M
7512 hpt2 neg 0 R hpt2 vpt2 V stroke } def
7513 /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
7514 hpt neg vpt -1.62 mul V
7516 hpt neg vpt 1.62 mul V closepath stroke
7518 /Star { 2 copy Pls Crs } def
7519 /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
7520 0 vpt2 neg V hpt2 0 V 0 vpt2 V
7521 hpt2 neg 0 V closepath fill } def
7522 /TriUF { stroke [] 0 setdash vpt 1.12 mul add M
7523 hpt neg vpt -1.62 mul V
7525 hpt neg vpt 1.62 mul V closepath fill } def
7526 /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
7527 hpt neg vpt 1.62 mul V
7529 hpt neg vpt -1.62 mul V closepath stroke
7531 /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
7532 hpt neg vpt 1.62 mul V
7534 hpt neg vpt -1.62 mul V closepath fill} def
7535 /DiaF { stroke [] 0 setdash vpt add M
7536 hpt neg vpt neg V hpt vpt neg V
7537 hpt vpt V hpt neg vpt V closepath fill } def
7538 /Pent { stroke [] 0 setdash 2 copy gsave
7539 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
7540 closepath stroke grestore Pnt } def
7541 /PentF { stroke [] 0 setdash gsave
7542 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
7543 closepath fill grestore } def
7544 /Circle { stroke [] 0 setdash 2 copy
7545 hpt 0 360 arc stroke Pnt } def
7546 /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
7547 /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def
7548 /C1 { BL [] 0 setdash 2 copy moveto
7549 2 copy vpt 0 90 arc closepath fill
7550 vpt 0 360 arc closepath } bind def
7551 /C2 { BL [] 0 setdash 2 copy moveto
7552 2 copy vpt 90 180 arc closepath fill
7553 vpt 0 360 arc closepath } bind def
7554 /C3 { BL [] 0 setdash 2 copy moveto
7555 2 copy vpt 0 180 arc closepath fill
7556 vpt 0 360 arc closepath } bind def
7557 /C4 { BL [] 0 setdash 2 copy moveto
7558 2 copy vpt 180 270 arc closepath fill
7559 vpt 0 360 arc closepath } bind def
7560 /C5 { BL [] 0 setdash 2 copy moveto
7563 2 copy vpt 180 270 arc closepath fill
7564 vpt 0 360 arc } bind def
7565 /C6 { BL [] 0 setdash 2 copy moveto
7566 2 copy vpt 90 270 arc closepath fill
7567 vpt 0 360 arc closepath } bind def
7568 /C7 { BL [] 0 setdash 2 copy moveto
7569 2 copy vpt 0 270 arc closepath fill
7570 vpt 0 360 arc closepath } bind def
7571 /C8 { BL [] 0 setdash 2 copy moveto
7572 2 copy vpt 270 360 arc closepath fill
7573 vpt 0 360 arc closepath } bind def
7574 /C9 { BL [] 0 setdash 2 copy moveto
7575 2 copy vpt 270 450 arc closepath fill
7576 vpt 0 360 arc closepath } bind def
7577 /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
7579 2 copy vpt 90 180 arc closepath fill
7580 vpt 0 360 arc closepath } bind def
7581 /C11 { BL [] 0 setdash 2 copy moveto
7582 2 copy vpt 0 180 arc closepath fill
7584 2 copy vpt 270 360 arc closepath fill
7585 vpt 0 360 arc closepath } bind def
7586 /C12 { BL [] 0 setdash 2 copy moveto
7587 2 copy vpt 180 360 arc closepath fill
7588 vpt 0 360 arc closepath } bind def
7589 /C13 { BL [] 0 setdash 2 copy moveto
7590 2 copy vpt 0 90 arc closepath fill
7592 2 copy vpt 180 360 arc closepath fill
7593 vpt 0 360 arc closepath } bind def
7594 /C14 { BL [] 0 setdash 2 copy moveto
7595 2 copy vpt 90 360 arc closepath fill
7596 vpt 0 360 arc } bind def
7597 /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
7598 vpt 0 360 arc closepath } bind def
7599 /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
7600 neg 0 rlineto closepath } bind def
7601 /Square { dup Rec } bind def
7602 /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
7603 /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
7604 /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
7605 /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
7606 /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
7607 /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
7608 /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
7609 exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
7610 /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
7611 /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
7612 2 copy vpt Square fill
7614 /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
7615 /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
7616 /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
7618 /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
7620 /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
7621 /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
7622 2 copy vpt Square fill Bsquare } bind def
7623 /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
7624 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
7625 /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
7626 /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
7627 /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
7628 /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
7629 /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
7630 /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
7631 /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
7632 /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
7633 /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
7634 /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
7635 /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
7636 /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
7637 /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
7638 /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
7639 /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
7640 /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
7641 /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
7642 /DiaE { stroke [] 0 setdash vpt add M
7643 hpt neg vpt neg V hpt vpt neg V
7644 hpt vpt V hpt neg vpt V closepath stroke } def
7645 /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
7646 0 vpt2 neg V hpt2 0 V 0 vpt2 V
7647 hpt2 neg 0 V closepath stroke } def
7648 /TriUE { stroke [] 0 setdash vpt 1.12 mul add M
7649 hpt neg vpt -1.62 mul V
7651 hpt neg vpt 1.62 mul V closepath stroke } def
7652 /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
7653 hpt neg vpt 1.62 mul V
7655 hpt neg vpt -1.62 mul V closepath stroke } def
7656 /PentE { stroke [] 0 setdash gsave
7657 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
7658 closepath stroke grestore } def
7659 /CircE { stroke [] 0 setdash
7660 hpt 0 360 arc stroke } def
7661 /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
7662 /DiaW { stroke [] 0 setdash vpt add M
7663 hpt neg vpt neg V hpt vpt neg V
7664 hpt vpt V hpt neg vpt V Opaque stroke } def
7665 /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
7666 0 vpt2 neg V hpt2 0 V 0 vpt2 V
7667 hpt2 neg 0 V Opaque stroke } def
7668 /TriUW { stroke [] 0 setdash vpt 1.12 mul add M
7669 hpt neg vpt -1.62 mul V
7671 hpt neg vpt 1.62 mul V Opaque stroke } def
7672 /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
7673 hpt neg vpt 1.62 mul V
7675 hpt neg vpt -1.62 mul V Opaque stroke } def
7676 /PentW { stroke [] 0 setdash gsave
7677 translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
7678 Opaque stroke grestore } def
7679 /CircW { stroke [] 0 setdash
7680 hpt 0 360 arc Opaque stroke } def
7681 /BoxFill { gsave Rec 1 setgray fill grestore } def
7686 /ColB exch def /ColG exch def /ColR exch def
7687 /ColR ColR Fillden mul Fillden sub 1 add def
7688 /ColG ColG Fillden mul Fillden sub 1 add def
7689 /ColB ColB Fillden mul Fillden sub 1 add def
7690 ColR ColG ColB setrgbcolor
7693 % PostScript Level 1 Pattern Fill routine
7694 % Usage: x y w h s a XX PatternFill
7695 % x,y = lower left corner of box to be filled
7696 % w,h = width and height of box
7697 % a = angle in degrees between lines and x-axis
7698 % XX = 0/1 for no/yes cross-hatch
7700 /PatternFill { gsave /PFa [ 9 2 roll ] def
7701 PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
7702 PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
7703 gsave 1 setgray fill grestore clip
7704 currentlinewidth 0.5 mul setlinewidth
7705 /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
7706 0 0 M PFa 5 get rotate PFs -2 div dup translate
7707 0 1 PFs PFa 4 get div 1 add floor cvi
7708 { PFa 4 get mul 0 M 0 PFs V } for
7710 0 1 PFs PFa 4 get div 1 add floor cvi
7711 { PFa 4 get mul 0 2 1 roll M PFs 0 V } for
7713 stroke grestore } def
7715 /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
7716 dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
7717 currentdict end definefont pop
7726 (Helvetica) findfont 200 scalefont setfont
7879 currentpoint gsave translate 90 rotate 0 0 M
7880 (Simulated Time) Cshow
7886 (Nodes Density) Cshow
7894 (Synchronous Algorithm) Rshow
8004 (Asynchronous Algorithm) Rshow
8140 %%DocumentFonts: Helvetica
8143 @endspecial 523 3557 a Fm(Fig)o(.)f(1.7)36 b FA(Simulated)18
8144 b(T)n(ime)523 4080 y FC(1.5)41 b(Further)27 b(Discussions)523
8145 4313 y FE(In)h(this)h(section,)f(we)h(gi)n(v)o(e)e(further)g
8146 (consideration)f(to)j(our)e(data)i(fusion)e(scheme)h(from)f(the)523
8147 4412 y(vie)n(wpoints)d(of)g(rob)n(ustness)h(to)g(the)g(delays)f(and)g
8148 (loss)i(of)f(messages)g(and)f(ener)o(gy)f(ef)n(\002cienc)o(y)523
8149 4512 y(in)d(comparison)f(to)h(other)f(e)o(xisting)h(w)o(orks.)623
8150 4611 y(Sensor)g(nodes)h(are)g(small-scale)g(de)n(vices.)f(Such)h(small)
8151 h(de)n(vices)e(are)h(v)o(ery)f(limited)h(in)g(the)523
8152 4711 y(amount)30 b(of)h(ener)o(gy)f(the)o(y)g(can)i(store)f(or)g(harv)o
8153 (est)g(from)f(the)i(en)m(vironment.)c(Thus,)i(ener)o(gy)p
8156 TeXDict begin 17 16 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)
8157 n(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)545
8158 b(17)523 282 y FE(ef)n(\002cienc)o(y)24 b(is)j(a)f(major)e(concern)g
8159 (in)i(a)g(sensor)f(netw)o(ork.)f(In)h(addition,)f(man)o(y)h(thousands)f
8160 (of)523 382 y(sensors)32 b(may)g(ha)n(v)o(e)f(to)h(be)g(deplo)o(yed)e
8161 (for)h(a)i(gi)n(v)o(en)e(task.)h(An)g(indi)n(vidual)e(sensor')-5
8162 b(s)32 b(small)523 482 y(ef)n(fecti)n(v)o(e)19 b(range)g(relati)n(v)o
8163 (e)g(to)i(a)f(lar)o(ge)g(area)g(of)f(interest)i(mak)o(es)f(this)g(a)h
8164 (requirement.)623 581 y(Therefore,)16 b(scalability)j(is)i(another)c
8165 (critical)j(f)o(actor)e(in)i(the)f(netw)o(ork)f(design.)g(Sensor)h
8166 (net-)523 681 y(w)o(orks)j(are)f(subject)h(to)g(frequent)e(partial)i(f)
8167 o(ailures)g(such)f(as)i(e)o(xhausted)d(batteries,)i(nodes)f(de-)523
8168 780 y(stro)o(yed)e(due)h(to)g(en)m(vironmental)d(f)o(actors,)i(or)h
8169 (communication)d(f)o(ailures)j(due)f(to)h(obstacles)g(in)523
8170 880 y(the)g(en)m(vironment.)d(Message)k(delays)f(can)g(be)g(rather)f
8171 (high)h(in)g(sensor)g(netw)o(orks)f(due)h(to)h(their)523
8172 980 y(typically)e(limited)h(communication)d(capacity)i(which)g(is)i
8173 (shared)e(by)g(nodes)g(within)h(commu-)523 1079 y(nication)g(range)g
8174 (of)h(each)f(other)-5 b(.)20 b(The)h(o)o(v)o(erall)f(operation)f(of)h
8175 (the)h(sensor)g(netw)o(ork)f(should)f(be)523 1179 y(rob)n(ust)h
8176 (despite)g(such)g(partial)f(f)o(ailures.)623 1279 y(In)h(our)f(scheme,)
8177 h(we)h(presented)e(a)i(scalable)f(asynchronous)d(method)i(for)h(a)n(v)o
8178 (eraging)f(data)523 1378 y(fusion)i(in)h(sensor)g(netw)o(orks.)f(The)h
8179 (simulations)f(we)i(conducted)d(sho)n(w)i(that,)g(the)g(higher)e(the)
8180 523 1478 y(density)30 b(of)g(the)h(deplo)o(yed)d(nodes,)i(the)h(more)e
8181 (the)i(precise)f(of)g(the)h(estimation)f(w)o(ould)g(be.)523
8182 1577 y(On)22 b(the)g(other)f(hand,)f(our)h(algorithm)g(is)i(totally)e
8183 (asynchronous,)e(where)i(we)h(consider)f(delay)523 1677
8184 y(transmission)g(and)h(loss)h(of)e(messages)i(in)f(the)g(proposed)e
8185 (model.)h(These)h(aspects)g(which)f(are)523 1777 y(highly)d(important)h
8186 (are)g(not)h(tak)o(en)f(into)g(account)g(in)h(pre)n(vious)e(sensor)h
8187 (fusion)g(w)o(orks)g([2)o(,)h(12)o(].)623 1876 y(Another)f(important)h
8188 (practical)h(issue)g(in)h(sensor)e(netw)o(ork)g(is)i(the)g(po)n(wer)e
8189 (ef)n(\002cienc)o(y)-5 b(.)19 b(Op-)523 1976 y(timizing)e(the)g(ener)o
8190 (gy)f(consumption)f(in)i(sensor)g(netw)o(orks)g(is)h(related)f(to)h
8191 (minimize)e(the)i(num-)523 2076 y(ber)24 b(of)h(the)g(netw)o(ork)e
8192 (communications)f(as)k(the)f(radio)e(is)j(the)f(main)f(ener)o(gy)f
8193 (consumer)g(in)i(a)523 2175 y(sensor)f(node)f([1)o(].)h(Considering)e
8194 (the)i(distrib)n(uted)f(iterati)n(v)o(e)h(procedure)d(for)j
8195 (calculating)e(a)n(v-)523 2275 y(erages,)h(the)h(only)f(w)o(ay)g(to)h
8196 (minimize)f(the)h(ener)o(gy)d(consumption)h(is)i(to)g(reduce)e(the)i
8197 (number)523 2374 y(of)31 b(iterations)g(before)f(attending)h(the)g(con)
8198 m(v)o(er)o(gence.)c(T)-7 b(o)32 b(sho)n(w)f(ho)n(w)g(well)h(our)f
8199 (algorithm)523 2474 y(sa)n(v)o(es)23 b(ener)o(gy)-5 b(,)19
8200 b(we)k(compared)d(our)i(obtained)f(results)h(to)h(those)f(reported)e
8201 (by)i(another)f(dif)n(fu-)523 2574 y(si)n(v)o(e)d(scheme)f(for)g(a)n(v)
8202 o(erage)f(computation)f(in)j(sensor)f(netw)o(orks)g([2)o(].)h(F)o(or)f
8203 (instance,)g(in)h(a)g(static)523 2673 y(topology)13 b(our)i(algorithm)f
8204 (con)m(v)o(er)o(ges)f(after)i Ft(69)g FE(iterations)g(with)h(a)g(mean)e
8205 (error)h(of)g Ft(10)2998 2643 y Fo(\000)p Fq(4)3102 2673
8206 y FE(while)523 2773 y(the)h(best)h(results)f(in)h(the)f(second)f
8207 (approach)f(reached)h Ft(85)h FE(iterations)g(for)f(the)h(same)h(mean)e
8208 (error)-5 b(.)523 2873 y(F)o(or)23 b(the)h(dynamic)e(topology)g(mode,)g
8209 (we)j(obtained)d Ft(105)h FE(iterations,)g(mean)g(error)f
8210 Ft(10)3054 2842 y Fo(\000)p Fq(4)3167 2873 y FE(and)523
8211 2972 y(probability)f(of)i(link)f(f)o(ailure)g Ft(0)p
8212 Fu(:)p Ft(25)p FE(,)g(while)h(the)g(number)e(of)i(iterations)f(is)i(v)o
8213 (ery)e(high)g(\()p Fx(\031)27 b Ft(300)523 3072 y FE(iterations\))19
8214 b(in)i([2)o(].)523 3437 y FC(1.6)41 b(Conclusion)25 b(and)h(Futur)n(e)g
8215 (W)-7 b(ork)523 3670 y FE(In)32 b(this)h(paper)m(,)d(we)j(introduced)c
8216 (a)k(f)o(ault)f(tolerant)f(dif)n(fusion)g(scheme)g(for)h(data)g(fusion)
8217 f(in)523 3769 y(sensor)g(netw)o(orks.)g(This)g(algorithm)f(is)j(based)e
8218 (on)g(data)g(dif)n(fusion;)f(the)h(nodes)g(cooperate)523
8219 3869 y(and)23 b(e)o(xchange)e(their)i(information)e(only)i(with)h
8220 (their)f(direct)g(instantaneous)f(neighbours.)f(In)523
8221 3968 y(contrast)26 b(to)g(e)o(xisting)g(w)o(orks,)g(our)g(algorithm)e
8222 (does)j(not)f(rely)g(on)g(synchronization)d(nor)j(on)523
8223 4068 y(the)16 b(kno)n(wledge)e(of)i(the)h(global)e(topology)-5
8224 b(.)14 b(W)-7 b(e)17 b(pro)o(v)o(e)e(that)h(under)f(suitable)h
8225 (assumptions,)f(our)523 4168 y(algorithm)24 b(achie)n(v)o(es)h(the)g
8226 (global)g(con)m(v)o(er)o(gence)d(in)j(the)h(sense)g(that,)f(after)h
8227 (some)f(iterations,)523 4267 y(each)i(node)e(has)i(an)g(estimation)f
8228 (of)h(the)g(a)n(v)o(erage)e(consensus)h(o)o(v)o(erall)g(the)h(whole)f
8229 (netw)o(ork.)523 4367 y(T)-7 b(o)21 b(sho)n(w)f(the)h(ef)n(fecti)n(v)o
8230 (eness)e(of)h(our)g(algorithm,)e(we)j(conducted)e(series)i(of)f
8231 (simulations)g(and)523 4467 y(studied)g(our)f(algorithm)g(under)f(v)n
8232 (arious)i(metrics.)623 4566 y(In)j(our)h(scenario,)f(we)h(ha)n(v)o(e)f
8233 (focused)g(on)h(de)n(v)o(eloping)d(a)j(reliable)g(and)f(rob)n(ust)h
8234 (algorithm)523 4666 y(from)16 b(the)i(vie)n(w)f(points)g(of)h
8235 (asynchronism)d(and)i(f)o(ault)g(tolerance)f(in)i(a)g(dynamically)d
8238 TeXDict begin 18 17 bop 523 100 a FA(18)976 b(Jacques)20
8239 b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
8240 282 y FE(topology)-5 b(.)18 b(W)-7 b(e)23 b(ha)n(v)o(e)e(tak)o(en)f
8241 (into)h(account)f(tw)o(o)i(points)f(which)g(don')o(t)e(ha)n(v)o(e)i
8242 (been)f(pre)n(viously)523 382 y(addressed)i(by)h(other)f(authors,)g
8243 (namely)g(the)h(delays)g(between)g(nodes)f(and)h(the)g(loss)h(of)e
8244 (mes-)523 482 y(sages.)f(Kno)n(wing)e(that)i(in)h(real)e(sensor)h(netw)
8245 o(orks)f(the)h(nodes)f(are)h(prone)e(to)j(f)o(ailures.)e(One)h(of)523
8246 581 y(the)e(near)f(future)g(goals)h(is)h(to)f(allo)n(w)g(nodes)f(to)h
8247 (be)g(dynamically)e(added)h(and)h(remo)o(v)o(ed)d(during)523
8248 681 y(the)25 b(e)o(x)o(ecution)e(of)h(the)h(data)g(fusion)f(algorithm.)
8249 f(W)-7 b(e)26 b(also)f(plan)g(to)g(test)g(our)g(algorithm)e(in)i(a)523
8250 780 y(real-w)o(orld)19 b(sensor)h(netw)o(ork.)523 1146
8251 y FC(Refer)n(ences)558 1362 y FA(1.)42 b(I.)25 b(Ak)o(yildiz,)g(W)-6
8252 b(.)24 b(Su,)i(Y)-9 b(.)25 b(Sankarasubramniam,)k(and)d(E.)f(Cayirci.)
8253 51 b(A)25 b(surv)o(e)o(y)j(on)e(sensor)h(netw)o(orks.)653
8254 1445 y Fa(IEEE)18 b(Communications)h(Ma)o(gazine)p FA(,)g(pages)g
8255 (102\226114,)h(2002.)558 1528 y(2.)42 b(L.)22 b(Xiao,)g(S.)g(Bo)o(yd,)h
8256 (and)h(S.)e(lall.)39 b(A)23 b(scheme)h(for)f(rob)o(ust)h(distrib)o
8257 (uted)e(sensor)j(fusion)f(based)g(on)f(a)o(v)o(er)o(-)653
8258 1611 y(age)i(consensus.)49 b Fa(Pr)m(oc.)24 b(of)g(the)h(International)
8259 g(Confer)m(ence)i(on)e(Information)g(pr)m(ocessing)i(in)d(Sensor)653
8260 1694 y(Networks)19 b(\(IPSN\))p FA(,)g(pages)h(63\22670,)e(2005.)558
8261 1777 y(3.)42 b(R.)14 b(Olf)o(ati-Saber)i(and)f(J.)f(S.)g(Shamma.)k
8262 (Consensus)f(\002lters)e(for)g(sensor)i(netw)o(orks)f(and)f(distrib)o
8263 (uted)g(sensor)653 1860 y(fusion.)26 b Fa(Pr)m(oceedings)20
8264 b(of)e(44th)g(IEEE)h(Confer)m(ence)h(on)e(Decision)h(and)f(Contr)m(ol)g
8265 (CDC-ECC)p FA(,)g(2005.)558 1943 y(4.)42 b(R.)15 b(Olf)o(ati-Saber)l(.)
8266 21 b(Distrib)o(uted)16 b(kalman)f(\002lter)h(with)e(embeded)j
8267 (consensus)h(\002lters.)j Fa(Pr)m(oceedings)c(of)e(44th)653
8268 2026 y(IEEE)j(Confer)m(ence)j(on)d(Decision)g(and)h(Contr)m(ol)p
8269 FA(,)f(2005.)558 2109 y(5.)42 b(R.)17 b(Olf)o(ati-Saber)i(and)g(R.)e
8270 (M.)f(Murray)-5 b(.)27 b(Consensus)20 b(problems)f(in)e(netw)o(orks)j
8271 (of)e(agents)h(with)d(switching)653 2192 y(topology)i(and)h
8272 (time-delays.)26 b Fa(IEEE)19 b(T)l(r)o(ansaction)h(on)e(A)o(utomatic)f
8273 (Contr)m(ol)p FA(,)h(49\(9\):1520\2261533.)558 2275 y(6.)42
8274 b(Jacques)28 b(Bahi,)d(Arnaud)i(Giersch,)g(and)g(Abdallah)f(Makhoul.)51
8275 b(A)26 b(scalable)g(f)o(ault)h(tolerant)f(dif)n(fusion)653
8276 2358 y(scheme)j(for)g(data)g(fusion)g(in)f(sensor)i(netw)o(orks.)60
8277 b Fa(The)28 b(Thir)m(d)h(International)h(ICST)f(Confer)m(ence)h(on)653
8278 2441 y(Scalable)18 b(Information)h(Systems,)g(Infoscale)g(2008,)g(A)n
8279 (CM)p FA(,)e(june)h(2008.)558 2524 y(7.)42 b(A.)24 b(Speranzon,)j(C.)d
8280 (Fischione,)i(and)f(K.H.)f(Johansson.)50 b(Distrib)o(uted)25
8281 b(and)h(collaborati)n(v)o(e)g(estimation)653 2607 y(o)o(v)o(er)21
8282 b(wireless)g(sensor)h(netw)o(orks.)34 b Fa(Pr)m(oceedings)22
8283 b(of)e(45th)g(IEEE)h(Confer)m(ence)h(on)e(Decision)h(and)g(Con-)653
8284 2690 y(tr)m(ol)p FA(,)c(2006.)558 2773 y(8.)42 b(L.)21
8285 b(Xiao,)g(S.)g(Bo)o(yd,)h(and)g(S.)f(Lall.)36 b(A)21
8286 b(space-time)h(dif)n(fusion)i(scheme)e(for)h(peer)o(-to-peer)h
8287 (least-squares)653 2856 y(estimation.)30 b Fa(Pr)m(oc.)20
8288 b(of)f(F)m(ifth)g(International)h(Conf)o(.)g(on)f(Information)i(Pr)m
8289 (ocessing)h(in)d(Sensor)i(Networks)653 2939 y(\(IPSN)e(2006\))p
8290 FA(,)g(pages)g(168\226176,)g(2006.)558 3022 y(9.)42 b(Mohammad)15
8291 b(S.)g(T)-6 b(alebi,)15 b(Mahdi)f(K)n(ef)o(ayati,)i(Babak)g(H.)e
8292 (Khalaj,)g(and)i(Hamid)e(R.)h(Rabiee.)k(Adapti)n(v)o(e)c(con-)653
8293 3105 y(sensus)i(a)o(v)o(eraging)g(for)f(information)h(fusion)f(o)o(v)o
8294 (er)h(sensor)g(netw)o(orks.)22 b Fa(In)15 b(the)h(pr)m(oceedings)i(of)d
8295 (The)h(Thir)m(d)653 3188 y(IEEE)i(International)h(Confer)m(ence)i(on)d
8296 (Mobile)f(Ad-hoc)j(and)e(Sensor)i(Systems)f(\(MASS'06\))p
8297 FA(,)h(2006.)523 3271 y(10.)42 b(D.)19 b(Spanos,)j(R.)d(Olf)o
8298 (ati-Saber)m(,)j(and)f(R.M.)d(Murray)-5 b(.)34 b(Distrib)o(uted)20
8299 b(sensor)j(fusion)e(using)g(dynamic)f(con-)653 3354 y(sensus.)27
8300 b Fa(pr)m(oceedings)20 b(of)e(IF)-8 b(A)n(C)p FA(,)18
8301 b(2005.)523 3437 y(11.)42 b(D.S.)18 b(Scherber)k(and)d(H.C.)g(P)o
8302 (apadopoulos.)31 b(Distrib)o(uted)19 b(computation)h(of)g(a)o(v)o
8303 (erages)h(o)o(v)o(er)f(ad)f(hoc)h(net-)653 3520 y(w)o(orks.)27
8304 b Fa(IEEE)18 b(journal)h(on)f(Selected)h(Ar)m(eas)g(in)f
8305 (Communications)p FA(,)g(23\(4\):776\226787,)j(April)d(2005.)523
8306 3603 y(12.)42 b(Mohammad)15 b(S.)g(T)-6 b(alebi,)15 b(Mahdi)f(K)n(ef)o
8307 (ayati,)i(Babak)g(H.)e(Khalaj,)g(and)i(Hamid)e(R.)h(Rabiee.)k(Adapti)n
8308 (v)o(e)c(con-)653 3686 y(sensus)i(a)o(v)o(eraging)g(for)f(information)g
8309 (fusion)h(o)o(v)o(er)f(sensor)h(netw)o(orks.)22 b Fa(IEEE)16
8310 b(International)g(Confer)m(ence)653 3769 y(on)i(Mobile)g(Adhoc)g(and)h
8311 (Sensor)h(Systems)f(\(MASS\))p FA(,)g(pages)g(562\226565,)g(2006.)523
8312 3852 y(13.)42 b(J)24 b(A.)g(Le)o(gg.)47 b(T)n(racking)25
8313 b(and)g(sensor)h(fusion)g(issues)f(in)f(the)h(tactical)f(land)g(en)m
8314 (vironement.)48 b Fa(T)-6 b(ec)o(hnical)653 3935 y(Report)18
8315 b(TN.0605)p FA(,)h(2005.)523 4018 y(14.)42 b(R.)18 b(Olf)o(ati-Saber)m
8316 (,)j(J.A.)e(F)o(ax,)g(and)h(R.M.)e(Murray)-5 b(.)31 b(Consensus)22
8317 b(and)e(cooperation)h(in)e(netw)o(ork)o(ed)i(multi-)653
8318 4101 y(agent)d(systems.)27 b Fa(Pr)m(oc.)18 b(of)g(IEEE)p
8319 FA(,)g(pages)h(215\226233,)g(2007.)523 4184 y(15.)42
8320 b(Dimitri)15 b(P)-8 b(.)16 b(Bertsekas)i(and)f(John)g(N.)f(Tsitsiklis.)
8321 21 b Fa(P)-6 b(ar)o(allel)17 b(and)g(Distrib)o(uted)f(Computation:)h
8322 (Numerical)653 4267 y(Methods)p FA(.)26 b(Athena)18 b(Scienti\002c,)g
8323 (1997.)523 4350 y(16.)42 b(Jacques)17 b(Bahi,)d(Raphael)i(Couturier)m
8324 (,)g(and)f(Fla)o(vien)g(V)-8 b(ernier)l(.)20 b(Synchronous)e(distrib)o
8325 (uted)c(load)h(balancing)653 4433 y(on)25 b(dynamic)h(netw)o(orks.)50
8326 b Fa(J)n(ournal)27 b(of)e(P)-6 b(ar)o(allel)25 b(and)h(Distrib)o(uted)f
8327 (Computing)p FA(,)g(65\(11\):1397\2261405,)653 4516 y(2005.)523
8328 4599 y(17.)42 b(OMNeT++.)24 b(http://www)-5 b(.omnetpp.or)o(g/.)p
8332 userdict /end-hook known{end-hook}if