+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.95b Copyright 2005 Radical Eye Software
+%%Title: D:/Texte/Sensors/Fusion/Fusion-chapitre/Fusion-chapter.dvi
+%%CreationDate: Tue Jun 30 21:21:13 2009
+%%Pages: 18
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 595 842
+%%DocumentFonts: Times-Bold Times-Roman CMMI7 CMSY8 Times-Italic CMSY10
+%%+ Times-BoldItalic CMMI10 CMR10 MSBM10 CMEX10 CMR7 CMSY7 CMMI5 CMMI8
+%%+ CMR8 CMMI6 MSBM7 CMSY6 CMR6 MSAM10 CMR5 CMSY5 Helvetica
+%%DocumentPaperSizes: a4
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: "C:\Program Files\MiKTeX 2.5\miktex\bin\dvips.exe"
+%+ D:/Texte/Sensors/Fusion/Fusion-chapitre/Fusion-chapter.dvi
+%DVIPSParameters: dpi=600
+%DVIPSSource: TeX output 2009.06.30:2121
+%%BeginProcSet: tex.pro 0 0
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/CharBuilder{save 3 1 roll S A/base get 2 index get S
+/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy
+setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]{Ci}imagemask
+restore}B/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: 8r.enc 0 0
+% File 8r.enc TeX Base 1 Encoding Revision 2.0 2002-10-30
+%
+% @@psencodingfile@{
+% author = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry,
+% W. Schmidt, P. Lehman",
+% version = "2.0",
+% date = "27nov06",
+% filename = "8r.enc",
+% email = "tex-fonts@@tug.org",
+% docstring = "This is the encoding vector for Type1 and TrueType
+% fonts to be used with TeX. This file is part of the
+% PSNFSS bundle, version 9"
+% @}
+%
+% The idea is to have all the characters normally included in Type 1 fonts
+% available for typesetting. This is effectively the characters in Adobe
+% Standard encoding, ISO Latin 1, Windows ANSI including the euro symbol,
+% MacRoman, and some extra characters from Lucida.
+%
+% Character code assignments were made as follows:
+%
+% (1) the Windows ANSI characters are almost all in their Windows ANSI
+% positions, because some Windows users cannot easily reencode the
+% fonts, and it makes no difference on other systems. The only Windows
+% ANSI characters not available are those that make no sense for
+% typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen
+% (173). quotesingle and grave are moved just because it's such an
+% irritation not having them in TeX positions.
+%
+% (2) Remaining characters are assigned arbitrarily to the lower part
+% of the range, avoiding 0, 10 and 13 in case we meet dumb software.
+%
+% (3) Y&Y Lucida Bright includes some extra text characters; in the
+% hopes that other PostScript fonts, perhaps created for public
+% consumption, will include them, they are included starting at 0x12.
+% These are /dotlessj /ff /ffi /ffl.
+%
+% (4) hyphen appears twice for compatibility with both ASCII and Windows.
+%
+% (5) /Euro was assigned to 128, as in Windows ANSI
+%
+% (6) Missing characters from MacRoman encoding incorporated as follows:
+%
+% PostScript MacRoman TeXBase1
+% -------------- -------------- --------------
+% /notequal 173 0x16
+% /infinity 176 0x17
+% /lessequal 178 0x18
+% /greaterequal 179 0x19
+% /partialdiff 182 0x1A
+% /summation 183 0x1B
+% /product 184 0x1C
+% /pi 185 0x1D
+% /integral 186 0x81
+% /Omega 189 0x8D
+% /radical 195 0x8E
+% /approxequal 197 0x8F
+% /Delta 198 0x9D
+% /lozenge 215 0x9E
+%
+/TeXBase1Encoding [
+% 0x00
+ /.notdef /dotaccent /fi /fl
+ /fraction /hungarumlaut /Lslash /lslash
+ /ogonek /ring /.notdef /breve
+ /minus /.notdef /Zcaron /zcaron
+% 0x10
+ /caron /dotlessi /dotlessj /ff
+ /ffi /ffl /notequal /infinity
+ /lessequal /greaterequal /partialdiff /summation
+ /product /pi /grave /quotesingle
+% 0x20
+ /space /exclam /quotedbl /numbersign
+ /dollar /percent /ampersand /quoteright
+ /parenleft /parenright /asterisk /plus
+ /comma /hyphen /period /slash
+% 0x30
+ /zero /one /two /three
+ /four /five /six /seven
+ /eight /nine /colon /semicolon
+ /less /equal /greater /question
+% 0x40
+ /at /A /B /C
+ /D /E /F /G
+ /H /I /J /K
+ /L /M /N /O
+% 0x50
+ /P /Q /R /S
+ /T /U /V /W
+ /X /Y /Z /bracketleft
+ /backslash /bracketright /asciicircum /underscore
+% 0x60
+ /quoteleft /a /b /c
+ /d /e /f /g
+ /h /i /j /k
+ /l /m /n /o
+% 0x70
+ /p /q /r /s
+ /t /u /v /w
+ /x /y /z /braceleft
+ /bar /braceright /asciitilde /.notdef
+% 0x80
+ /Euro /integral /quotesinglbase /florin
+ /quotedblbase /ellipsis /dagger /daggerdbl
+ /circumflex /perthousand /Scaron /guilsinglleft
+ /OE /Omega /radical /approxequal
+% 0x90
+ /.notdef /.notdef /.notdef /quotedblleft
+ /quotedblright /bullet /endash /emdash
+ /tilde /trademark /scaron /guilsinglright
+ /oe /Delta /lozenge /Ydieresis
+% 0xA0
+ /.notdef /exclamdown /cent /sterling
+ /currency /yen /brokenbar /section
+ /dieresis /copyright /ordfeminine /guillemotleft
+ /logicalnot /hyphen /registered /macron
+% 0xB0
+ /degree /plusminus /twosuperior /threesuperior
+ /acute /mu /paragraph /periodcentered
+ /cedilla /onesuperior /ordmasculine /guillemotright
+ /onequarter /onehalf /threequarters /questiondown
+% 0xC0
+ /Agrave /Aacute /Acircumflex /Atilde
+ /Adieresis /Aring /AE /Ccedilla
+ /Egrave /Eacute /Ecircumflex /Edieresis
+ /Igrave /Iacute /Icircumflex /Idieresis
+% 0xD0
+ /Eth /Ntilde /Ograve /Oacute
+ /Ocircumflex /Otilde /Odieresis /multiply
+ /Oslash /Ugrave /Uacute /Ucircumflex
+ /Udieresis /Yacute /Thorn /germandbls
+% 0xE0
+ /agrave /aacute /acircumflex /atilde
+ /adieresis /aring /ae /ccedilla
+ /egrave /eacute /ecircumflex /edieresis
+ /igrave /iacute /icircumflex /idieresis
+% 0xF0
+ /eth /ntilde /ograve /oacute
+ /ocircumflex /otilde /odieresis /divide
+ /oslash /ugrave /uacute /ucircumflex
+ /udieresis /yacute /thorn /ydieresis
+] def
+
+
+%%EndProcSet
+%%BeginProcSet: texps.pro 0 0
+%!
+TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2
+index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll
+exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]/Metrics
+exch def dict begin Encoding{exch dup type/integertype ne{pop pop 1 sub
+dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get div def}
+ifelse}forall Metrics/Metrics currentdict end def[2 index currentdict
+end definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{
+dup sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1
+roll mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def
+dup[exch{dup CharStrings exch known not{pop/.notdef/Encoding true def}
+if}forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def}
+def end
+
+%%EndProcSet
+%%BeginProcSet: special.pro 0 0
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginFont: CMEX10
+%!PS-AdobeFont-1.1: CMEX10 1.00
+%%CreationDate: 1992 Jul 23 21:22:48
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.00) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMEX10) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMEX10 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 0 /parenleftbig put
+dup 1 /parenrightbig put
+dup 8 /braceleftbig put
+dup 9 /bracerightbig put
+dup 16 /parenleftBig put
+dup 17 /parenrightBig put
+dup 18 /parenleftbigg put
+dup 19 /parenrightbigg put
+dup 26 /braceleftbigg put
+dup 32 /parenleftBigg put
+dup 33 /parenrightBigg put
+dup 48 /parenlefttp put
+dup 49 /parenrighttp put
+dup 56 /bracelefttp put
+dup 58 /braceleftbt put
+dup 60 /braceleftmid put
+dup 64 /parenleftbt put
+dup 65 /parenrightbt put
+dup 80 /summationtext put
+dup 83 /uniontext put
+dup 88 /summationdisplay put
+readonly def
+/FontBBox{-24 -2960 1454 772}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
+016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
+9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
+D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
+469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
+2BDBF16FBC7512FAA308A093FE5CF5B8CAC6A7BEB5D02276E511FFAF2AE11910
+DE076F24311D94D07CACC323F360887F1EA11BDDA7927FF3325986FDB0ABDFC8
+8E4B40E7988921D551EC0867EBCA44C05657F0DC913E7B3004A5F3E1337B6987
+FEBC45F989C8DC6DC0AD577E903F05D0D54208A0AE7F28C734F130C133B48422
+BED48639A2B74E4C08F2E710E24A99F347E0F4394CE64EACB549576E89044E52
+EABE595BC964156D9D8C2BAB0F49664E951D7C1A3D1789C47F03C7051A63D5E8
+DF04FAAC47351E82CAE0794AA9692C6452688A74A7A6A7AD09B8A9783C235EC1
+EA2156261B8FB331827145DE315B6EC1B3D8B67B3323F761EAF4C223BB214C4C
+6B062D1B281F5041D068319F4911058376D8EFBA59884BA3318C5BC95684F281
+E0591BC0D1B2A4592A137FF301610019B8AC46AE6E48BC091E888E4487688350
+E9AD5074EE4848271CE4ACC38D8CBC8F3DB32813DDD5B341AF9A6601281ABA38
+4A978B98483A63FCC458D0E3BCE6FD830E7E09B0DB987A6B63B74638FC9F21A5
+8C68479E1A85225670D79CDDE5AC0B77F5A994CA700B5F0FF1F97FC63EFDE023
+8135F04A9D20C31998B12AE06676C362141AAAA395CDEF0A49E0141D335965F2
+FB4198499799CECCC8AA5D255264784CD30A3E8295888EFBC2060ADDD7BAC45A
+EEEECDFF7A47A88E69D84C9E572616C1AC69A34B5F0D0DE8EE4EDF9F4ADE0387
+680924D8D5B73EF04EAD7F45977CA8AD73D4DD45DE1966A3B8251C0386164C35
+5880DD2609C80E96D1AB861C9259748E98F6711D4E241A269ED51FF328344664
+3AF9F18DCE671611DB2F5D3EA77EE734D2BED623F973E6840B8DAD1E2C3C2666
+DD4DD1C1C82AC22700F059ED0B61444FD899D2E5C1362757233ED25226A374DB
+DEB02FDFA39FAA62C7103BBD658B0C380FBAB50705F749A6A3103C287C45F92B
+8F852A714DB0989FAEAE42BF55F317B8B0567FA278467F30AC5AE86765A1F4A9
+326299383B56A2D52368F3A15B22E755EF4FB0A0B5DA96F210484F3548C6E7B2
+A907927C5F77451F5842609DDBE28CDD0BEA393CBA0DAC84EE51A1530F48A296
+4EA735EFF9348071315BD7114A79B722254FF02C8704EA365EA26114CBD1BA0B
+3E9143239551DC2DFFF65CD96CB970CA4243E524386D994824BA652DF5C7A899
+F9FFDC763E96B85E947AE27F83D58E2DBAA3288FAA81CD7BA68B5D884FC84E6B
+63AF61F15BF09F9CEC5506D987311C81D3729D2CC3D95817D35B5117DEE54C88
+47AD0325B429CA487345139A32BF5AE9FCA1E27EA475C7670D833193B7777096
+F11FDD14D91C37E9134395BC85D5F22C6D9F990892E2DC6A78E0CAB6B3BFAA32
+835BE39AE8D06A9C737F224B1698FAECFBA0C059CFE989958958DD5125784AD8
+E3A2CAB256E4BD7D52CB57958F2155E74F08C83C8302CC0B8B8BFB0131C42637
+F2189487FB6A7E7F802CE1B724FE84D62C0403AD0383BB68B336CE4BABB5E123
+19EAFAEB98B38BC928A09DEC9325C7B9C89B3B3A28EDF01015D6816F5FF8E8B5
+3F8795594488552D10DBEB9FDB7262BA332367C6D6A5B7D761E89E0470A020DA
+FCB20402DD772E5CA372EC7665534D34AEEBFC14237127CC79850D65716007D8
+63408E53E13A65BE34D1FB68829C88FA20C174BDF30155CFC33F06944E7263C8
+2EEA6C618A9E51217D330F1CAF2551CC09D7230EFC38DDFD93BBC6B83A1856C4
+90537D8735B9D9E97001979A83E88FB49C5FFFCC58BE83CC5C721AC4AF71B82E
+E41298899DE9D1EB7607E37D6BE7788BDA1761AB39F0D31906079C95FBAA75F0
+5C9FAC005DAC85B9CB6F312ACDD7BDA6248BD6C9D669FD17DD7D5486ECE392F2
+5633ED27F5C25D63BE46BA0B2AB837E89891DFAD2B41DB0C3BF290F8F98384E2
+BD2DB5F80A05BA32F9C42BD592A82D8A3A46CC3C568F75BDA6878E531F4F0F4E
+42B28F6B14A44173BA5BBAB22AEA338FCFB5B008D7E1B3759B519B660B0D13BF
+FD32D7D1CA71DE0F41146ED9859BF8275FC09E1AB9829E8CDFA4D90AB4B04328
+86641236E5D9F98677766B9FC0ACF1A5FC70E212FA976024E0FF7700CDA067D5
+C0F43559B11C6FC41E29922A805BD7AFB33F2C99896AEB036FE62AA6BE7ABC19
+EE13304574E48798F67322998C662E2AC9E8A8BD6104E45D6919FD1250EC3697
+4EC4FCDC79F1FEA48FA431B774FD28E74503E3EFF8B334007C07A354672EDD43
+C8E4C094F3C47FDBB2FF9067266661008AA7AAEB42159AC509D615A6E2CEF184
+D189609DE05F7C50766156DF1EBE2617AE6B2CAA4ACF11423F35360B5829588E
+2396BB2D0CBE8A05CFF92FCC3D9D6D21A00F28AA9126F400954BDC4A999B751E
+5B71B7E80979B729475024E966965E01D1398A12712BEFE723CBCE35160D855E
+6718FE89971CDB525907764997DA16922AB51D316BA7EFE6C5111AC5FF6D7129
+20F34F6B8996981B2B119EB3138FD7F176FE209A2324D0873D59D8EB801A69A4
+5E399C1814047418B0127101FCD4F617891946C983440FE180E3B109E6F18AFA
+AB62309BFD236AA4D0B25F9FE4789FD71A76A0E3D87C4393E13959F2B34C7139
+F53CB3AD2F81B747E8F17D324A1EDBB5DF7F86CCB6F94C54C9034613A475CCD2
+DA3E68DB2C15CB0E32C9698CDC1AF99A98CA2902667AAB8D26CBDCA7E3BD4EA5
+1A205DE4441FFC0413818D5628F1B2F65D51585F34DAF1B6A34EA0AADD3DF965
+EA3B725E83C22B196A5B39C4CCBBB7960A3E73B081228A2AE3217F4941F32DA7
+3E81D55089683D436A7E8C3280F8532A4C8083CF170678A9D3F625B51A1E0B62
+C3CABCA195D3C8E1FC799DB26DD9B4995236960C1FEAE3ABF457279C4BFB9FCF
+C568F50D289490A91120C2F4033DC241874E968D9FEFCEED55C2C1AD36C7D84B
+985F6B47F16BFA8A4E59C4F6548D6EE6FB287678C2C6010F5D26D51687BA208E
+75A4DA595C5732949E8E49AFC653AD17C714ED1977B120522C3E46B92FDE73C0
+2553144C6B4305D9A98C62734247518350DDD28B24E832B2BD294C40ECB93E66
+0A1ACFDA178DBAA5D9375FA5237FB84AAA7FD656C0DF8BDD94E33DC10F0F4FAF
+4C788227BE77BDBD08C12CEBACC9FBCD04094FC0F1C26CCCB15054287E23221B
+26D0C1FBBFA35559275780E02DA955A3024EAC2DE4D1DDDF2961F86A08127E87
+3A470868DEA26FEAA63D8A0B016787EE1D205AA3D6459D91F6E3A20E14D29AE8
+394EA46F82E1AE284BE0A03383FDD062541AC923D5C107DAFBDAA9508A7AF797
+82E319F4B4BF74E41862B22E2AF5BC2098EAAFB34F3644202537CF9F9B1600ED
+CC8E4EB9AD080A04587D5CBA945773489442AFEC8BD1E28C29C273C7FF08A89E
+85681EF5E7A193F6F1B2343AA67BE97334C18937C260D8F6F9923A57A667ECE7
+FC30F59FEB258CC2EA7845EA59D53ECFEACE6D3933A7DB6F27CD0C9F1815101E
+C2A6CB63F59DD61C210613663EC664562C049490E8627B02616E2E428291E542
+A385A508387A34403013666BF2E7E01267FADB8C20739CFA86F1B834A0270629
+2A6E44CD5ABFBFF84EF88A00D02826CCA09875381EAE5AC0D076D265A00D4A3D
+EC4DCC270F2069D8CB84F088D4FE648F7168F75A2449A85141793DC2E3BFB4A4
+7353C8DF3F277100A5FFEDD4C5873B746DCEC559D13F1CCE0F1DA1889F3030DA
+59C129DDF372E3666E8645B763187D4CC84E4433F5C1FD517480D7069F42E9C4
+D6E9AA82B8CCC6DEB32CABAC209A928F0BD52BB76BECB0F351A583025B37B0B6
+29146E1D55A9A34D53E59DFA45797DEF0ED2E22F1CDC8276D799559968F8625F
+DD171A68DB520BD02DDAFC4D8E5EDECBE976AA45488B1FCE5A4963AC6DE30FF5
+AAD06C4869727383C013C43DF2B399BAF49240A4D7DAB532BDDE4595220D6A8C
+CBC36CAC03D6C3D27FC3549E30B9BF97493DE922810DDB6F4AA3482B26EA95AD
+436B4CDB3CEC449CEFDC841A95849A26B0EB658EE7AAD9673CC19686E42C2F48
+C88D50F9C05900D7536211FC0B94A9F4C4456F38889E0EF8F2FE36999B58E627
+290CAF623116AFA1B75FF487079EEAF945BD907A612E7F2E931D83972D8D5A04
+1009693D949F427B1F3E59B08CF38B8C93638DD322C272065BED9B8330A04D8B
+FF359D355EA8D859D4D0D30F02AA4EF54CBE4A73FAABB7F2628B11F0A2BAE147
+40F0352550738478A418136593ABB317B6EC86A932CC700571475451361D304F
+5230406434BA54A273D02CB2BFB2B1742D43347E2D9920680963193D527A575A
+14503046529A3BEBD9F2B2D82D4C772D6B36B204AF1D9D2D827D74F06396D770
+823A9600CD8FDEFF10DD077B3723694E1B3D2F59026A572E07C7277B9ADD8082
+4733DB75FB37EE586D8D085947102E992E423D2E71023BDDB4B20FB2DD89CDA4
+D006CB376F9CA5E0672600FCA76649DE67CE2298BDA6961E132A6DC9F700FE49
+37D189C9E7EE2C064AB4A8427D7B11EA839674695629891507AE51D24F2D7F50
+BD8D7F32D0A066566BA02DDB3BD30841992CB7ACCB15853C6C783A6B7636DEB3
+E0C0F3FC5BFEEBB84AFC0F3ECA0BCBC2C72E16940D612FA35207496B892C4030
+470C659488F7D75B5EBF165A030C3398F900A408B511B724694FC7280722742D
+9BA88EDBCCABC1F69AF8C782168E183767755B0DB0030BBED66C8A25FC09E003
+CB5F25235572F44751B34ED8A33C220AEBE4298DB09D494F87CB693D89138AEA
+8AAE674F53BDDD0A5D54B0C5C5A686D6C4321BDEC80455F16708FBAB0E5A8AB4
+32A279C6780DAD7B636193086C316F2A64DA2D3E52F894DB2FD8E7F5D8243BAE
+98FC851C25AD5870222F655CCBBE0D3FED575FC5533EE54BF62A926BD20B0919
+ECDA438E3771592DB0680ED11596DCF8ACCBB794B5AD094001F5CCBF93EDCA54
+4999D36F2E22F791846E2010530DF646E4BB09E23C414E2FCD08C13E36BE5F2C
+0AE96BB3698E9F01468EC5E23C6D1BB9FC44D5D352E761EB50E264B120AD90AA
+4A202942207823C1B4311F7533AFB4DFAB70D8821723C3525A23BD6466921BA6
+88875D08A0122AB492455B6D90FE15BE4830C879F298F66A9EBE44C5BBAB5266
+BF0FB3D1B963268BF9952D8C19ADF21E60F8D06A279D0719AB3F4466186EF06D
+7373D5CF8C626BAF1937E246752486746674B5372D40F95C2A5772F3BE49E080
+C6DB891F40DA9EB3219C43A10D3947C537C1CCE8B1677C96D1D13BCA8DAB6BE3
+A59806A953523E22E64E2B471FB46C405346870C4E7968987CA6243EE14CA35B
+3F9CE97BD096366DE32768A5EC58077AA97117ADA747211512F1FBBBD704FD93
+DA6229603FED0979D87C64F5D36C316DFA91F98AB1D55D06DD7B1F7D51AF277A
+FF664B10DD3042F2D183B958F2714295D51D6E1DB85D071BFA544C4802AB4537
+0B17A665C703FD2851343003039F2251C2ADDFF4BFBF8D625C87119101E6718D
+6EADA1A2D4D4F9917D1CCAC71AACBEB66FE5A9ED13201A544B127114B95DB20C
+59756DD68993754AE72EC12A3879476C51CEFC0FD1A095116A5D63AEB3E64FF5
+2A90EA74B7B5AED8157B6CA1B78E3FE0C3544CD0F6DE38B0E12265124A64E120
+921310B40BE68631EBD0368D4572709032E69D1C964EED7246DA3729584F165C
+1548074357F771546AD8F134E40068367FD33FBBE76EF3BFCDE364D4CE7ADADB
+DF2B6B7EB349BB563DC7D42EFD0159C37517D94770918758D434477D3DC5583B
+6325C41BB9FAAD37207EC71F6C492EF0039A3813773C4B6848ABB9E96055F432
+C32AFEBAF21EF58E1DD3DD6378A208D816F3BE7E
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMSY5
+%!PS-AdobeFont-1.1: CMSY5 1.0
+%%CreationDate: 1991 Aug 15 07:21:16
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.0) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMSY5) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.035 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMSY5 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 0 /minus put
+dup 3 /asteriskmath put
+dup 54 /negationslash put
+readonly def
+/FontBBox{21 -944 1448 791}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964
+7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4
+A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85
+E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A
+221A37D9A807DD01161779DDE7D5FC1B2109839E5B52DFBAF552B11EFFB6A16C
+F03FB920C15AE724EFDF0CCBF00A838D34440FF9FED532F44036AD22561184C5
+283722DDFA7285E62754372D716D704AC0E00B2F6AB67154241C7449AA047833
+94CEDB08E8C92907FE72A0B05AE36A7B9226ACD6E7890A0B528FDDE84A950FC6
+801DE75CF2E739E9121149CCB8B1C87A106822648D84A3D3FBF295EE6C4BF403
+BBE9A1C1F6DAEDD1E642ACC486E609703D7612BFFD10C324F5DC710811F7F614
+3691B400E3773987424C0D2B0D8A736873C6371DDB2442F05E018A2B5CA9A4AA
+17AABB95D09E5890CFFFED5AC01495D89A53D3CEB6E0F620D2A75CB26E31E1FD
+557B4C4A08F62668770C8BE63D101DB2855E6EE41C21A7EC6A61FAFC6ECC5AE3
+AAAD9BF81CBE3446C7B97DF168DA97FD62D7624466B71DEC005100D9A9E96639
+5D681ABD5C673876B65E5CDA906D4950EB1B40C47DFD9BCF198D7AAF69608C0C
+F2E8D8277402CCADBB663813DD60A089594BB10D56DEC9DCC9E89CB253F58CEE
+FC570B8A5F8B89E0C4A302DF19E296F0793EFA5507D8D7E2E51EBEA0D9696541
+AC24DACD40760D63AB92FAB1349335C832AA4CE4CE25D3D9EE2BEAF2E5F8D06D
+7B08C203EA99C65EFAB0275C7E67A26060A302E1AF9D754B8A3B8F99C5D08BD2
+9DC4B91ECCDED59EC130D23879D661D6A88A1E4C9F1B8016677E9862207CD130
+82EAD659F71962275FF7FD327D060189598AF43EE08B0B3F59BEEDA85D669388
+54AD47864979967289ABF1BFD965EEB0709BD424D81911042305F9D016A9919F
+006068063E85E7D500860B84C3775A79E432E5504E7F9DB79F2210AEDAA599FD
+92A117C7DF17AF424DE6F15D852479ED82B14DC553C33CD3A5A1CBFBB82A4D7D
+00B5D21DA064B209BDB93761D773A7B528AC1B167B522E55049DCB932A19D753
+F8D75D35D31A4E582A2758E566394CFB2D479C4C3D10EDEB4ED3832C358BFF2C
+4E21E6F3784952F7DD66D38141DA12292E5D8BA1D369C208C283161D02E577B5
+EDAD1FDFB896119EA9F763EF3EA93A92AF0BDAF63DFFACD5B23461E1F8FBFB66
+A0365FCE1F6F823C405959D53E
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMR5
+%!PS-AdobeFont-1.1: CMR5 1.00B
+%%CreationDate: 1992 Feb 19 19:55:02
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.00B) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMR5) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMR5 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 48 /zero put
+dup 49 /one put
+dup 50 /two put
+dup 51 /three put
+dup 52 /four put
+dup 61 /equal put
+readonly def
+/FontBBox{-341 -250 1304 965}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
+016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
+9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
+D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
+469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
+2BDBF16FBC7512FAA308A093FE5CF7158F1163BC1F3352E22A1452E73FECA8A4
+87100FB1FFC4C8AF409B2067537220E605DA0852CA49839E1386AF9D7A1A455F
+D1F017CE45884D76EF2CB9BC5821FD25365DDEA1F9B0FF4CFF25B8E64D0747A3
+7CAD14E0DBA3E3CA95F10F24B7D5D75451845F1FB7221D7794A860756CFBB3E7
+704A52A22448C34812C3DBEDD41892577AABA7D555E9298C1A0F7DA638078167
+F56E29672683C51CF1C003764A8E7AD9D8ADE77B4983F56FE2D12723AAD8BF36
+682CFBB71B1D12210144D39DD841A971F71DB82AC6CD815987CDCF29ABC3CC96
+5EEBD5D661F452C6E0C74F9ED8D0C5B3755551A172E0FE31EA02344176E32666
+14B6853A1C303A5E818C2E455A6CF8FC9A66DC6E279101D61C523BD9DB8EB82F
+EAF4D7FDF6372383C0794C4568D079648689A199D4B65BA646CF95B7647E4BEC
+83856C27A8EF177B3A686EDA6354FE9573E123C12EC4BA56A7E8BFB8F9B75147
+9DD79A743968F36F7D0D479FA610F0816E6267E5CE327686A5485AB72201525C
+FB3B7CA10E1BF26E44C24E1696CB089CB0055BD692C89B237CF269F77A31DC81
+0F4B75C8400ABCFDCEC6443CD0E81871CD71AA3064ABDE882C4C52322C27FA8B
+41C689F827FB0F8AAF8022CF3C1F41C0B45601190C1328831857CBF9B1E7D1AA
+246117E56D6B7938488055F4E63E2A1C8D57C17D213729C68349FEC2C3466F41
+171E00413D39DF1F67BC15912F30775AFDF7FB3312587E20A68CF77AD3906040
+842D63C45E19278622DD228C18ABDD024DD9613CDC0B109095DB0ADC3A3C0CB5
+AB597D490189EA81239E39202CBC7A829EB9B313A8F962F7879D374ADF529BD0
+5533EF977142F647AD2F5975BA7E340419116099B19ACCCC37C551215F95BB1E
+F7F5CE777B793F81BBD695D7862EC0B69F926F9A86C5917EA882629C25DA56FE
+F992F1E8194EF0A4BB389A18FAC96E294D0724A431AF70FC1DC09D5C1485B413
+6A9EAFF96BD5096A84D88ED750E9A76B0203817C64D1A5AE26833EC72A3FD987
+198B788BA8F5B3FAF3F1D7C7E6CE2D0B518936CAA12E25F32C13FCB7F105E815
+BD670D0A4ECC9916AF3CB33A6694C1614371C674BAA401C552B6982C61344614
+F26390D4F983A7B66A57079C2C6954EE9602B44D7B65F3B0FD98879D74FFE26A
+0CA78061BB0465354B76DE1980FD81410FDC6B18E92A4876B7BC36F06A1546AC
+0D967C58B3CAD756410D6F34F6CEB9A7550DB7DC639B4FB27508E1E8472DB30C
+F4DCA3B3FB0DC5BFDBDD061D13D4CCBEB458EAFF9CE68A5A76A6C3FCE4DC1C03
+ADFE8FB2ED57419FCA02536BECC4437730B8DD1817F91A9E2D75861049FBB71A
+1E32BA6DB96D4C6C56A3C9715E798F7838F698F22E38164E32F82701D95A01FF
+75B63EB2446373ECADF88FFD96602F096D31B52C4F19A2F11869DC40D8915B95
+6D3588887D1191689605C6FF32E8DBE65FCA9B287F121851BF9D7E6E23FA1A3C
+93A1F68811B0115ECDA9E2B21E24B37D73B486F8C5DD30DD12792295867D9BFB
+7F1EE7998523EA2C8FB19EFE4ED89F9C476A965C8AEF923762F5D6422D736073
+9CA2E2F74A82DE980A1625B603929BD7971E55FAA5DAC4738770DD79372E73BD
+C601B4801004E5293649D3BAFFAA70427AC19087D279ED81EAFB747CAAF33B3A
+3DE8F6900B3BCAAB6F40853D02B7A7AA08E8A65905583E45EF901944E61EFFE0
+2DA1D0E8FC1857750C4A86447CA83765C0F0D9BE6161D26113A4663326D41CD0
+021249A9A99A693FE560F6B8F9824934261D3C85DB3E81F57032B4A01DFC89D7
+7D8420AF1B0E8F9016C3CE2C04F9D6180B7C9BC97A05304100A627485C11A642
+10986FDB1C2484EFFB0B9EF691EE4F25A337C0FC494A876FEFFE9C4E374330EA
+FF5E38711111BA05AD784E5F46C1FFD4BBFD440BBE44870FDC5A63FDBCAB5E9E
+1C4DB0C0B5DF6D05A69F117F850D26D70F75A754A68A2343B6AA2DBCD01589A6
+9FCD39D5AEB4620A1E76F5E92A056B45F18FA2E619D52499800713ECC7D1061E
+A093ACB9ED05000284C51C7D3C74C965331A16EC8CF1E90F5C36DE4A8501550A
+7EEA807F9B4881DDEC7865CF36993D4A21C9A381F3F7FFE7CA6EB909EAE3D68B
+59989A7351425FB5899089D78203CA73FA2B90165D60F1E316147EA115D2DB47
+1C304181D4E4C48B537AC92A69B51A93B4396555D989120A0B0C81C1F10B7B1B
+FB267022B927E04CAE7D6F0626D65DE0AA8DB01D7D12433CA55FE9C45C7A45E9
+A778FCCC7BA020A70DC6AFDD761F181C61EE72E04A29CD9991F1
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: MSAM10
+%!PS-AdobeFont-1.1: MSAM10 2.1
+%%CreationDate: 1993 Sep 17 09:05:00
+% Math Symbol fonts were designed by the American Mathematical Society.
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (2.1) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (MSAM10) readonly def
+/FamilyName (Euler) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+end readonly def
+/FontName /MSAM10 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 62 /greaterorequalslant put
+readonly def
+/FontBBox{8 -463 1331 1003}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
+016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
+9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
+D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
+469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
+2BDBF16FBC7512FAA308A093FE5CF7158F1163BC1C87678CE98C24B934A76220
+4DD9B2FF3A49786028E35DDE10AD2C926BD30AD47015FFE9469DE1F793D1C53A
+C8812CBCD402444EAEA7A50EC5FD93D6A04C2783B50EA48059E3E7407537CB8D
+4C206846EF0764C05289733920E2399E58AD8F137C229F3CE3E34D2D1EAB2D53
+20D44EFAC8EFA4D14A2EFE389D952527F98D0E49BD5BD2C8D58FF9CB9C78D974
+75C2AB5467D73D2B5E277A3FDC35909938A9DF0EB91BD9159D3437BE22EE4544
+3429AC8E2BFBE34AE54D3BA3AD04BDF3F4F43A2B43992DF88678681B3AB32CFD
+A23E2C98D1AF00AB206AC95B78BBE6316F7A0AB6BD3236C28C76288B3C25D1EB
+E9ABB3576C5EC15A71D26177F5883E9B48293D59015615E2EEAF2E9BA04151ED
+5497B9A1C41CBA44BAFF13EA218F5EAC11952EE336AD1DBE6CE92F002EAA3B3D
+3BE4C3792F3405763C4BD93EFC3B4FC34193439561841BA989DD8D9F9AEE7A7B
+24AEB4654B35023C9720B8F31AA9452E29753FB7915CB29977E725611E37C0B7
+784BCC26FACF8A7A0EB1E54290D27FFE52B2D87FAD080AD15EE1984C37E0EB30
+122C3012D3A16B09C28903D138352AB5462674B6CFB63F1371768D094DDF288C
+36FB9B58443F872D61F2CD8CED42FE0EFF3D7E9952A172BB1AFECB60BF79F2B6
+04265FDE4F78BC9FD619AA733CD0412F1D9A7C13B271BF827DCBDC8ABAE24FF0
+74D3C220621D7FF0EFE62D835A221D0A7C139E2E6681FC2BBA58FA3B80D416EC
+3854C63BA040A4262B458340DAA18AA6AEA3BBAC61615CB85982B18664D3D3AF
+340C65B969071CF2D0CABEB80E04623D0526F862ECA8280EEE236C535F70561A
+854181132E677674AD5E14C6636F57541D3C821F0776D2CB9B8526D4B826791A
+0B179B386967E7B1725D1D0970983F7604FDB7DFCFF041F68133338974A281DA
+04EAAAEB8CF074B11C56A8AD80F139546845157987B04DDE6B9DC8D327FD2DAB
+5B7F4BACBC9D9FE3831736B0A3C5057FDA4F636318EEAF5FD32A87BF6B4D947B
+1756CF885D4B955A1E36E5E44A89E35C68C70921505EC8D6DB40F82A8A3BD84E
+3641F58211A7BF5EA5B6A84E2EBF805583095B25F2CD40DA5806FC701D751095
+6432DCF5AB12A90F940B5738502202440AD44143D76009297F8BB80EA6EC702E
+A5153B7D4431D1D93A64412B6C244CF9623A555D5FD7B133AFF4406A9E2326D6
+25B250F6ECBF3123A4AA424080D3E6F962734BC08AED525787F406C3BF239B0E
+28450A0DCA6479749F0E40AF5E6FECA657735650114DDA61637670B4B90252C4
+D4F133FDF1998F09CF2360D498BD7E792A
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMR6
+%!PS-AdobeFont-1.1: CMR6 1.0
+%%CreationDate: 1991 Aug 20 16:39:02
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.0) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMR6) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMR6 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 40 /parenleft put
+dup 41 /parenright put
+readonly def
+/FontBBox{-20 -250 1193 750}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
+016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
+9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
+D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
+469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
+2BDBF16FBC7512FAA308A093FE5CF4E9D2405B169CD5365D6ECED5D768D66D6C
+68618B8C482B341F8CA38E9BB9BAFCFAAD9C2F3FD033B62690986ED43D9C9361
+3645B82392D5CAE11A7CB49D7E2E82DCD485CBA17D1AFFF95F4224CF7ECEE45C
+BFB7C8C77C22A01C345078D28D3ECBF804CDC2FE5025FA0D05CCC5EFC0C4F87E
+CBED13DDDF8F34E404F471C6DD2E43331D73E89BBC71E7BF889F6293793FEF5A
+C9DD3792F032E37A364C70914843F7AA314413D022AE3238730B420A7E9D0CF5
+D0E24F501451F9CDECE10AF7E14FF15C4F12F3FCA47DD9CD3C7AEA8D1551017D
+23131C09ED104C052054520268A4FA3C6338BA6CF14C3DE3BAF2EA35296EE3D8
+D6496277E11DFF6076FE64C8A8C3419FA774473D63223FFA41CBAE609C3D976B
+93DFB4079ADC7C4EF07303F93808DDA9F651F61BCCF79555059A44CBAF84A711
+6D98083CEF58230D54AD486C74C4A257FC703ACF918219D0A597A5F680B606E4
+EF94ADF8BF91A5096A806DB64EC96636A98397D22A74932EB7346A9C4B5EE953
+CB3C80AA634BFC28AA938C704BDA8DC4D13551CCFE2B2784BE8BF54502EBA9AF
+D49B79237B9C56310550BC30E9108BB06EAC755D6AA4E688EFE2A0AAB17F20FE
+00CD0BFF1B9CB6BDA0FA3A29A3117388B6686657A150CE6421FD5D420F4F7FB5
+B0DAA1BA19D638676E9CF159AC7325EF17B9F74E082BEF75E10A31C7011C0FFA
+99B797CE549B5C45238DD0FADD6B99D233AC69282DF0D91EA2DBD08CE0083904
+A6D968D5AE3BD159D01BDFF42D16111BC0A517C66B43972080D9DD4F3B9AE7FB
+11B035CE715C1218B2D779761D8D7E9DEBE277531BD58F313EBD27E33BEF9DC5
+50C7821A8BBC3B9FDF899D7EAA0B94493B97AFEAC503EB5ED7A7AB67C3039A0F
+BF0BA4B455D035FF3126F33A4DEA730DB0644CCE0E14E89E8F5873C19FAEFA91
+9D14A603CF4D917A6AEDB4301981BAB51630CCACD37CC4A7AEECFA7E8A6A3F22
+E517F781BFBF64CA02D39D6B759536AFA1A1D4C2F82C78C45F4BF81AE4193314
+90EF9297156578BC9F14FA6D4328AA000C3B96C324921C95DB11D9AD73216475
+52B066C2221D5904718F2E84DCEC6652309C58EAE065AE3F072211FDB5C97B97
+6596D115A234B2C48CEA758207F0206C4AFDC0CD642C1473C591DAD250F472B8
+6F8FDDF769B1150B9C9CBFA0C3370561CD16D089392F99A25B518A44B428CCBE
+2C57E58016C7F8A68C60E760E11AC94DE463C3EBA0E113B0D88901D5D8423A24
+E73A9255D36E89736F4769475E1A82A0A7BF57DBB8FEB2D2F4F2E6FAB9528C67
+F633939E9A05D02468C1CF3EBE7BB304769F75844E7FDA5FF39EBA3D7ADBC733
+B4A79E6B21849511BD087D192F4ED43F7900928C03D931DF04EBBED296AF1045
+AC2B727A931D4C293CBE0EE977B9243D3EC7E68A
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMSY6
+%!PS-AdobeFont-1.1: CMSY6 1.0
+%%CreationDate: 1991 Aug 15 07:21:34
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.0) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMSY6) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.035 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMSY6 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 50 /element put
+readonly def
+/FontBBox{-4 -948 1329 786}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964
+7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4
+A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85
+E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A
+221A37D9A807DD01161779DDE7D5FC1B2109839E5B52DFB7605D7BA557CC35D6
+49F6EB651B83771034BA0C39DB8D426A24543EF4529E2D939125B5157482688E
+9045C2242F4AFA4C489D975C029177CD6497EACD181FF151A45F521A4C4043C2
+1F3E76EF5B3291A941583E27DFC68B9211105827590393ABFB8AA4D1623D1761
+6AC0DF1D3154B0277BE821712BE7B33385E7A4105E8F3370F981B8FE9E3CF3E0
+007B8C9F2D934F24D591C330487DDF179CECEC5258C47E4B32538F948AB00673
+F9D549C971B0822056B339600FC1E3A5E51844CC8A75B857F15E7276260ED115
+C5FD550F53CE5583743B50B0F9B7C4F836DEF7499F439A6EBE9BF559D2EE0571
+CE54AEC467FDC60394336D84666336B29652E7076462DF70C6087A99A89F69C5
+887D9E651A859D64D64649A90837FD8FAE50336E1A69FD1B55B3FC15A80642F3
+B6DC7AE39CE05B80EBE2031397C75759FA201BB78D9A63F539C2DB47D8A215DB
+A7BD86A86F74FE9CC5DA6AF8E35E75815E2DFCBAA3B3C879942818DA1E884AE5
+A257826EE787C4AF487B9E3645FB1763B2D83C7165666B3E63303694122477BF
+C4F7A7570D968C2B5D7DB6251125B1440B6E0E74FF49EEF9D6D3CFDCC7A02AEB
+53EFD2FF61BF1E9254DC034198C94BACDF6EF8A2890F5513840B1B32E734C5B8
+509F254CD0F211948F13252CE39236B64C66B7D6CD8955F744A43EA5247BC134
+20B6A2DDAED0FD34
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: MSBM7
+%!PS-AdobeFont-1.1: MSBM7 2.1
+%%CreationDate: 1992 Oct 17 08:30:50
+% Math Symbol fonts were designed by the American Mathematical Society.
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (2.1) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (MSBM7) readonly def
+/FamilyName (Euler) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+end readonly def
+/FontName /MSBM7 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 82 /R put
+readonly def
+/FontBBox{0 -504 2615 1004}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
+016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
+9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
+D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
+469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
+2BDBF16FBC7512FAA308A093FE5CF5B8CABB9FFC6A66A4000A13D5F68BFF326D
+1D432B0D064B56C598F4338C319309181D78E1629A31ECA5DD8536379B03C383
+D10F04E2CB7C8461B10646CD63AFEB7608468CA0FCFC4D3458FB43D22879B515
+27DD9CCF44C2BFCD95A4DE911E4915FBC02335E9999FD9B546134081D6DA3792
+EC4A76DEBA77635BE52E09986268A919CB48B5EFB1A1301EE0683CB5709BC8CE
+D819D799020CBA673BA39C911075501395B1FD20EAD392C9D5A8C9FD1198C737
+D1A614CF0C0432F29DDEB4BF9DB026908DBE89EE522B7D55DE9BF64AFBE6248E
+2E10466655EB9083E7D23E3F0EE26154F191BEBC9987930CD4B4CABE1275BDF9
+8755EF3D531FDF91D54954FC53F15A38D1E8F8D1E36447484FA2C09D34813615
+838B6330FEAE536D08376E4A0FDDF58CDF5647C9F1FF3A7D1ACAD376DB3CADB6
+9459F7A5D4F1864863B79E9F93A1EDE8B99C3138D26227C01F6FE0AAC800F2E5
+94DD81CF7B1355B642CE45CB532FC5B535D66EDFFEA076C009E87406D9772D71
+848C3C53B7496A5D6B58679EF11E114C5F457C6A0D3CDE50278E4A89D5393B1C
+F877CF4E2142A4D045C4AA9138105D748903BACC28FD43DFEDB341E1FCDBE2EA
+D412498FBB5374D6836CFBEB13D4C2B7B9625C25B037FDA9DCC42F5679C4B3C1
+6340E341F73A9215092C0ACC505A859FA935BE5172F4F6D4A30E73914DBD5297
+7FE0CEB5CD0B92176B8174870F9FAFD22BD2ADDE02B5705B5FAFDEE372F17857
+40C1B4024C9F04375B9CF997E9D0C0F7D82465D678BB9810016E6BCC9C4374EA
+6B2CC834894FDCA891643D9417369458A630FD498794823FFA55705315F0687E
+7592A5DFC8B8D6FE2F3C64B4A4F9D37F5F2200BAA277F2E0BA8E5A849CB4D8F7
+C59D7605F06ECAA3A01F5180E25F1DEA34F81CDA7DD6C90BA8D0478E3ABF9F76
+58C0FE1BC6594E230018ED14DED710EB9A11F6C4355EA61D9CA083951E8C374A
+4EAB8971BDCD6C396BD1C6E07313B338068845A962F0A32548FD253D1F237BE9
+1AC8C1412AA46DDA13D4C1840D75D6A94043A7DB11C57487035D4652902449AD
+C7AAE657D1B0142D78D4F39E90DD6222E11320DE4D2939F427FA7058FE5E0386
+BF4560B2EFA31802BCC6804027634DE8C10ECDE7C259AFEFCADB80AA07D433DC
+7DB619FA8DBD44762B287B9E9F085584A0C1BA1F128CB59BB17F975B3556E024
+F8845387ACEE0DD08394C0325AA73AF4DDD4AD8C60281BC9425D64DAFB3A2710
+78C3CD4165BBBE89E342D2A94A5CD76083C217A5443E10811DE9E45E54DABE9D
+D44746617B833A165E33EBE90C99203967A6CE4219C7B6ABBA9878BD4A75006F
+EC7A3969713A7B9ECE7DD01EFAA64A36B5AF8854692597C9AF0A300660AF1AF9
+23E4379A2624968AB762A960E148AE2718911B0EE896ADECAB44055924F1AB8B
+88D6A95770B69EC27997889FD2E789F0967F67DAD4E94557FD3BB057F05A9399
+1F23464A92DD140642E3A7B1973849E64D1A3CF6
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMMI6
+%!PS-AdobeFont-1.1: CMMI6 1.100
+%%CreationDate: 1996 Jul 23 07:53:52
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.100) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMMI6) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.04 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMMI6 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 78 /N put
+dup 96 /lscript put
+dup 105 /i put
+dup 106 /j put
+dup 108 /l put
+dup 116 /t put
+readonly def
+/FontBBox{11 -250 1241 750}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE
+3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B
+532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470
+B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B
+986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE
+D919C2DDD26BDC0D99398B9F4D03D6A8F05B47AF95EF28A9C561DBDC98C47CF5
+5250011D19E9366EB6FD153D3A100CAA6212E3D5D93990737F8D326D347B7EDC
+4391C9DF440285B8FC159D0E98D4258FC57892DDF0342CA1080743A076089583
+6AD6FB2DC4C13F077F17789476E48402796E685107AF60A63FB0DE0266D55CF1
+8D0AD65B9342CB686E564758C96164FFA711B11C1CE8C726F3C7BB1044BBD283
+9AA4675747DF61E130A55E297CA5F0182A3F12F9085AF2F503481071724077A9
+387E27879A9649AD5F186F33500FAC8F7FA26634BDCE1221EC0ED0E359E5EA5E
+6166526FEB90C30D30099FBDC1BC2F9B62EFEEC48345160804AA98F8D0AA54B7
+A480E715426651865C8E444EDB798C7E11040AF6E5A7ED1888653C6DBF5E6169
+70BCD9C063B63B561EF165BF3AF11F8E519F37C6FDA2827685739DE2C48B5ADE
+EE84F067D704D4511DBFA49E166D543CFD9ECD7417055D8A827F51E087CD2927
+BAFC7E6CFBD70B0FE969F890A11149D3D44D422C3370495DA9951AEE7253A49F
+3A9444C8CD9158D84117299F7F2332FEB0F94E6ED8BC7AA789A3219BC2F227D3
+3B5BC75FB53B55D72AF4A6A7BB613FA235B11BB37D059FD87127CEF73D5B3FBF
+9F91ABAD78BD9240BD9525EBA78095EA0BDB25D1A19E876F292882EAD5619D46
+D20317A345D931F4FF4EAE6216C27044CBA525E3B917CEA25A04C120466C4B93
+FC720E6BA832A06CCA0A3916CEF0968D49085AEBD243C41A448289A6F05CE3F5
+79148DC112A3CC7E8FF810B8C1A09E05F496C0F1EBA334E42E05C376C98F5F69
+C06C71BFC0A2F3AC9951CFBB143C66FB84F9C4ED27DF70869352D61BD5E11508
+0797B87C74D8E22C8581255E53BBF5A60D2A2093A425A021E255B00856C47694
+056E8F0A73CD14138EACBB90E79319071145231E91DCB5E8422BEA39DB99D9CF
+308838B85C4A3D8572F1B1C3F89D4D48DD8275F6D6031ABA7CF8DACE056CAF25
+570C1433215C80E5FAB7C8D351597F728FD5C2FF648B7AACEE7DA976FF79E5AE
+9B9AC3D01CCF011066D60181CD6148867443D458D042E973B14EC68E18064395
+C1409FE5DFAFB6CEFD37EB8C8874BA5993D35B4BD539FF4B4A303289FF74F700
+22D13184A1E61DD2497FD54D5838E238FB498115F4B416AA4DB7871C0B5A238D
+3D2E66AE5D286C6E4B2A3174BD9B5B96AD900F150CA151A42F2C65C76883EF63
+F962DA68917E4A59BB1E009161DC4F9DC7F2345BB6612020EF59A2C75D5CFCD7
+17010ED172B307EAA545228C5667D9796715F9A98C0B6AC42667D40D2A69202B
+820B7E8D1CBC1287C2CCD5CA4C85460C206052D09C8535037C58D0DB11EA2C4F
+23894D736BDACEF1108F6EE73120329168FF7B916B890D437D19ACE8822DBAAF
+3A644B20ED314735EBEA5BC537B37123FD913DA09B7B20CFD369C65892B4E522
+D315E106E776667073BA791CEEA4853CE8F6B13D6835EE6C3E094D013BACEC8B
+78B9946EE658F19542C18EC86FE493974A5356270A530B5A3A6C858120834245
+AC68A257DD74FF769EEFFEB2C95FC706F93EB79616F016241F872F1E338543AE
+D8BE7FFB9E87B61AF59249045BDF3FF393B56F19E50739D1A28CFF40AC87B0A4
+5650B82EF5D30F5347EB463EDC5AA0663528820F8352A37D7D604110702D1379
+21945AFB562B1EF9E0275744930775F7AC1D245B7CDF0DB436C79F8DE147A987
+62DAA64282F84107F86221EB641A4D4DEFFD18EFD67A642D83D26B855C92BB7D
+17E1CBE8CB120E6423B4B43100FAC3AB90AB59B8D3C267E8D040D46F1F253143
+A6F2C82CBCD962F07F40D7636A276DB59A5CEC5AF694B31A8E239AB788C866B4
+4F835EF5C7015EF350F445CEFA288FF84A83469FE1602E914F3FAB0ED43E6AEB
+4A995583380EF8A1F74D91AE6D8CE0A42BD2B8A67DAA15B809D1DDFC58D86620
+8BB99ADE04B4176C643F6887E7B97D460F49E94B2C3A6B0AF8A3ABFCD9633C53
+9B6B55F9B68C6CF3FBFB1D8CD74573F1ABC34CDEBF02DAE85FBBA28DD33D80E8
+1DA41FD702C5846534ADDE9A1D4ED55FA5F1BAF8F2270325FAE389D5A9A212B5
+BFF18235F70347F8A0756377E52D3FE93866D58A4B0E2016A17FF6DC584FADAB
+617BC85D6486E122DF147CB14DCBB037677AEBD51C2D83D64453DBDC103A9D93
+12EA8D18D5DD35DC816177C123A43322938E196EF7C076EF41843C0686CE65B6
+EF5441CE6353B0109834584C260F600C8DA3D9FBA75D261E12F40227A4C9FCE3
+9AE78D414C1FAEEEBDE84E8D2B25044819A5C175E406607F46064F07BD0B8075
+1F9530D3D4F4E1DF10F450ECA272B1A909533AD5685B565BDC208141A3B87CA9
+1BF93DEB65D4D01DF36125FC82D692D1B73AC1FF0EC5F541F659A39E5ABFA7A4
+A024FCD9DC6DF5A46A0B11F02EF6DE5AF13B056127BDAC7EA62036523F19F0D1
+BF29AF28E9744349EEB1AAD69EBD07E47787006483089435A3401D479B3CE2E2
+ADD405F2105159DF4542A467E9046D5D916B65DDCE4D071D8F64A321A16586E9
+C0E4BA2506507191B820D837AD12222F17F0F1903629B3861D3F2AFF9DE1D4A8
+084DEA13640F817F475837761E5D3DC5FACDC9F39FBC48FB7CB2B56CD4E70391
+4230711C9BF715424FBB02C48E9C465727EF89D28D23A8E424B0ED79E36674A6
+03FF938F6A462B70228EDC2EDD2FC07BA54EFE020925A10DA5FB62
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMR8
+%!PS-AdobeFont-1.1: CMR8 1.0
+%%CreationDate: 1991 Aug 20 16:39:40
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.0) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMR8) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMR8 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 40 /parenleft put
+dup 41 /parenright put
+dup 43 /plus put
+dup 48 /zero put
+dup 49 /one put
+dup 61 /equal put
+dup 91 /bracketleft put
+dup 93 /bracketright put
+readonly def
+/FontBBox{-36 -250 1070 750}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
+016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
+9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
+D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
+469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
+2BDBF16FBC7512FAA308A093FE5CF4E9D2405B169CD5365D6ECED5D768D66D6C
+68618B8C482B341F8CA38E9BB9BAFCFAAD9C2F3FD033B62690986ED43D9C9361
+3645B82392D5CAE11A7CB49D7E2E82DCD485CBA1772CE422BB1D7283AD675B65
+48A7EA0069A883EC1DAA3E1F9ECE7586D6CF0A128CD557C7E5D7AA3EA97EBAD3
+9619D1BFCF4A6D64768741EDEA0A5B0EFBBF347CDCBE2E03D756967A16B613DB
+0FC45FA2A3312E0C46A5FD0466AB097C58FFEEC40601B8395E52775D0AFCD7DB
+8AB317333110531E5C44A4CB4B5ACD571A1A60960B15E450948A5EEA14DD330F
+EA209265DB8E1A1FC80DCD3860323FD26C113B041A88C88A21655878680A4466
+FA10403D24BB97152A49B842C180E4D258C9D48F21D057782D90623116830BA3
+9902B3C5F2F2DD01433B0D7099C07DBDE268D0FFED5169BCD03D48B2F058AD62
+D8678C626DC7A3F352152C99BA963EF95F8AD11DB8B0D351210A17E4C2C55AD8
+9EB64172935D3C20A398F3EEEEC31551966A7438EF3FEE422C6D4E05337620D5
+ACC7B52BED984BFAAD36EF9D20748B05D07BE4414A63975125D272FAD83F76E6
+10FFF8363014BE526D580873C5A42B70FA911EC7B86905F13AFE55EB0273F582
+83158793B8CC296B8DE1DCCF1250FD57CB0E035C7EDA3B0092ED940D37A05493
+2EC54E09B984FCA4AB7D2EA182BCF1263AA244B07EC0EA901C077A059F709F30
+4384CB5FA748F2054FAD9A7A43D4EA427918BD414F766531136B60C3477C6632
+BEFE3897B58C19276A301926C2AEF2756B367319772C9B201C49B4D935A8267B
+041D6F1783B6AEA4DAC4F5B3507D7032AA640AAB12E343A4E9BDCF419C04A721
+3888B25AF4E293AACED9A6BDC78E61DA1C424C6503CC1885F762B25948ADE0C6
+5FB5E59A5E169CB7633AC83D2840106BA5AE2D3F7C49820D71F65EA74CD13077
+336F23919B54FD4168346F73C7767D4D870D037852940C5C7BCED2B78164F530
+05C26260AED7DFFE53672DAD21896126121196B6764DD92C16C7B51CBFE6843F
+415E5FB1214F3EB152D430489F62EF6F1AFB0359E9612527F58E7E2646E6DC83
+FD6C9156DF9ACE936EABDFE94DF079851377E67D1B3565FCDE89490ADE425CE5
+4A73843763E20704FA6DB60C9C69BF18170F343FFDCD34A516D02CD1A50B678C
+271C95C079190B0B1E678E6786E3C21432C6569A2133BCDC7E5113617E4CC150
+FF9D1A288469B30604493E64ADCAA05B53EC315E77ECE26626D2302B02BB7C7D
+477DD854A95D178B156C53361C49BE7AEE25DF247E93457F5C7BE57336806255
+9850B382252B4EBBD908AF413987CC557B36D9D1274D67A3A58479B12BADEFF7
+0243DE07A7EA70AD44F12127AE604A9C22AEBC9E45EBF30BE96EDBC30C5FB15C
+E15D5761F79978BF82EC0D713849A2E7A03D3DDCBA027D8EAEB0A2DED5A7BA72
+56A1ECA78CC389DC2C79A3B34222994E270725D675382D16897618021F2FBE16
+08A5EDA351904CBA0B539CAAB2757FD3BC7162F9316C318F5EBAA3C38DF2A589
+A84B89CE4C7A9150251E983314A0E4F876AA0749C26523D5DB7F5095278647A1
+DEFE3F9E8C16ADB6D8B624AA9433DC8AF01C0C8F16DB5FE49A45B83E26FDB3EE
+21D9CB7E732C6197ED832D3FDE8163300D518653EFCDC971B8AF1E7FB51654F7
+08AD3E17C7E76ABDDC04FEAD33094EF2D16EBB2735B2875A215471B0FA823906
+2429A528B6598A111F2FB8609687E396A07BBBCDB12D4243320E4378FC7F932B
+3EF9A7597F23E0966F9A666091B97DD1B95B6C113E22614B14F1E825C8BD7053
+90827BA813CFB2358A509877B069020D3B36D2B1F9DF4A4BC5077D1243A8EFEE
+5F8DE09D69219761F06E25EDB309CD8FC3F8402272C2FDAE0AE187F3430B7ED4
+079C943F8DD28E00CD0C685FA700D1EB1C2AA2B47396C750BE3957414512584E
+41D8E590B67EACF8972C0C23A1371ED2F9E65D1EDA301E6B4D89CCE3A6276B93
+0A2BE8D91A5AFD6148971B829D8FF390849229705E56F60AD2002F6123A91E23
+4E12C6729F7EDA481D91CCD763FC282B1FDA3864422662BE79E822077818BEBB
+36A6422531C48A9532C5DF5E998B7D719A2B27CBBAB61DE021B2795D20B03183
+BE8E850C0092463A8251F32A11027D5DA0D99CC551E9977F93B7154F977FB842
+B99EA51A061DE4D28BC78A05A7BA79CC58AF5EDEB22DC632105A520EDF15AF93
+5AD60AEBFAA68B63D37EE452263206B156364C34DBD58E896C0FA41A80BFC257
+1D79706E91225AB66CBBED13022F7EF4B726E8BE989F253320A8009889250D15
+847CDB506F0F2F8DAFB9064CA637B2CD9C43FABBF6AE5B9C9A1A150F924DA690
+2DBE29239F0F80E40B7D8E9B2AB4008EE1DA7ABA
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMMI8
+%!PS-AdobeFont-1.1: CMMI8 1.100
+%%CreationDate: 1996 Jul 23 07:53:54
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.100) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMMI8) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.04 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMMI8 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 1 /Delta put
+dup 11 /alpha put
+dup 17 /eta put
+dup 34 /epsilon put
+dup 58 /period put
+dup 60 /less put
+dup 61 /slash put
+dup 65 /A put
+dup 68 /D put
+dup 71 /G put
+dup 78 /N put
+dup 79 /O put
+dup 83 /S put
+dup 84 /T put
+dup 96 /lscript put
+dup 97 /a put
+dup 100 /d put
+dup 101 /e put
+dup 105 /i put
+dup 106 /j put
+dup 107 /k put
+dup 108 /l put
+dup 109 /m put
+dup 110 /n put
+dup 114 /r put
+dup 115 /s put
+dup 116 /t put
+dup 117 /u put
+dup 120 /x put
+dup 122 /z put
+readonly def
+/FontBBox{-24 -250 1110 750}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE
+3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B
+532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470
+B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B
+986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE
+D919C2DDD26BDC0D99398B9F4D03D6A8F05B47AF95EF28A9C561DBDC98C47CF5
+5250011D19E9366EB6FD153D3A100CAA6212E3D5D93990737F8D326D347B7EDC
+4391C9DF440285B8FC159D0E98D4258FC57892DDF753642CD526A96ACEDA4120
+788F22B1D09F149794E66DD1AC2C2B3BC6FEC59D626F427CD5AE9C54C7F78F62
+C36F49B3C2E5E62AFB56DCEE87445A12A942C14AE618D1FE1B11A9CF9FAA1F32
+617B598CE5058715EF3051E228F72F651040AD99A741F247C68007E68C84E9D1
+D0BF99AA5D777D88A7D3CED2EA67F4AE61E8BC0495E7DA382E82DDB2B009DD63
+532C74E3BE5EC555A014BCBB6AB31B8286D7712E0E926F8696830672B8214E9B
+5D0740C16ADF0AFD47C4938F373575C6CA91E46D88DE24E682DEC44B57EA8AF8
+4E57D45646073250D82C4B50CBBB0B369932618301F3D4186277103B53B3C9E6
+DB42D6B30115F67B9D078220D5752644930643BDF9FACF684EBE13E39B65055E
+B1BD054C324962025EC79E1D155936FE32D9F2224353F2A46C3558EF216F6BB2
+A304BAF752BEEC36C4440B556AEFECF454BA7CBBA7537BCB10EBC21047333A89
+8936419D857CD9F59EBA20B0A3D9BA4A0D3395336B4CDA4BA6451B6E4D1370FA
+D9BDABB7F271BC1C6C48D9DF1E5A6FAE788F5609DE3C48D47A67097C547D9817
+AD3A7CCE2B771843D69F860DA4059A71494281C0AD8D4BAB3F67BB6739723C04
+AE05F9E35B2B2CB9C7874C114F57A185C8563C0DCCA93F8096384D71A2994748
+A3C7C8B8AF54961A8838AD279441D9A5EB6C1FE26C98BD025F353124DA68A827
+AE2AF8D25CA48031C242AA433EEEBB8ABA4B96821786C38BACB5F58C3D5DA011
+85B385124DEB4D6B1F34D50F7D5EB409B8B352FE8465719EFA2D4E9DE8BF7082
+61FDE83F6977EC1158A1CCBEDB2A515CD1FF8BDBC440B26CF9381DFB5946BEEE
+C0E5ECEA4FEAF88C0B28EF150E026F88CB356DD5AAFBD882E9F225BE41084A24
+3C1CDC0F4F3478C30FA3F4DB8CAA8889E678D4505BBEA50F7D90165D2C51376B
+9E14C7D7763FBC84EF1159468BDD1BB17F9777DF9977BF038D7E4B50FF3294C0
+739F8E38761FBAD032C949EB7511B31D0233D6BA2F7D775E96212CCF0C92AA48
+2EC76E274D50E22E5FDB458694EF323B6CE12DA8B5D8A7FA49C16DAF3613E9A4
+F41A100EC900F711F8E70C1C10DF6851FB39D39809C327C7EB06621E6B88A824
+B894434B86CC0AC552304FC4D0DF6D6F0B047BECC9E6D93B2C7592A73EFF1F86
+75A36D6890378F9CA5592F200513B1108DA18070578C96FF88D7BF0D15A132AC
+FBD73A689F933DEDE585700DF249A85B3B0ED2EF0D24D4BD13C67FFF1275A4C8
+2D7F71F3BA6921E7B47A02AAAFA07150D162C74EF8CD0657592A10A410BDE572
+61CE2D9ABF6D058F7D3305BA6E7EF6161756F21759B14A1AC99EC3E3B6AB8B36
+D0F6BA680BC042E2E1AB5869AF8C552C3557DDC333CFB59CFE43541D745BCD48
+B0CDA26507EED6AF1A35E71D3E16967EB570A6CE207749D248AB652165B5E70C
+9D26FDE46EA0347FEE3643123678D1D2AFA8FEE4533815C2F3BCE21CB78F4083
+0993641EEF9DBB1E0658A95A0F42037BD0506427E4414CC7D811224665CBF9C8
+F4B29B44647E3AD66439C25334A5217D7709A1BDA7474D1C567E3D0BEE852B19
+E9DC7E66C3EC495AC6EF25726EAA24AAF9AF7BB95DA02F7ED0E669DBBC8B9926
+3D5C8328F32CC88813036474C1E2F4B7AAEE76322A3094DC370401A57982A96C
+437A84BBAA11F977E95F322A966660E07677A51C51BBBCF9EF7DAE75C97C3262
+268236A3659F8AF9A6E4DF779C46E5E1CBC924AA7F141D2DD05EC0CB59C031BB
+1AA17312C106CE96A98B380539F33B8FB0DB2C18755E8DDEDE1E81C379617CC0
+4C37E0176E4D58D4AE1BF44BDA60AEC65F60FE53D7139652FF32189F7A7D25E1
+C47724D2412A38615F474CB5325B6DD895DD288428A8D4367AD95DC78C793012
+83C4AF263D7D1E27645BDF385F04656BBEEFBD37803A78CAE1231090FBA9C4FA
+56A5C982C4F8B0A465D04755D8A7AFFA5742246117C4980D5E5C82AF4E048EC9
+2B4475D9C4A5E227F5DBD455348CDCAE2E7F81488888450C119E109D56A1DA79
+EF3E7E597B2452066F5F2EBC990385A6ECFF6EA5F7EB296B29DF5D4AE910B1D1
+57D79D08563EAED8E4CA4AAC63DF9F39A8EF847DAE907EE7243458A85ABC8272
+B0F1AC84771FB7B91253087ECFA926422A617151BD151A51758F5DF75E8EA741
+D627B88BD1361EB4BE45D953A8BD16B867635CFB0E12FB15B75C74D3A80CE7C0
+D61EFE791A739FBD4F805C65FB9DEDAA565F9BEC532DD6D6F183C9CDE98C5336
+906B6B2AF16FA97DD86ABF717730256ADA02E5382B4BAEE4974FCF8ABF036104
+98317399988351C31BDE41041AA2CE812E00F53E8DF1A3F0C1EB1528775483A7
+45FE24F342FDA2BF28A1A3C6737DE401FAC0BFE1B750B7003257A986E042D0D9
+3645AF133B37F911AEBF129BD145021C152E5D917CAA9F88F9CC51DAD187C81C
+70583F40C0C57F64CE962678FA90D5BB81B1E4E90408782CE91D6DEAAE0FE613
+5B2FB368D08A1789B2085707FA9375B8269F93F439D42A27E1E94001F909C84B
+53E0272A33BB5A2E1BF3E187E63052B059CBFEDBE7AA5D6D48246599D2268696
+02E8A82CBF6CB0B585CAC1622D235DF86834CBE0E190C9535619D7482B62E619
+034DB94648887C3007EF57C7A68E49305EC8F58D8AB7E1E2BC573637721CCB78
+1BF76E9F862A601B580983FD871DB404A0522F52120F3BD5367584EF9FCA4356
+6C4FFE64A16D9CD1F00993093ED704CEDB634C9124A45E6A10D00AAE5A0AC001
+FD37F8C36A35883BBDE158500B1849CF212E0F72C8970E85648655473D6B4F55
+16985CE30AC296207A5A511967594F615F9D32AABF0A3B7797333A4A19C77741
+CF62EA9F2DF6D8BBB752D0A26A3BEB369CBF0C05E5EFE9433B4624CF253C861E
+8A0953715BC98682A2BF8D1136CFA154F5981766D446967E56FF20B7ABC94DCD
+78BDE591E643AB0CEED992481D9E076859724F0AD5DD3C9817EBD91E72B2F374
+F6A0A5A566FE3E28E07CF917CA555E7D776B8418A63AAC49D1BB1238D4CE636E
+46924BB61FD4C5893CA1A059C45BD63294322664C4A7ECC8A8176835499BD3D3
+9341756A605B6DB6A1E5696CCC6B2A8481AD55CA78E4260E9C2DD9B9C2D5CF30
+76C29A190122A03E33FC2BB55C4DEDEECC3BDDF9CF72F9962AC38A591552CBC5
+14A7110F549C51B986210F29F13E7C927D250C7225629DB853BB3E491671A8E5
+B247C64323751F4F1BA2186C33A27F01EDE9AF9A8056AF34C3D3ABC7B158680D
+DD97B7C1A55023B76C8E38984901BE10C3D54EE69CD351929DE0FE58A96D37D9
+FBD6E83D5957B23047FBB5DC2B0C5BFED753593CD1880F6AAB2258ED12392172
+28F88CCB84CCE3BAFC522E804E173A632D2ED19082911AB7D83847CE47D28F39
+68A891C0CC402C218D468B8C950232766426DB756ABDD1ECE9673E3084098F0B
+E9710C8D4F0C39ECAE014C26D0A6868ADC42567CC8E5535A219B5CA0897C3055
+955D275E62ABB02032797E1A5164EE3092E276C76CFBAE6E4C1FFE5B69E0C1FD
+AF52070189C95AA58751AE0829474BD8CA30A84E8639B3ECA2796336E2675D0F
+2C714CB160AB18E87699B4C415A5E52AED38C69033C224909BA810E9EA99AC38
+186F5F79DD33DEE3C1A869717D4192B300DD5225DAA2DE488C1942EF1A786A08
+C6030CE7857B8F00A9D4AB5EE74557E41D989C38AB24B8494422B24A542632C9
+020A9B791AC8685FC9302FAB1AB954E08A674C1A666EB205E0986C92624944D1
+4F9C5EF98E3B190567B052680D4E2E334F0B1E33C29AFE2B46635E53016DF72D
+4C47FC64B537EE981AA393BDAA508691E722F54CD2CEC741DF3560D946307339
+735CE54BC208DF14EFA0C2893F3EFC2895BB3C13561395105C2788E6E761BEE4
+11F121F7925BC54D24C5DF01BB1A9BFEF0D2F584FCE6C5B1DDA96CBCD6452F0E
+8E8F511902C1283E5C4B7C6FAA9F0AEBE354A66568CEBDD700F381A12A505D94
+53B20D7AF9286EC3582E88B63E8CE762416645685952E67108087652EA89630A
+1A8FF796EF05E69542880DD08249A3435B5F6605701BE14707B07194E515A8EE
+A149501D09B5228DF8F5C97A7CEDA9D7D1DD1C7E41FDF5085B7918491945DD35
+9E2B44A650787830A428C04FC8C671D62E02541B90638D3AC28BB66CA4D5E510
+CE730116B309FC55977381F62418F59D4E6141E61AFE3BB8FA1F1D240B3C58FF
+5FB005EC900D263A2AF8E42647847365A6BF631B75423440E13476E1E39634DE
+A9B65D56F3F68A982DDDE729E25B4B4082543A53E9C3B61F6A715D2BFBE23BF4
+98067E6BC7DAA10E96378A277FF0A71D071E6D7F8B9458995F076B80E611D853
+44A260855913B9476B8E7E43478454F445C1677AF4A8B8C6B0058409E1BA87C6
+CF667DA020E6ABBE3405CB0EC3F4AB459C09B8E7525FBA6D6D10BB834D1AB0B0
+89791AD48003593F6D902E8D77A1058B83057B68D66B3A234B8965B3A60FD635
+238D489EC23FA5EEB227639471F60B6051C534D422EE1190C1A693775A0D787D
+BD21CBE83583D763298963D3CE94415AF1714F6F29A02300EDC7A895FCDE7F26
+3C3DE15A458C4AB9E4615B2B8BB96F0F53BFC6D2E5A0B08AA999462C027BB2F8
+B8BC46E0760629FF73E22391C5474903173B74DB8816D257489D621CFF393851
+D97FDBB149CD9BABE3BA5A0632B2378F2C3592E191B7CCDADE93051AB5231E47
+A31C43F4CF1801119E5096674034D35ED633C0C6B610E64C4A5FCE3F1DC089A4
+7FF7976D0DA25B1E4FF2D795AD65B4528B22FFE988CB8BFDFBC4E106E033D9CD
+01C237B77BECC20600DF62EC3FC24F1EFA9E46BD58FF89CE18DBFA3390AFEFA0
+7E7DA969EEEE8FB06C2CA7D4A8A76B6F2949C8AA1D836FEFC90004FE60EE9FBA
+71B386E7BE583D7E94DAD0456A6E29FB02BF7C8CFE2280724D8CBE7717A196A1
+952E98F1FF1403E54EF15B170CECB73B5384553C942B1AD19C38386192908303
+F8862C8257E363C74295F2DA8D9462828BF44B538ECE359275952AF8C4B271C3
+41664F30CCBE4B86FBFA34BD0798F5B56D79A57D41D106F33DBFF6C3688F3532
+87C3B0E18E8F483BA0B731EFAD2557998A4AA930EB37DAD917B1DC6E8337589A
+FBCA67E3888B9AFFE84768F3FD1AE4466C234FE0FFDAFB26768506C1C4EA66B1
+E588071C99507FC2854DF103F017F4548F324BC39FC56160669134FA285E3F4A
+9C7927920591986172F8F6045293379F7A82C4B016EAD9A52CBEB4A4D237388A
+38FC689CF4EA6E68DA7A897E064CBEBC58106901FD6307E7A08A24F86A8C4931
+42562B433EF42B33D49A7725943091388D19AA7FE9E9D73A998040C9EB80FBF0
+1E0AE084A8DE7A846B13C34990CDEDEEAC89BBFE4E4654738383F5C4444A300C
+172463FB7AEF5F5E1D740CB94E7E4396301A664E9EC313AE80B362BE4E7276F3
+E419985D865B45FE4A2FAC68F136E31DE139B398A817D0028767DB9BB912E8CB
+F17F2E613B1F4C29CBDF3D01E9C7DD0B3E614C2183E8D397ABC27FD8A30200CE
+5F75C90B2BE229A977EE30A60934CB84FC9396E4B6E7258D30EA5D1102F2B135
+C162E0B53FAD3FA1B055B20079E876499B4C79472BAA9BCDB8854FBDCC5AACDA
+541B48B4AA9B3C45E07915B533A9DE18E6E53076B8561C7EE5F972C497D920BB
+895E5C479ACA25EF9AFA47DCBA728FE6DF454390F08F65793777D43209A40E9D
+39C7FC5EF0F09F28E7B0BFC8EB7E98038C2D93312C92ABA07C0CAACDF9C3CBFF
+8A639E1189922A07FD8683BDFBA46DC719C9B78D1B53D70DF71786B3F29C07D0
+CCA7BB2EA9C7EBB96C1B31D3D3E5A96BC820DA605BA0A0CB530D93CAD69A345F
+FF12A2BF51BBB101CF97033170E8DB495003A4274961ABE7BD138BE64CA62A9D
+896FB8CC251D83921407F9211034203EDA31BAD0C5EA6CB45F25BDE4B19F2CB4
+7F2FE03592618DC8C7FA2305D5E8758A253BC865CFDC016E53982F2A4326F238
+02B7C2192F1D6CF4DFECB58F80F3A0B6AE680AF3335400B2136807E65D3C7B53
+1C266BC362DE6DAAFF6906A3130862C42452F32FC15E7B2E9ABC83EE7EDA26B6
+C4AA07C193872AF319BF57D30AC4FF5F25780624988F4FFFD20C7A0F4FBC789B
+1590B1A36A8C021A431514A70DAC9F851FC389037B7989CC888107E926B7D0F7
+F0B88966CEDF5F4047B50498B00646B5F32D06D5765C228F59823BA8FA0EB86A
+D6FDBB721E4C833911997A9875B0E9BB2E4FE7A7A1B7BF3B72D3B7220815291E
+53E940DA8F80D64499D7A9BEA074C340BE27662440DEBBE611262AC10070E863
+888C4C51FDCE8CEC5AE7BB1B96E5E7B9497AB373AF48E1DC314A87DD87BD557C
+65169EEF650ED153837FFA95D1F6C1ABFCF7144B55A5E7C6F3FD1D44C1D9CF7C
+83ACA2FB215D5450077B6B96C338FFFBAC412663BFBF7BFEA81544EC9549890F
+C9402560DA9668F039E6E1C0C77F3EF7B94CC399D50133983A2122C3ECBA4296
+E59B2614DC9230F3038B87FFD840FC4AEAF5D667A368B23005A7A29DCDE64B09
+2B3BB141CCF2DDAF403E7520E2C48683220874F2DE004E5AB8E19C38568CD8EF
+F167D6146C431925708D5C4F5ED0E1937116ACB0C9D71DAD38AFB5311E860164
+250C36A35ADFF20560DA6251A44EF9093FE2DF6A83ACD133C85018FEA16C773E
+0464676D6201EBC569999660E31B19F206A55A2E1BA58916ADC9BF3E2A4901F5
+730DDE11FC0CC507F37FFAB91546883DACA773AC7D6166C500475F0A16913451
+562E017457240A7FED196976AB5E52765A0665E2F2CE684E3587BB3AFC6A7956
+1B73B0DDB1C07788E46D80277852231F860A24C0ED35E29E876F8CF53099652D
+C07F2C42D649A0B3F5020CB957F7AC51D5BEC5BE635B088C5CA087FC6BB67DD4
+A467B84DA1F2718D3FA227AB78C0D79637840F8F97CED4C7F32FE339C1150398
+FAF9B68C35022F3C249E0890076885BC87BFE10226F683083E37F1CEA64D6480
+FB264E650E9B2D522D5B59AF605B41EA9C42FB881D5147DCEF50764F72BF8F59
+747395B9E75CFBEF903CBD782E05FD7F884B6DDC766CA672548663C76AC5890C
+B026A37D6FA5C19C09D6601F974F93F75AFF6973932A244F361219EAF6E9AA5D
+D7877341D4F6528E7B20D6DA3C5602D65B1AA5378981C82512263040FCE9354A
+49ACA47BDFFC378691FAC77C5211FDF38527DECF8CCA0BF495DF8F85CF01E45A
+0FC222543713B1FE6EE92259FF0EF12102B992A4A0EE7AEDD62951F25E5364BF
+0870F18EFB3285B8AE8EBD98B071204E1E082B5B1993EEBD5F766ECA63019A90
+A4C0E5CE7E0BE885EF60FBE4C394033E1D006723C1D29185ADBA5A75686C5369
+800AB33608085BDE89F56223D3759A0797C58B89D2A0CBD8F54AFE00A6CA100A
+B75DF2D752062BE41D098F161D077947CCA269DD6136AC9D7C9B53D9A0170CC1
+C19AE4F5AF20C19422E5C369834AAF46FFC5D1923F87E72F1FAE11D5C3845910
+358CBF4F9DFC1FDF05652D0B6E793EE3D7A44EEBA66E3F31622F4808EC3EB566
+A3F7353E28EFDBD33CB1D216173DF8EEA67D359B4B4BE6BBE73033225169070A
+C52AD4E5884F2A4FADE805F8F9486AC5587126DDDD97AD67988411581FD6F90F
+D52093704830DD2A32D10A55A16C7077F75297B54A6F5B45ED00FCF6568C69C1
+8794092075F5FEAF7001A922EB8FB402C92123DE83C0B8A475E59B72B9A8C2D6
+FFB67CF6E8F024E1E3FCFE82FFABE1A647520FAE583E1C52F5A274C0EBDEC561
+5A1171860904C3421705E34625D8ECBC5C2F8AD749D10DC1806432684EA42393
+44519507F197FF613A73A52EFD91CBBADF8CC32B6600B5E6ACB0FB846D4CBA88
+DA22206547A1A9B13F3320C5655FC667403578D9280663927A02161D8443FA04
+C70A5A896059C768C28E20C8EEFDADA3E76702561A9230D1C1E69CF94038E553
+0FC7E0561642AAF4256B046E4374ACA1B16D562FEC56BEBA816143E09240871C
+FFD679092317AA21AF966ED44F17CFFB4257FE203DD3C5A4D6CC254FB8C2B717
+04A149C9F2CE9F198DBED7E561DD919C338EFA0EAD9FE1166A632EBC501BDB34
+6377843EF9565DAB972AD2725288C93040D744889A8D4E27DABF0382ABDCDBB0
+2510D2B11528FD212144E9D7ADD2B9D65FA756E85BAC941AAB5D53F918DC79A7
+FFDE5D672EFD8A0B7809195D07CBCAFE6FA24B65AD7A9E7FCED615C25BF5E108
+C8210F1E12FE4BD0843B54F1012829FFCDA2DAC69B000131EE7E9C74B7E28FD1
+C60669D8267EAAC1D56E8299E1A8F9B4B5198C3846C0169C755E3643DFB82395
+9724AFFAC477E7C09CBC250D30F3F21925EBDFCF7EE42C161AEB80A0F514760A
+B701ADFD69884918E1FD6CF7ED8E3F792BC15368B489D5F035260C8EB7F6BCD5
+C4C109033511C0C4947638850C9BFC7324AFCE8DE070474994BB8CA2B6A338D2
+FF460D87A0CC4DB329A20DA6DC5E1EE2DADDE2FF5EAD1ED91DE06F8F191EF64F
+11B3AEC998E8EB50D126F925725805C45FB8D7EDBFB71645825F002798544976
+9843D1F4ED7B50B612DA6564430B61D1786D953889D3B4EFB89527A0B093EA5F
+8A30E37DCE4240175F219C11A631F98C1645D893702EE8B51A105A2E0B900D42
+AB92437BD48CAE277511B1898615F47B652767879CFC2083A864B80C9898272B
+C01925BD9E33CF8C41BB6C59912AE10069EF2940E846992642566945D6DBD9C5
+B85F29C1A672D11C7F77BE160025541BEB5FDC1212AEE60C2D6A0B8C6F299B36
+83AD09EFA04DED58D91C2D328CDF07A6AC2E88D366D9807D563C34B4293E818F
+2A31AD8968FC8BB54893419BAF7FC1A75F0BFB4EBBFD9A46043A08A2357448A0
+6C2CB8444007CC6C378E8C5588365416F7460E55B883008075DF4C372D181846
+4C26784A7FC303B0B42F530FC95A3798E8F9BDEA8F0E293FE68BB4DF05DA1E6E
+3E71A7F9153169D8D60DA76943FDF883D1773FC4B8534DA48C2C323E01C2F21A
+5218306512AC6AA9CD1C3BB69E01152ADE10DB2DFDD1AFB56E679528D5762FDB
+675D0DEF2E1E0038BB3AA0635275ED545E0DF79C443AC5D79545CBF9BCBAA450
+FE1331B15C5219EB9A231D22FE70DBC4AA81AF78226278E5237F068F9BEC8CD7
+8BE2DC4CBE545AA4AD3C9D137E4C7E0DF51065C384073D1514F538B492DCF523
+7E4BE3BB43A91FE2BA52C5CD6539ACAD6DA763138FD31584534C1F538BA52244
+4677BB8D0CD30A1D1846CED8C6FBB8599C3E05596AEB76E06F28F0FC1841BDED
+9B947CAC264C74E4B360E2D71557A70C4A3D74F47C9BC00A489795BA41621314
+C8C1F723632B9C84F6BB98A2EE3BD8FBB677F139DBD0B3A70818D90574E01857
+1008DA0D1BE1D0E5A92EE82F28
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMMI5
+%!PS-AdobeFont-1.1: CMMI5 1.100
+%%CreationDate: 1996 Aug 02 08:21:10
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.100) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMMI5) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.04 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMMI5 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 66 /B put
+dup 105 /i put
+dup 106 /j put
+dup 107 /k put
+dup 108 /l put
+dup 110 /n put
+dup 116 /t put
+readonly def
+/FontBBox{37 -250 1349 750}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA06DA87FC7163A5A2A756A598FAB07633
+89DE8BB201D5DB4627484A80A431B6AFDBBBF23D4157D4AFE17E6B1C853DD417
+25F84CD55402AB88AB7EEFDEDBF2C2C731BD25567C53B474CCF739188A930039
+098A197F9C4BE7594D79442B2C8A67447DE44698321145D7689B91EF235EA80E
+B600AA8E238064F154284096C4C2554EFE8DDF13AFF8D3CE30E0999375C0FEE6
+F992DEA5FC3897E2CC8B7A90238E61E41622DE80F438DD994C73275CC52249D9
+F6686F87F394FB7BB668138B210BEC9E46415A1B58C990B81E7D7DD301143517
+4C2A259D2A0A1E200F8101469C10D7D537B0D4D39296A9AB3F132DA9A3B459B0
+F850E2B3A03BDCB35AEF82285D19C38F474FB414F8EC971B994D1C7DD753B271
+2B71549DF497C665DF0F266988209D9EB616E4D9BA229FF984E7A886DB01FD21
+48ED2E4859FD6416C2CE52537464EA884C8C9C2D1083E2B83BE4B766474C23B6
+6E8EC5003200AB10514BB44D14CA700416AB6B2683E80862E7D5B49A05526A32
+554BB23AB8B0824BBA198E3825CE82380CC0FECF46651E3E5D77F09465E73164
+20342822F29572BC7F73F2C3BF95ED3BB6FDEADC20C6AC866C4F2C679594D7E8
+8D944704A3C5D771DC39503BECAB89F34D8CDB8FDB91AFE21F3F0260D05E90C5
+73E2C13DFA022C4522E5918EE25038A0498FBB530DA33B0AE238B1C6ED03FC04
+2BFED8236E07820C5BAB411EAE1B31D93A2FA7C374B1725FEC359ABCB88E2C89
+214529A263D795AACB0B95A3AB2F4E08EF350C282CE521716DBB06E5B8291B3F
+5D4ACA230FA192F64BC902A4C8842C0F916F92FBD002ADD408BF0401D0284FBB
+F05D4C6DB631420747CC902C5E1617E6573612FB26C8378DF41FFB5048D3CF06
+4893DBA48EF4B043D760F60C75712169D16C83EE020C45369E443E853E1809DD
+F395B812067D6FDBD26111B34F42C21036AF952D0D767FD17F6959D9FDD46005
+D64FFF54772B50BB9B173AE79702981F58F9F235C591F476A31852174DF0619C
+A470359153DC32610E782B204E7945515464DACE9099B81EEECC7EBD4B5126AF
+C3FD9DDFB329AF1C95C41FA4A5F6958869509A23BD7210386329771FA46FF926
+0E54AC35106253EE140449425A8670E1F92B178A02A58EB57540F4BD8110E548
+BB584EA6D625C5F5FE0124A98E49915F1A1B95D2125874360EED1C4379FEF3C6
+90E5780C20309F11F2F23FAD635C44BA030B39EFF083A3ECCDD2641DC6515508
+CAC76EE7A83AE31B88BECAAC4DF67DB37FB506FB665E5586B8315128A8B532E9
+631B84F6DDAAE8DD2ABF50F23D1F9DDA1BC3E65F0466E1A5AA0743F1B21899AE
+D3D2895AF7BCCA9E9F6A258BDD1152CBFDC36F902C267516CF782DACD4438AF8
+E8CA7F71FE3FC27D0CCACACADA2FDA80392A06FAD08DDEDDB7A237184FA4915E
+5191A3D04C42AC147539E7F37AA221AD62CBABD71AA8DC30254E3B6ED43CCFAF
+50D174C8DB7C36B9643B6BCA099D4122EA54AD284A0C8613C49C6594E66480C1
+4B91C48AF2D40BAF0EFD85A70A64CB2DDAB68EA8F88D8C7285453860CD23461A
+C5C3F5961D7F7162E95ABDD4D546235A1AF6A6ED5BBE1243A5ED98A5CA5BEC91
+57EAB9AFDCD5202F89DE05F7EB6483471D75107F5FEF0E45FDA1559AD189DB74
+571629E9C030649B1EEED5B2E86CDB4417D7235A884DD3EECF10186D957F5C3A
+81D30D943279D57D16903327E97068135D38EFABECBE94F809D445F0E0545816
+A18BC115F7A64EEEC3794AFF9A157656335809FD29EAEB542849850339C6F35E
+D5FE9CD245D1442374A6935B243AFCFC2AD9DF644B3E81A1CB4B722D28DD9F84
+8923E66747372FCEFD9434EE70A56AA7319D265F11F3DDDFE26C09C6DBC173BA
+0081877F1FF971D88A82957EEA0A1C148C5D30C2D198CCD3EADE24B13A88E80F
+175989686F229A0AB178C56A3E4F366C8F477BFACFA31DACF45D7D103619533F
+635BFA06086F524FA336975CD2A3CC2A4EE2785C33076818AA5E43A32482FF36
+56E379E29F9CDF2474CA767DF1DE565A9AEC334BD9A36CFB8948FF562743E754
+EE4882484D95C172E3616FD5182EEA9429950E42EA4F68869683A241E519B4E4
+807E81E3CAA3C95B93B7803ED305D6D1A9A28B4B301B48B80FF5359CE17185D3
+6E05B53184E11A35043EF3A4796678E7D59BE814A00A18F0049823596D633B3D
+66203FA6FD99E1DEC46B9D70BE3937B8BFBEC01685DE6E02CDCD4DAAA1A05094
+18A4DC9F485EF81D115D84B9EB52DEC444846E74AD6728EA2D9B2F9279B2E895
+4895C766FA93F5EF158B626924A09E3E3C2FBFB18BD84B9749BBEABCA998DABF
+D58C29932B3527951FC532C50BEF4138D61115E7BF68EB0EFFE8283528DA50FF
+BBEA958CDD234CEE8DEB93D19C1B7558FA666793BC740E63C854EE0BF4006EAC
+E1272AB51A29F48298231CCD993F3A9E7C2381569C05158CE8C6C2215B06DD71
+2BC92BD131C295D07247A8F3DE1601E643796CD4B02ABF1EB4E564DE04A5879E
+F08A1A5F4365DB385B8CEA3CF370871004CFACC8AF566A132322993D94F25792
+9AFC825E36D844DB342CFD005362F93B1BD9B31168F5CCE14C444867A359D639
+E43D4DA9D1498A206AE3415BCE1EBC0038948AF13553FCC31F414C893C964D46
+7D0D7EFD74FE03A81E158D280B088CFCA5B4451372B94929BFBA8E3504484801
+E7CBAEB4AC66063F65D1D5EDBE0692CFFF1F8232B3615E053A495D713EC85880
+065A716E462EC14E376065C1120B6C7A48A8C7E3FD11C341487ECEBB85CAAF05
+4754C2D09E5EA75AE9CBB5F414BE32D51BB091BF9D40AC361987FF11BE8791CD
+3E95A3A1A6D1351BF4323D4407C9F87E459ED2E28CC71BE19F2F2E3F0F4176E5
+85109BB1EC7FD61825676CDBBAC21DA2EF414DCC72BBA0116B921847C7B13A1F
+1DFCFB7F8DCBDE9AE55CE72D9A7A0BE621941AAEE8C2466B7E8297D54344A182
+DFF7DB01109CC60ECF88E5989357961B00CCDFB24C250238C75B2E2EFC532966
+03F06108A3CB2D246C778ED471ECDA9AA2625EA5E9D5F70DC503EB69BDE1A4D9
+1E6C06DC3F7630025E04CF60BF5A223E69DDF30A3307AC793D8EDA179DDA784D
+F7DE6D478495B7190EC3D3F4DB9DEB3FF5EAF358428AB6F8CBAEF89FE57F5436
+E9FED8E2D85D77D75361C3948D0C41FCAE0FAEAF98A2B81777DEA0059E8885BB
+51D455531194F7A99D76C2FFF45FF61CB56E30E5D09A772D226F7A469D16D440
+752172F70A007707774BF8F93A250FC2D037BA2B93BA58EE3AFD016EBCBC1A76
+31C610B5A3F87E5D8BA87BEF7A90093632772B9D3AD65E10277A969D868B0504
+3AC8EBE553C2AEDCC76EC434A4750CFCB5EA797ABD6EA35FBBE957BBD438C367
+E3C887E010D7C7DD611F866A91A745BFA24559A69FC32FEB42D3584508B577DE
+45F4DC5DAE055910E7720827043A7B9E9356A5370EEF0F485CC1B1558ACE7F15
+4ADD5CB3F0
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMSY7
+%!PS-AdobeFont-1.1: CMSY7 1.0
+%%CreationDate: 1991 Aug 15 07:21:52
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.0) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMSY7) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.035 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMSY7 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 0 /minus put
+dup 3 /asteriskmath put
+dup 20 /lessequal put
+dup 33 /arrowright put
+dup 48 /prime put
+dup 49 /infinity put
+dup 50 /element put
+dup 54 /negationslash put
+readonly def
+/FontBBox{-15 -951 1252 782}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964
+7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4
+A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85
+E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A
+221A37D9A807DD01161779DDE7D251491EBF65A98C9FE2B1CF8D725A70281949
+8F4AFFE638BBA6B12386C7F32BA350D62EA218D5B24EE612C2C20F43CD3BFD0D
+F02B185B692D7B27BEC7290EEFDCF92F95DDEB507068DE0B0B0351E3ECB8E443
+E611BE0A41A1F8C89C3BC16B352C3443AB6F665EAC5E0CC4229DECFC58E15765
+424C919C273E7FA240BE7B2E951AB789D127625BBCB7033E005050EB2E12B1C8
+E5F3AD1F44A71957AD2CC53D917BFD09235601155886EE36D0C3DD6E7AA2EF9C
+C402C77FF1549E609A711FC3C211E64E8F263D60A57E9F2B47E3480B978AAF63
+868AEA25DA3D5413467B76D2F02F8097D2841598387C588CB084A0351E1B0134
+ACDAF9FF07D2ADCD8915FB8792BD7F250469A256B05DED7089E2D994E72C1877
+5619AC07A1EF0EC47C91002DFEF22111173232C13CBDC15B370BEF2F39E24CAA
+8BDE80F48411B56D37603BBA5A934F8F24EE7B7D2310D38F128E141775ED4CD8
+D4E13F205D5F5E173E6755D013884306F3AE2D2A85A3A1F2161FAD28954AB8E9
+2B830051DA7BEBAE46C04D2FEDF469B94B3AAD91F66D22A983FCFDEDF23EE52C
+FDD3450DA0A26EEA38087A0B4EBCD3BD49D9E3001E7054184D063F80A3E86115
+A80FDAB9B533FBBA55E33B9DDF7846045765A0B0F448620D4E14A86338BE1721
+A6A730BE29A3619F62E42CCFD42944240C866F8A085D8C6716E1C0D5DC45BD1A
+5D9DC1AB368C9B65E1C6133EC3393388EB9EC8A5815F6C41A4383FFE387C7CC0
+A2DFE557E8D04AFD894B739E11273D5AC4DB522C308C1F73056EA1407D751447
+B900ED64FEDCF3E58944F17DCE2D10B3CD6038BC2D539925E9333CABF11093F1
+81AFCAC45B0EFD3983A3DB4FAA2FC3589A8C165865F428E0C8047E97D500717F
+2A1EF7025058B8B1602406B1DB450D8AB78AC7DBA98D808F10CB3121DADDB69D
+506A9B93F58F8D6713940203F7E85CD4FF76871ECE63ADE5EEE921C780289FB7
+0CAE047A107086881CF9850EC905C6FB2621EEC100F307221D630EFE84D8A853
+56DD483778DEF21C1FEAB944167FDCE9538E7B1E7CEF76FD3CE6C9EF0F7855E2
+AFC37EC5BA807C09F30D04889CCE201BEDCE98528D22A4CA16E352506AD9D75D
+B862FBCAAAB49642A5E2BA4380C9297E365AFB455EF374D30A5590C57B51158C
+6F3071C88709D217492A55D2539E779E49118513C040BAB6C8E1F37661310092
+872B490036997C82B6CC4A351F302F3B79BC2EE171D11FAF3A652A2964447CC4
+DF75F246C26B1D6FB57AD8231CA9469A13C7B3B88CD390AC3870C8729FF8656F
+6A90EA7C56B7EC46C12C8143B033816551B11CC6E4FE1610AD25B9EFABB6AB33
+DA7F511392D04AB04916460E56571DD126DF2A3614DCA88649901C9F49409803
+B045ED6F6418690731513C3FBCCF489E425419D0FB7688D196F55E0B8A04EBA7
+E23C81DBFA11B5BF5BD50E9EA667617F48AC06BB489822757701D21D7D2A1543
+33DA57EA644495AE33A2D66ADFBECD09C34C64F24B815CB95794572428BA1F88
+F1D43BCF0ECBE5608B5A7F9AF0079B16B61E62B2F05555592F74DDAC84D5D8EC
+09B8373720E1E417FBCE77AABC5C0256373412B783CA4A8A4CF2FB1B9989A634
+7C9BBC0D619BC23A8D7E8F2AD2BF3646877D2E2F9A257D73C4840D66306B3F4F
+D57E0C27A16A10578AED727585F95A0EDE1E85FA87B0A9A2F925133BA6E25192
+0CB7F5033662D2077F18555C6727148EECDF9EC178800492EB5CCB1DAE9A19B5
+C687C1F036E5F2EB4E1D1C351E1E5DBAEB2131952CA2041D37BC52FA89C4E607
+C6649306D6D9E16384AB81B8FD70E60947653FEBC748A393ABB5250DDC1A0691
+F4D8D5E31BB46BB83596E833078EA834FAFF38642B9C34D029F33AEC3A803F27
+9EF8F6A110392CE635C798055E3FF9774353C910B7E05D7EB2A5FC72F34CA41D
+FDABDBF0F8D39213E4CDF0E1A27895776C63E846578D5833F64A98A6E393CC9B
+E45DF220E08C4DDF8AAE0C29059D8FBED3F9BD9A56C7706E68B964BB15678E2F
+F54143F27BA422E8F4F18ACA984AF4AB59
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMR7
+%!PS-AdobeFont-1.1: CMR7 1.0
+%%CreationDate: 1991 Aug 20 16:39:21
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.0) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMR7) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMR7 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 40 /parenleft put
+dup 41 /parenright put
+dup 43 /plus put
+dup 48 /zero put
+dup 49 /one put
+dup 50 /two put
+dup 51 /three put
+dup 52 /four put
+dup 61 /equal put
+readonly def
+/FontBBox{-27 -250 1122 750}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
+016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
+9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
+D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
+469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
+2BDBF16FBC7512FAA308A093FE5CF5B8CABB9FFC6CC3F1E9AE32F234EB60FE7D
+E34995B1ACFF52428EA20C8ED4FD73E3935CEBD40E0EAD70C0887A451E1B1AC8
+47AEDE4191CCDB8B61345FD070FD30C4F375D8418DDD454729A251B3F61DAE7C
+8882384282FDD6102AE8EEFEDE6447576AFA181F27A48216A9CAD730561469E4
+78B286F22328F2AE84EF183DE4119C402771A249AAC1FA5435690A28D1B47486
+1060C8000D3FE1BF45133CF847A24B4F8464A63CEA01EC84AA22FD005E74847E
+01426B6890951A7DD1F50A5F3285E1F958F11FC7F00EE26FEE7C63998EA1328B
+C9841C57C80946D2C2FC81346249A664ECFB08A2CE075036CEA7359FCA1E90C0
+F686C3BB27EEFA45D548F7BD074CE60E626A4F83C69FE93A5324133A78362F30
+8E8DCC80DD0C49E137CDC9AC08BAE39282E26A7A4D8C159B95F227BDA2A281AF
+A9DAEBF31F504380B20812A211CF9FEB112EC29A3FB3BD3E81809FC6293487A7
+455EB3B879D2B4BD46942BB1243896264722CB59146C3F65BD59B96A74B12BB2
+9A1354AF174932210C6E19FE584B1B14C00E746089CBB17E68845D7B3EA05105
+EEE461E3697FCF835CBE6D46C75523478E766832751CF6D96EC338BDAD57D53B
+52F5340FAC9FE0456AD13101824234B262AC0CABA43B62EBDA39795BAE6CFE97
+563A50AAE1F195888739F2676086A9811E5C9A4A7E0BF34F3E25568930ADF80F
+0BDDAC3B634AD4BA6A59720EA4749236CF0F79ABA4716C340F98517F6F06D9AB
+7ED8F46FC1868B5F3D3678DF71AA772CF1F7DD222C6BF19D8EF0CFB7A76FC6D1
+0AD323C176134907AB375F20CFCD667AB094E2C7CB2179C4283329C9E435E7A4
+1E042AD0BAA059B3F862236180B34D3FCED833472577BACD472A4EA1CA80B6FD
+7B4D795B4D2972F034BCCD77C8250AEAB2F838CC94C02F44AF24FF8985D8E5C3
+1C4D9038E24E06639E7B418ECBD7C1CBE3A728B738BDF28E70B34B6CC2143A0A
+8EA5B2B33E03466833125AEFA21A833A326E54BA79822671B7FAB4DB3151BCD3
+5261150E52DCEE3C246CFCCB96A60B10DEE13ABE610E8B4B96A2671A33FDE074
+0BB1861F736BC34EDD3433C1091FBC16178A83BE62E6ECFEA1EA4B36A5B82B76
+5FB811D821B0A08C103FFA9CDBE09C58FCFF079E9C1681476AF4ABFFBFA9210C
+2EC2F945B707B7C1658D178DA98C7707EA3DE9A1078CAEB7715159374B8A1128
+0620C487536E94D66A30E6245ED6DB6C5A84F7952A687D7508F97D30188B3432
+863470387A95130623BED34B2D59F41E6ACF425C94F7470FC8474E0DB9AD7314
+B14D02DE228904FC9A52F1612686DD679117D58E6639C3B40811268103087DB2
+92C2CF28E40D046F577E702E170E2988B15DD8D7C3EB2381ABDF95D7961CC893
+0FCF2848C99E523A5F987C85C75CF91F1CF4C552E4D2CD4B7B4B791882C836CA
+9D2FB3C287B2D4A787BD0C7EF3D969428B4C3C067EB3790A0C2CF595DAC4C72F
+41D784FABDA7222433F68B4F67FA8EFCD85F2D4EDB8428BE84D7B59424ECE816
+04132C33DF3E7BB02158E40F5DD46FCA7B63CA552C22A875B75E8AE742B41666
+A6D699419F870C22B198F64E10D143B513CCEE72AF316EA4732F9669952774B0
+09C61679DC5B4762250491A19B9695C5B5AF1919C49610A012E71DF031E4C284
+B0182AFEE29029F385FFB67AA2D95228A311FFABB491E58518C4F1729825073C
+D204253248D2CD6686A4114A7FCC5D9A7496D8BB33C7ADD89C8877E761C43480
+5CDC4BBB62BA0360F8453B4A4B4351065717B913B6981727EDF090E100B64F67
+1BD18215DDABED31BAEEDE0432E958E56C783C89605120C70B51AE417105251B
+363163CDD890D9171BADC12A6856B4FE10050CD5E91043BD7723A3B8B82B053C
+6BE9D3797477D7A83FA010091C220EC9EDAE1DA21EC1A4F857ABCE61E3C6993E
+26C9ABF398E57B8432264335EAB57490C56CA0A1B2393FFE835D389500F8043F
+9A384021798E7982C3110E23B2A08F41BC23964CD3992E8B50AA8B62B9900FFC
+58F70D1A10D7CA081C0B3AE770FB679BC2D93B808168B6FE4C6F392B14054D2D
+6906D1BEA5CB0964794B6ECCFE2876A7334A0AE979CF41CD5482BADBFDA7A2B0
+50C279CD6313B5C1806AB9BE343C51FB1DCF0E4576BFE6C493CB34C66A375FA1
+E375C01DE69AD695B5D399243546430814E703944559941F68D1D16964236930
+E5F22431328529287E00E4B4DE6887E22391F8EB9988EF7E3009DF95081E9DB6
+1520C8F7733A34E669EC2B2155B255DBC003A161BAE9C5C1DEA06F922453EF51
+23582312F722BCCCB051BABD67F035A6B3E5F7824BC6B3E7BEBE33DB4388EB78
+FBBEE6D782DF21F0925C09D901CDAB59E679879A01FEB7457BF32AD64A034B3E
+5D759BC9FC9EB8D30B898D80472887A29578C96A35D37969ADEDBF51EE70667C
+3EEC44A9E5CCE99859E51374A25878C0C3DDA644C0E99EEA7BFC2DC11F76B675
+813B0EED5892C8F88A10754E7EB0DCB4F5B5A11E88929A5CF0F65A1C047FBE10
+8AA1FFB7CF0B900165EACC9158A9C898290B98C101BBF0A1B22807B2B0182B11
+83F4A5CB7EAC1F71731A625634AC3FA56D5F1E5DB2BB0F86577718F8566CAAF5
+9CBE80BEF66CA6CB19D5C7ED4C02A4B3E05C69868462E88170D11772CBA44E12
+59025AE4E68909637E4879ABE51DBEAAFF59F7041C059A42B9CCBB04E3A92534
+77A31A0D826A527C3B6F890FE4C238C91C7C46A837F1E08A4E1D2BEB3671F861
+BC46296D453AFF8C68016B7472D30E5BD81D42E7DFC54D33D00362788BB8A435
+75
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: MSBM10
+%!PS-AdobeFont-1.1: MSBM10 2.1
+%%CreationDate: 1993 Sep 17 11:10:37
+% Math Symbol fonts were designed by the American Mathematical Society.
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (2.1) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (MSBM10) readonly def
+/FamilyName (Euler) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+end readonly def
+/FontName /MSBM10 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 78 /N put
+dup 82 /R put
+readonly def
+/FontBBox{-55 -420 2343 920}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
+016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
+9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
+D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
+469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
+2BDBF16FBC7512FAA308A093FE5CF5B8CABB9FFC6A66A4000A13D5F68BFF326D
+1D432B0D064B56C598F4338C319309181D78E1629A31ECA5DD8536379B03C383
+D10F04E2C2822D3E73F25B81C424627D3D9A158EAB554233A25D3C6849ABA86F
+1F25C1667CB57D2E79B7803083CB7CC0616467F68450D9A3FEAB534EB9721003
+DBFEEFD050F3AC3492F5C74162A9A531ECEC0F47610B4940E946D21CAA771D30
+A6C27ECBA11708CC46C62396BF9D1990D579D0C394899D24FE7A4382EA18E7E1
+160E7283AF5BE17254790628E79FCC206F28B5566075B3A5697D5209062544FF
+D85FD89D6F43D6588B242AB2666B5D2861CD38A8CE676503EDFAE84D12A71E77
+8405E468FE391F4F3F50D2C57ED55512036B0DB8E76A7EF413ED08673E56DE2C
+16A3B65CD478433C0D2F9FEC4E662D54DAA43CFA6957D2A9AF8979BE06F70B68
+ED4C8C493D6DAC4971A3F1D010A7726D084EC1074FECD7D12D72AE16C26194AF
+21AF5774D9B860EEE8608D34F150092F09C19959BAA670022B9A9F263CD391E3
+74DD1D1B4CD4D75273CAA4E37F68C631723E08FA35AD34C0AFB4621AE6689861
+854D16CE1C375FD159A337E221A6FF1CFFB5693A0623E7EBB58C2969F590D081
+AD92DD9E5322E26D6A15023664AC73A355998BCC48ADD0E7A4BC79790519606F
+A1FEF6075033BCD1A542ED2F7EE4943A13D927138CB26A52F33F52249DD24930
+BBA9773D5DEB5B8115804C2E65EDBCCB17469C47F2591BB232690DAC5F1780A5
+6FE9861DC450426725D35E3E8006C022026C0A383B0A6E8AA30A52055E7E139B
+DF6ABC491AF90C7A3884582B7407C0DDF37CC49F3CBA0126D07A3639A615400A
+01FC5412668335BC7FB0C5C62F533276BC13716EA27CCD3924408650605BEEDE
+2A68B5B6105D8766B9DD6A877DE6AEA9C3179677B7C0726022D0F929E7E63574
+4692A959C7B4919DEC77FA5012A3CB81439F809D15DA7739FAB5D8E03BD8F283
+FB6832C9864D18C4CD499B20534D33C822226FC199D26116A73ABA2B5CAB0B63
+42F1B4A3003688088F1F6DA3C61363B4C0C44269FD21F981DA0BDC5D180FFD2C
+8BAB61F4330FE5806A35F1235364554FAA1CA61EC79EB01793D586FB1B62F4E9
+3FA5AF30CF24A87271CFB59FFED6FB662A77D0A42516634A0604BCB334503FFD
+60641E6BC62B28A8B3A44A5D50389994BF95AB3E7184E9954625B28EDBE99914
+4558E2F68FDE7E65D0B777A64FB3A7A2E4A27F656FA2F9075269F70B020FAD56
+BAFB1BC4FD259C2C9F2299D4421DCFD38C947ED4EAF5FD02B9A31AA37DD2E82A
+315797E6456601502E47F85EDE87851E6AAB854DF59522CFA9BC02F4DBB3F024
+C6EAC54AC427B5AA039A9697F52ABAA45083CC1159604CBBF1F7BE585146391C
+D45F718B12F8CB4C65D6FE61F5D07FE09C3E5F7FECBF1A649853517E4D75CE59
+B1A78262991D56EBFAAB32A539C9294B74AFBC46835874F8FE7D7A5D2F54294B
+8586601992F7A8FCCA63C680CD8EE5CCF50EB13DBBDD94499526038035791451
+90636C5FB2B5BFDF13A9A6AD4A34DD28ADDFD5C9FBF3E714B08C53C967F7CA09
+3385CCD9517F0EBDC6B04DF729525EF98F7D7F0AC48DFE22CDD47381CB5E8874
+5770D238E7055D33BD55B18BDC6B03EEA14C983E1E4E7FAD2EACAD9CA038A873
+B4D30413CB0B0880E00D582F464B676762A73EACD395A12AC1C5F23E03B691FB
+E3BDD8090D8B966910C9FFD5064408E361FFC59ACCFEC21BCE3E0D63B17CAE20
+419BDD735F5215A8B860B9A2693998CB2E4DD7BACBBB845EE1BFD40C594EC2E0
+9D86326CB2E7F13DAC4878964E7E8A4774C55B954F30AAA3B88BDFA0ABCAA75D
+B224D2D212B8CD2568EB8E4235587F088D81171E16AB9743BED043F4B3BE8AC0
+DD207FF7AB4F4087E85A151CEE8029167DECF2655CC12601C5A7AB3923ECC8C6
+B68747EEB74DA7E2144289C8236983985623CEEC393F3FE3B866C4C0A6508EB9
+FABD07269EC2764C03D8B14E7A2ADCEFFCE4C842518324F5EFE79EB5544A2A41
+8C7EF948062E6BB97EE89492B050EEBE8262D03267CAD70A8FED6CBF2E731FE0
+B01F59541166760F42
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMR10
+%!PS-AdobeFont-1.1: CMR10 1.00B
+%%CreationDate: 1992 Feb 19 19:54:52
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.00B) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMR10) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMR10 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 40 /parenleft put
+dup 41 /parenright put
+dup 43 /plus put
+dup 48 /zero put
+dup 49 /one put
+dup 50 /two put
+dup 51 /three put
+dup 52 /four put
+dup 53 /five put
+dup 54 /six put
+dup 55 /seven put
+dup 56 /eight put
+dup 57 /nine put
+dup 59 /semicolon put
+dup 61 /equal put
+dup 91 /bracketleft put
+dup 93 /bracketright put
+dup 97 /a put
+dup 105 /i put
+dup 108 /l put
+dup 109 /m put
+dup 110 /n put
+dup 120 /x put
+readonly def
+/FontBBox{-251 -250 1009 969}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891
+016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171
+9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F
+D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758
+469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8
+2BDBF16FBC7512FAA308A093FE5CF7158F1163BC1F3352E22A1452E73FECA8A4
+87100FB1FFC4C8AF409B2067537220E605DA0852CA49839E1386AF9D7A1A455F
+D1F017CE45884D76EF2CB9BC5821FD25365DDEA6E45F332B5F68A44AD8A530F0
+92A36FAC8D27F9087AFEEA2096F839A2BC4B937F24E080EF7C0F9374A18D565C
+295A05210DB96A23175AC59A9BD0147A310EF49C551A417E0A22703F94FF7B75
+409A5D417DA6730A69E310FA6A4229FC7E4F620B0FC4C63C50E99E179EB51E4C
+4BC45217722F1E8E40F1E1428E792EAFE05C5A50D38C52114DFCD24D54027CBF
+2512DD116F0463DE4052A7AD53B641A27E81E481947884CE35661B49153FA19E
+0A2A860C7B61558671303DE6AE06A80E4E450E17067676E6BBB42A9A24ACBC3E
+B0CA7B7A3BFEA84FED39CCFB6D545BB2BCC49E5E16976407AB9D94556CD4F008
+24EF579B6800B6DC3AAF840B3FC6822872368E3B4274DD06CA36AF8F6346C11B
+43C772CC242F3B212C4BD7018D71A1A74C9A94ED0093A5FB6557F4E0751047AF
+D72098ECA301B8AE68110F983796E581F106144951DF5B750432A230FDA3B575
+5A38B5E7972AABC12306A01A99FCF8189D71B8DBF49550BAEA9CF1B97CBFC7CC
+96498ECC938B1A1710B670657DE923A659DB8757147B140A48067328E7E3F9C3
+7D1888B284904301450CE0BC15EEEA00E48CCD6388F3FC3BE25C8568CF4BC850
+439D42F682507AEBFF9F37311AA179E371A7C248D03B5BF40C3B7E0FDD80D521
+09B4D0044C5EFBC5C4A8DF9B5F734ECA6099F8A76881278EC54549F51532AC62
+0D85E2178D1B416514B03BC33767A58057CF521F2620B53DE2A240D58312B92A
+7C1F9BD0A11514B5CAB87219A1F5C4982A83380B0896597EE5E42BDC6F85E6AF
+68ED6994484CDC022ABE678A7F2E298A7FAD967A2EA7DC426F07342ECC66E68B
+983E966FCFB745795C4D2C87CC15BAA041EF80C5BDC12EC1F5786BB41A5A2107
+3EE0BC436B346E014DB4099EDC67BC432E470A4B779FD556341061CA3F2BE8EF
+A332637AEC878C2BB189CA3267B2BE5B8178E6B7889A33771F86276E6F0B8E89
+BD209DB0CCDDC342CC3D438356296934D03FE107CACD00545E375162DF567C70
+F2DCE2E5A2C5F61EDC0DAE9A91044DD214031FE8339581A9798BC43F1349593B
+D408714EFAD02AD4B6763945ED645A0FD4A71D4226EED9EA1633950350CF4B2D
+0C0ACDF3AA03DB3E75DA4B8ACE7EB90A31F0FCDBC0AA03FE0E68E0D0E81EEAEB
+EA79EDE22B71BA5BA148841DE5394BBBFE694D7796A13E19A4A782F9ED05B50E
+FFE29BCD196CC096B282BB7AE080A50DF19D5AEEC98C5D392138E7847EEF4548
+2B20A84D10CF3920BD583A05B1FD1AFA82D69696C4D1B13FF62DB165293D4A2D
+92CC4527109F177093E43F3507E188F59B4A5B1D4D8710979472394392C53B46
+1F7A7A2CF4A0F4BAA4D5D965566E53A74EE43286559F3757D2AA52B6B9BC320A
+56578B512393D038E0E8873DE31C3642B13807520C8B4F0FC5EC6ED3A7A0E86C
+8EB19DA903FE24988EBA6FC48DF96A5239CDFD85C441C0D7A174C40F2366A899
+77662CCDD85C7C702542DCC4F62DD4CE83D8B0A6B2D3D7E84A09F7B7B2AC0F91
+5A89AB253EFA653E29CDBE7BEB5FD80244BC4D6F73FDE34846245FB19B5036E5
+A40FFAC0C4FB4F8BD6C351707A524187ED4C6A8323B06159EF2110B228B69FB6
+94766199A37C9125F07C07B4CBE2BD76FE9D80DF7F55C7713138573A95C3FCD1
+B346DD76961F4397CAB8E1FEBC2FF6ECCABC763FF7C995738B082B37F0870572
+3A5D49D049F420266F034B72EE3B707AFF6A4D0F63DCCFD3D9B0BD93DC13B78C
+EE8C67EB4676EB693EFE23F1DC6CECF28ED4A1EA517C986C17D8154607A330CD
+FC0D83A62A5197EB7489706826CFB01F22A944EF21FAA6C12D3BAC92E531CE07
+A2D62B606AEDA91D12E735B99AD63514C776517D0D3A978D0E785FF8B39B9AEB
+B0B61DADB95FBF85DE427B414A399042E3C2861A8331B8E7E7BFE5FA1FFB966A
+D8B1F0104864F4826EAFFE30B73AD8DA53156B55BB19BAD0846CFF85E381D78C
+A56B0B1FC0B5C7144384BB3F835DEDEB15B90B3BC0AD1168CE5CEF4637B662B1
+F3935E6330C048B5BD2C7B9427773F5710D80D06B41F46D2334BE4463A8C6DB7
+6BB7067A5E3D974EB7210DDCE1582827DCD3005F5FE2634AF79323BC08F75F51
+C8BB41D31A002780A221C9299E4A10F95F7EB12B018BB216691D1038BC9B51BA
+DB30A21E23E2365531AB5909911BC2D4A3925CB8205DAAC4A0C54AB311F611B8
+5E5E087EFA21F48267D6380AC1E942D73E95E67632F1BC5C4189E3B959BF854E
+3293FABAEB3F9233F9BCBE9BCEBBE063C0A953134A42372B14891CEF77FA5F89
+6AA64CBC0441F98BB140604B6EED20F46B1B2392AD3BF0699D5628AF4FC88F92
+AAFD2B62E930F39F92BE7FECF851D13195F8B26F881A99E8DEDC4A8E95D87801
+850C23E5BDD17002A81CF4C256B6550FC9080EEE86568000F12AC4B7EC5B7107
+8458696C6298971108059DC9ED523108AFD437F76573F4A86F28A242455C4C8B
+679FD4879D5462CFA122EF2A2C077D055C46E786C3EDC06A7EAD55E34B67A2B8
+2565C660AA219EF220DAE4625F30803DC44A6D3DDF4513C2B12F553B26ED5215
+852976EF0233CB4900E74EC232D6657D28A4CF8C4EB7A7D1538AFFF4F1900F9A
+2F068351C46B6FAC8B545FA407C2F40578C0EAF674CF2CF80FB4872C3865FC75
+6F576AEF692CCF675AE84CDE56A2A6B4902D95065C9C9D54E52A834ABFF5A10A
+D0EA765525FF0AE205D4776F6BCA0931141770E56AB9F288290459810A10CF23
+DE33768DF2517E779B20C73A60376729DA90B07B21D036A7D5AE25DC32C12A09
+AECFAEC457EA9B6A5A0C75AE8963B66BC6A659361B0A08BCF1AB747915110064
+3EFE41493ACA61CF596D1D41DA9F3F18BB3F1AEF850D0DD0F7535B7F2B77B340
+71B51E4C4EC95D9D6210FFAFE3D5DD8C45A14599557A626ADADECFF1290EC47F
+7D1CF7D000B0A5ED22F9CEBFB5C47208A5D94CD256EB0E930E18FAE3DCFF672D
+B88E6C04FAE98AC54740CECE9202C177416A5AB0131A279797F962F273DDF12B
+10D70989ADA78C283634C7EC9D30B8530DE2A9E1FEA2433A93EB73FD18AE2AE0
+83EE7FF31D1072482DC03AB107D9B22104BB92B339D5DAFB82E3A9D8BE73838A
+C69641CCFA93123CC40E88D8809E2DBCE6B3866B02CB89C57B3E3A4CA1A54028
+4D168DF6BE032D3E6DD7DA4353390CAF76CB103C6608B3D628FB22436915D58D
+5F72BFB76F5637FD54623E8986103F777762BA2AF9BB8DD944D158A7331D2FC5
+6C7F30B321561AE3AE28AE5A85777F1B688BB2C1FCC14FB5A5F59F8754C583EF
+C7E9CBA6F21CE37E8CEAFF27B2F35F86519B09716C7376A6CE80543592139660
+3BB9E8E619EDCF66C52A7EFFC7B83A969D1275FD6F009C7162C84CDC7BC01049
+82028AD7772DB414507D795689C812C11F69D9697A49E064D56A52D421A773FB
+E3B8D6330F4204364B957CCA13AEA09257D6C48345F0B15106A18DBF6C402F83
+392C5A17C1BB9D81FFB0FD65DE01DDC751430D946A80E615B71D0229A07EE860
+65171165045081BC1F82CCD049D0DEBF0468EA9BD6A44AA07774E3F723CFA8BB
+892D98A46193FD299DE77F8B097DBED7BED3B0B15ABB32D6283C45AD1B272216
+C556BEC5BA1F8CEDC7DDAC33A735D919469F0C560772E369D4358346FD7EA472
+08BDA9C424BDF3AD5E5BB2F14958A24ECC5FF0DD44AF6FEF700B2F67B87E2502
+E022176919749D13726410BD6601036F0A702B4FDA5D322DEBED2247CAF244F8
+7F470FC87053A6C2FC7F4491B7043FAE6B58BC1271C1953D385DDE9603BA1838
+EECE49EA716119042BBEFB70B544BF18465730186EE62E7C0F410C48F2C03E2A
+3663C80DDE23993A48B3E9EB1799E78D59052C95ABF56E7D16246E73E3017AFB
+5455A95B0CDE8EDA98B8D4A408FD3A8FEC48CE9E7137A297092D491B4EBB6017
+8D8D6F0831CCED874D4759AF185454F44EF58A613C8021B283FA3EAAFF1EE97B
+08C9CE032606A0772595699DA356EAE1A6BE29B91BFD9ECBA535D400209DBFF0
+35352E0145B8FEEAB8BC22BAA72A2E00BAE3EE50B453C5E2BCEFFD1861EFA852
+94EEF92615A7A3186652530DC17204D5BDE1BDDC17A071A3D2962E58962FB015
+6CCFE9FB2E339408EAE8C4F1BA820C0B9620C2010BD3CC124D23BD364705CD23
+DEAE35E2109EBAFFECCE7E29CBE003F89AF9C9638D2AB5D062E9EC4AA4DC99A1
+1FAE3469F60BE1991C56AD71FE23F57244174C67FB4A2E06234343AB82EA749E
+62011332C48672AADCD50F8089E0BCE4C57D58F69F493EDA0BEB60F2226C714A
+89B2E1FC512E7864AFAE4F84A6914ADC0F017AF97534BCD44B4001D0AF7BAEB4
+251494C831D5035001DE48B3207DEA2E3F4A85FA4AEE711DD6C28F5E2E5BCA7F
+870FD73010CD0A16876B521B1AFDE743162E5E5136014584F72DA8EB84AB614B
+E8BCD061BBC1D37C1C79B61CDBF8A0DA63C7580481E4D969018DA780EC1E5E6B
+1DEFC64F69D23A966D2A61F643054DD02EAF95CEE954A2D2DCE3EA813CD74FC6
+247766CC787549A5913B5A3F2479728A73CB64A2D06C6ACD85679CD9F9AEA261
+D977FBC0D0C864E2A1AE5EDA9EA457EA316B295A07FCEE6306EF122423E06E53
+F4981E5F495DC62B2E5E27E606DDB2908348F45A659D7636748A3F92B9501EB9
+2F66685224482AF232A93EA7D1C2634DDA6195E7DAAB7ABFD3670C43AD87D1BF
+CD52965F587C79D6A2DE1D26CD431E98DA18FFEB1C79A16B5C06DA22F615B5D1
+C98C808F7DB252B6BB7896971FCF06BDBFEE9C063971A72A8837B718C6835699
+08C17CE5A5EFB8BAACB9B320CB76885212A606A82CE5CAE1EF16FB8D4EA56676
+57343C5C27A3E8BCE846D642F06471A8B616E6E2C3E8E5DE8540FA56D6B8E0DD
+86558F347C9BFB1CED6350E0BC25C2F57BD650F49E1FCB05EC186463A66474E7
+3574139564C0EBD025289DDD359CBA44A761400F8F1EFE67AB9079BBA7CAAD30
+BAF63292D64F72DD2973F065F0CCAEEE1FF134A23048BE32405C405239724C2C
+A9A1AF53A17FCE53B1CB8849A03E91C3814FA753A58BBF29796642225A5AF8AB
+0F2A088632F517BC552B901A0B3F66F69B01B6AEB098026ECC8F8D4808B4F87C
+0EEA0FD79ACF789E844532E74BB3AD5EC3DF790862F55070DB64F5A0598312CB
+C875428E1FCCD50BB2CC4E09E62130FE240A2FC2FA3DF1DD6860CAB16F8113B6
+C2B6013EA3D62D5A7179BD9B3E8B0D54C79BC0EAF02210C70B75792F3AF4B6F4
+075AC1F19FA3ADFCBCCE4CEAA04D8E83A7C4198F41804DC24CE7F304AD2F047B
+55E4C87F0B1A91502F86793B3BAEE685EA0383600EC7165DE21F51AA577DE8D5
+B1044FB516A6647053C790E30C907AA6DB54AEF674E227AB2A2812B8705B1F61
+B79B378ED61A160AB02AE4D2CFD11702A2CB7D9299F1A28770786FEB3ABEE014
+F2A0AB35C9583FB922C83FD1927C2CFE595F34B1AE7C81A06EC9EF5F498855D9
+BAB8C2CF0F56D60D55E9CB52D9675B6E820BC0301A7D606C77EC06206EAE0647
+DFE727234FD89F3ED4E2312116B95D7BE64E7142866CD5C84085893781CA48D6
+BCC0E52B676B8D1119BCB81BE05545D3F7FC35C40B99E43CA20F77E0C5C11B68
+05B0CB984D94BD6630CEB96A9E7A60DFDA304B30CA0B3FE69BFDA984BA95B318
+9174CE3BDEB589BAC46C82703D498EB35CB25A54A6A1BCFDB950B461F47DF126
+9E02D60F5AF7F65C4B14E259511796191979C58830B9121BC6EA1F80DFC26DFD
+52F6007FFA1C08181974D0617F92C5EF0E8FAA0E97BC852C098DB6D8CBFF589D
+E5E2389C537F1C2C8AD8888E0584F39B114DA2CACCEB38B5C99CF93E1FDAB0CE
+8EEEEA5563D0358566D7627E97FFDAFA7EA4F0BFA4431645D4E24620438CDB99
+036ABCFA8B597643C98056D5D8FC00F68642C0CE811502153816C55C7A0BFE4B
+8098E6AEC78C998172320A33FB5B46B9D21BEB42B34D8D6262BB4DE936A51516
+0830C108ABF4D0DC6C7188BB6F52C471C78D79F5DE13CE1C1A5C6D8134BA7D9D
+54652582C284D027DC1B5AB97AF8E1DF490BBC18421B91099DEE930D3D377E53
+7DD081DC875791B0A81398BFB46F02EF975FB2B8ED39C6D5BAE92EC2E85B2B7D
+290E3B9AC864AC17680A345EAEA41E9E50A22D4DAECA50A5285443493B18C178
+DAF904E6A6447F8D4CD0FD885D1D9192708560C88F378001F29EDD92A80A2457
+084A5E0486700A19C1E48882098DC901E20DE43CB8E5CA992120ED5812B382EC
+A360085E7A53C0BC0CB865A70C3F666F3F5198E5E50DD12F19B9804DF96FD9E8
+8F0970DC799E3F5D1D989BB2C100B16B724BA1AE0BD9A1459B2A5780DB956DD6
+A7EAE3166574B28B49259BC32A7C257A8D065A739D8BEC7FF6DFDFFFE33E952C
+FB5EBEEEA9F0745846FEF1823FFED7B3AA5D6EF101D58254E385F3864B888F37
+F5F2B65A4C3255EEA67D1329B2DBB253F051C7185783F42F8521B756CACB8AA2
+C654C5FDB699BA2C8F7D163E3E258C38B7496BEE5FFB4A5461188CA80D7301C0
+4EB3E5BB99FD8DC294A9799D2B3E18E9B0E43E54492E4295ECE6E814F3BCC9A9
+8E0F2738AFBBF8A9EA81D553EBA2A45F41E8466208E0A33394FEE2171A49BD92
+177DA001B9C12812BE1D9F9E23DE521D87F10DFAB3FA7FEF7111AD4F61CEEB9B
+C03DB3FB22597C2AE32E8DF982B824B774CEC964AD24390D42BBD53B3A3144EB
+342220ED35BBCE069BE99EC2955B02541D9777FF828BDD2A27D7DB61346F9B79
+05B3C0355C87697F3C26990AE871EFB9548DA44EB064AC9EEBC7B2A9FFAD18E9
+0AA04D6871E2333AEBAD4E407F4EFE9429A3B575BFF62B73931543CBD85A3CE5
+915633A52AB76856C1E7639C54CAD10D18F3B629A40D3A1DE09728946D689E48
+44CE6E4CF644597120C4C5FCA145E8777AF94C0F93897732EDA2AD31B9D16BF5
+AC8876090D204C7DB7B3C7053F16E94F0D0F6DD9F919F73EBECCB7F17EA26D9B
+35AEA187CB1F56442B6106074E139A0FE9E8511CA485FB85962B4D8B607C626A
+C8F72DFE
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMMI10
+%!PS-AdobeFont-1.1: CMMI10 1.100
+%%CreationDate: 1996 Jul 23 07:53:57
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.100) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMMI10) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.04 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMMI10 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 1 /Delta put
+dup 6 /Sigma put
+dup 11 /alpha put
+dup 12 /beta put
+dup 14 /delta put
+dup 17 /eta put
+dup 28 /tau put
+dup 34 /epsilon put
+dup 58 /period put
+dup 59 /comma put
+dup 60 /less put
+dup 61 /slash put
+dup 62 /greater put
+dup 66 /B put
+dup 68 /D put
+dup 69 /E put
+dup 71 /G put
+dup 77 /M put
+dup 78 /N put
+dup 86 /V put
+dup 97 /a put
+dup 99 /c put
+dup 100 /d put
+dup 101 /e put
+dup 105 /i put
+dup 106 /j put
+dup 107 /k put
+dup 108 /l put
+dup 109 /m put
+dup 110 /n put
+dup 111 /o put
+dup 112 /p put
+dup 114 /r put
+dup 115 /s put
+dup 116 /t put
+dup 118 /v put
+dup 120 /x put
+dup 121 /y put
+dup 122 /z put
+readonly def
+/FontBBox{-32 -250 1048 750}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE
+3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B
+532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470
+B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B
+986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE
+D919C2DDD26BDC0D99398B9F4D03D5993DFC0930297866E1CD0A319B6B1FD958
+9E394A533A081C36D456A09920001A3D2199583EB9B84B4DEE08E3D12939E321
+990CD249827D9648574955F61BAAA11263A91B6C3D47A5190165B0C25ABF6D3E
+6EC187E4B05182126BB0D0323D943170B795255260F9FD25F2248D04F45DFBFB
+DEF7FF8B19BFEF637B210018AE02572B389B3F76282BEB29CC301905D388C721
+59616893E774413F48DE0B408BC66DCE3FE17CB9F84D205839D58014D6A88823
+D9320AE93AF96D97A02C4D5A2BB2B8C7925C4578003959C46E3CE1A2F0EAC4BF
+8B9B325E46435BDE60BC54D72BC8ACB5C0A34413AC87045DC7B84646A324B808
+6FD8E34217213E131C3B1510415CE45420688ED9C1D27890EC68BD7C1235FAF9
+1DAB3A369DD2FC3BE5CF9655C7B7EDA7361D7E05E5831B6B8E2EEC542A7B38EE
+03BE4BAC6079D038ACB3C7C916279764547C2D51976BABA94BA9866D79F13909
+95AA39B0F03103A07CBDF441B8C5669F729020AF284B7FF52A29C6255FCAACF1
+74109050FBA2602E72593FBCBFC26E726EE4AEF97B7632BC4F5F353B5C67FED2
+3EA752A4A57B8F7FEFF1D7341D895F0A3A0BE1D8E3391970457A967EFF84F6D8
+47750B1145B8CC5BD96EE7AA99DDC9E06939E383BDA41175233D58AD263EBF19
+AFC0E2F840512D321166547B306C592B8A01E1FA2564B9A26DAC14256414E4C8
+42616728D918C74D13C349F4186EC7B9708B86467425A6FDB3A396562F7EE4D8
+40B43621744CF8A23A6E532649B66C2A0002DD04F8F39618E4F572819DD34837
+B5A08E643FDCA1505AF6A1FA3DDFD1FA758013CAED8ACDDBBB334D664DFF5B53
+956017667084E248B4E19A77B7C42DF6762413BB3B142E19AFF7DF267DB0C315
+9F7C9061FA1216806E4FEB424713C5D8197A3216EA5540D1BEC26AC1B17D190D
+F66A096A8854AC846932C735D064DB56287BAB4AEB352600851833F5C49B00F8
+F2324E5A873315CFE2B0C71FB263E0213C5FC83F2D011C1361570621BAF2F34D
+8A46195798F84660F710C7BE1D31D123ECA0B7965A2AEBEC6CD5FD55DC0B2945
+AA442125F7EC382E849F98EADF4F5F8B92C04669C9CA2CEEC6B904368DC374A5
+0E4372048210A63C055B13F9E04405E805900BA040C9AF9C9BBA6A02F87C60BA
+9DCEAD5A9E7BBECEBEE887F378676C72FD00978D15D0046C0690C0D4B5AD4183
+95F6A9DD88C772D9F7C38A6F51BA692B81D60BFF93CFE887516378210D1CA765
+8E15C57545A0C95EDFB7AB40039E89D027860AF114E89850C0AC2E50B696B3D1
+19400E123569E9EFBA7E0876DE9628B90A373547C96FE290965906EA8A1E846C
+43EA4B0C01D84702059B6888DA48DC3EC87D6ED3F5BE7322567E660586843571
+65ACDE826977A8C05ABD73491F800D6D3F31DAC2DCC94197008699B08F389271
+28BE1BBE243F5A59EBA25059F90C5148C0D606AAB186BF88BCE51E82C6A2DD2B
+1B5DD50987E914FC3223EC169BDEF18BE4DE7F5E824D414CA186C54B4DE4EAC5
+E5F84C3748283E8F0FBA0F0FD9DE1459D068B624626911999B9CA785A9314F26
+C71D43DDC0D792520DB3774AEF341ED2B3FEABC2C8131FE13C4B04FD64DB5AE8
+8BFE43A83344D7466A8C2F51709E771F02CF369255DF519732B0F4EB2EDE5E86
+062A91DCD0D42B2C5D6D3DF29F30F24BC98093AB95B06097B5CF3B612F477E84
+9065E1C60CD71608A16C9FA59D10106282E225EF38B15225B57F6784EFAC91BE
+83E6991EB5E59C8FD13193BE20323ABBAA06E81D0D1BA749129C0E898EC3F8F0
+4452FD5428802DE83F6833563C49AADCB28DCE3E4040F69CDE82FA6F2D2DC7FC
+88E96641F227A44A979EA58706672D7AD1FB23E699BE729B99864FE3F043C042
+10725788C5260E5053CC94FC9B4A9A134787D1F3E6FC5B3CCD7C7D624E6683D7
+B49A02B37FBE56AF6C230B7563D38A40591E9BD14E8339A28B8F86F30242F86C
+F43FC20C80DDF37AAB23BB01381D769E6E4523F403C11CAABFE5DCC58CB19E28
+37989C46A1D21F1637021091E39E3C9F8244AA9F43A137932113C8CB2C2D7239
+364C52EADAD13C1297A463D8F94355394F18D79925958280344AAF911BC0DD44
+31DD6047080F51C49F77C1E587CEBDA32718B9CC19533857B3950BB69C9D18DF
+D5914FB8D36EFD05D15ED1AE8BC3DBCEE2FD15F65838DA357F0E30B8FACFB381
+A658B95C852032D9F6E57785622DA212CEC31CCDDDDC9773EAA46F18750FE121
+251615AB53D597437F068C2462A4E8B90521F4C85B9300264A6C35B46EC2A22D
+C90D48C4108FD50D8B089DA431BD8FDDFA8CF8D6C257F03F0ED907BEB2E91CEF
+B3AB4A6A8E4016419033ECEB7473EC8093ACF80EDC48F1D4F525F7AE6D09B48D
+D5D83DAB680696E72D6A3BA755523DB0BE5639C1703D2711789F2C5D2E7BCDBA
+FD5654CBF4BDC05DAD38DC84A2A8FB043A22FF580F065BCA6BF5E17DE21B6680
+A5AAE78B4711C5D056E1F7BB4A48127233CFACED2E947993EEF6F12327DF1CB4
+5ED203F8212BAF4F6D4A076A6F2E826E45C4DEA2F42FC5F5C1892DBDC8065C62
+5D5A6A91EB9DBD71E32935EB22D69E8E6529F95A95E533E52E705213A2CCF3CD
+F83FC853B06563A1C7206EE24589FB3071F24213EF4A04656F22D433F22A8D92
+CD838E13F7B626AB0497BE49BD8F4EC69D4CDCB375B38AD21DB8DA302BC51BA9
+EA150C7759581AE01584F9121C9CE9C989DCAED80D9BA22CDD513E92F85C1596
+6ED92395A424FB4309C3F6E83990195DB61797AFA1B85A68A2FD36AB94E0E665
+C2E2E32A5A66B8319153DF96F2B06FAC6D3ADE8304CE693B83F81938F177598A
+239FF172A50B421A5982879525D59E0179D0C4A3F3DF97772B0768DE450264C4
+164003BA7FD408EF75215221763D87E7E8D743317D6F80906D27B118D15E6A9C
+1C43D54B8FB7C844A58F9FC5A88B6B0B6541C1776248A8A008BEB038A4BB0EB5
+EC122B46A3F3BCB2998738056AABADF60223CD7C48FFD5AD6A77536E198646B9
+4518780667FA2B61C2EB8326F81CAC89AB6F0635351614F3521B131BADE73283
+27930084D3C1B26CA3554B0660EE8C8DEC57B0FF344B961975193B988FCAA78A
+7160F3E94231B31A3E46DC16CB21BC65DFCE7AC4DC610AC6388B9AE12BDE1F1A
+DECD3BA34297B989B731846ABC57844E1B53238C421ADDDB00ABCDC743235480
+F61CC25445C9119AADAA47C7B8913CFE1640FEC333BC9C35803CF02C508BD62C
+440B27BB184EDD0C04B157C259D71E5B58050FDA4967A25A5FABCCA029088BF3
+03E8AE975E543D496F7638A4103BA925EA27905DFD62666108B633927E07136B
+613888EB04C1F5E216F08A1BBC7D9303B77FF23A4FDBD58CE711E1D362ECCC8F
+9B687CA125A13C454B12F9BD42DD7D42EF796994BA4FD41288946E52C41AEC6D
+8C7BEEB04D24682A243AB54C3992BC938F41A1E46509A4B3A28700C645EC7C34
+C90A38E31DF02E0E22BB0FCCCB9EF87E5BD185830FC5A719BFB74ADC6385715F
+50730FF41DCE1C5B8202FA7EA5253718FCC3E4F18D37DB28A0685C7A195D2C78
+A0539C23E57FCC25A07E77EF12C4E6E59D94144048EA45336F13C9C337DAB239
+B844668515CED8836B8B0DE5BFA514CB92979AF9CFD08C31E436AEE956243011
+FCD5BB877A0F8CA1BC70FD7EEBA250EFA3D878ADDF40F532B4C7D0AD2799C2D6
+E8A55A0029E87C1A6E37E3B803B7F3C4182BDFCDD3B3A36FF1686045558C4335
+1F10FF8C796B05BE183D751CA322F63E66B35C0F6B7DDDFDB7B36ED2B49DDE72
+870F88089AD1EA69F54C5CD55807056F61568B98721C47E7E63E9FDD5820E954
+C4B2FE72815FCE308F8D9E091314971A833E4FD9B51751BBD4FB9216AA150A7B
+83D714AACEEB5938780319CF8D3FE580B608DFE6E6E76D1380A60130359AA274
+66ECBE181CD60F2D4B48AE2D1299E16B2007699E23D6A2177CFD5E5233638009
+9E821985ED328356FF8CE1EE59D16B2830AB24F852798515C95D5EC178784CB6
+B4C09A8379A9FCCD91468DB83EEC2AFDA0B6AEDC44BF9903BC0898831AB62298
+7A5D2185748707BAD6AA2E1765B5A9D6E00E014AD00BB68F0F29B144E131EDA7
+8EED997B78B95043D611A3FD50784F253921838BDB152424B02D08722258744C
+95E4EBA32FEC796915F88552D4E1F899C833AACB96CF3BA940BAD7520D7D2F28
+2BD1EA10C97E0A5C1E45D5FA6AF1A23A6E530C030F16D46D2E66F77D6224636D
+5437B45A3AFCF982B4AE9F848C36AA52E1B4EA653B104F090BFB3E77F2121843
+4B2510179C358DE38FF27BF3C8A31A9EEBA0F180BC63C69A23BB418C583AF9A8
+C2402A32E83FCF0B7C4B6374B8018DDB126E90D5AD8A7F2517B40117D593DBD3
+0BAF940FED36A3A677B994EA06CAE77C3E06ABB1F41AD2ABC4E7864C7A4A75D0
+5708A337A535365B658F406A70567FC7E8132EDF67610B59119D46C7B0954E88
+B8E6242EF84F10681DFB2AA3ED1D6AD687C92EFE89C57D3ED2FA0DED74982E94
+E47FF8873CB15DB41F14871AD6A9C924C80FED0C492425BF8EAECE55E61CBAC1
+26F2FE5A61287A1C2FF052C0E2BCF30A29E07AA6478B9A7C7E5EF4DE63838CD9
+FF7A20ABFCE6A930BCA905CE5FE929292A9C4EB680C095EB75D53AA7B287972B
+157F83330C509758A040C65AA2EB70A2AC0CFD1E1F26199ECC65250B7696FCDF
+BB48B401F6EC0CC9525C30666ED2CBEE7C7A00223A2EFFEA57013ECE86F6DDE2
+B26F65F202CA9D97593257DF7688F4E3A405383F0BE86CD597626A73E490FDF1
+A6C32D7A0936AC0BEB7DDF9A8FE63560E61CE95183891009AD75F6DE8296FADE
+6F37567B7186EEBD30462867EEBCE3ADB6A41B11E4B7AAA465883225F2067239
+9B561CE77CCAE176805C79A6B2252FEFB1E43BEE32C67F462876F2656C59E4DA
+C939A9DAEF17E6F8DAE786E41F6C0F013B1EE6D65C622912796194E68E34397A
+C971C022CE5E751F342819670695F154AA9F228BA3C2A81C2519F2243EBC3BC3
+BCDE7BE2A7AA5FD890A91FE3CDD5A8FE6CAA3BCB237B3FE31E4D20D1EEEAE6C2
+D3746062ED962604E3509D3483DE4BC882E8BF7C3248981BCB47C5540CB28B24
+7DAE6F2D71D2E4A1D9CC7A7A36125F9C057B072772C0EAD1EAD2EA655671A099
+2D79302BE286FBE3252DDFE121F165061A3570519FB36151899314F8D83C92A4
+5EF79EA1EE55B32081A96FF2B5F8070CF949C33EDCD5DA0F72B0B0F648D3FADB
+C2C95850310FD7D47B6B2596836AC41B752DAF041E31EB2139AE606FC4C1B65B
+815373D824EC543F85370159EDDD7B024A78C8D0013B54AC311F07DFEE2E0A80
+6CCA9B676B99F016E204F3A43F58C5600557AE3A2C3397B94B918BB7F94DD8A8
+C2D6BC1DBC41544372EC47D33561983BD21E5E09A07426D34DA3BFAB31A333CC
+AAB66ACB1D17E918D7276B2868154AB27B7309E2209910510D33D6F7D4703ABF
+0AB5E44C45F4A68AD17F45B7CA26942F04722B7ABD1C3D4B9C18B5443A0A27C9
+26025242C1B6FA724C6A897D9C5287F89AEFF23E009CD4DE5C256FB882130D68
+7E2FAD1854F6A563A0E7465134FA561ABEC11E84C32C4AC6F39B89376EE6CFDC
+D0A437CEDBE76406586C2EF25F7FB8A4269780C15F34CEE58A9D29C56841D3F8
+7CA1515E1C70A132347F5F20C3D5F16E0A8D73E2D00A6AD4BB02C71FFA14A931
+65D3C9A5161526F349759EAD35E417DE5A251506F6C5A1C6479C2B2A7DBEED25
+7C2EC8B09B6FE16BF878A72FF8C252AE0371EC01E510532F8B34902A37C9A90C
+FECD51826275D4685C3B5BC584CF414CFC35E62E9CF36EFF3491D974E9FDAEB3
+874EC3ECB0F2687AD7904953B6A71A52370139D66B90444F41A431D5B40C2EA1
+CEE1A75007C1D3864FBBDC1AD43DECD26486DFAA7EF254334ED53E36D808756B
+C7F8A62EF71B02E9F6A764CAB61E7C27DD4E5B3BF2B5FE6F8A452A0C304D0624
+D2A7236C5B65FF84971294EFE825CCE132A092AC86A4F9227CD944198CFE3698
+7884C031B7AA502335ED602F80645831BB8A1526098464CDF72B3C259978D02B
+6FC9795D14777BB5B72920CECC39E55660520634199F3D78139D020A7CF5B22C
+8E0683DD8163B861E3FEE3658D52572871253F38C85FE3E638E2B13B8A284C54
+07FDDE222190508F8A7A04D08061311BDA9D72AEDA1410F981E8A9BE7071C08F
+F438BE33CA53FA4676458EDF5CD52C001CDA39A7D8F3116358F9A77091675235
+79C42515DCD64164F43070CEDBB11E69DC2E2FCAC983C4A2A073DD7C913EDEA4
+594374D87B9AF5FBAA0ABF720B0641008DF8212443E161253C41478935F7F482
+F169C3A6A9D799AE05464704BEBB53EE2FA5E71FD79D27A8EA846419A17EC98E
+3D0679231BFC88767CD2178BED35025E1EBCCD4DDDB7410CDEE8B22DC9A5B024
+0705C1E32F954DD85F34441E453285063333C3261688F020D5A6EE1236515687
+F94B672FC189DEAF0BE59E9BB5AEFE6460BB4C06A9947F8B863D8B0C72DAC249
+C6032FA7C0AB406F2D254B9CE3AF9741201619F18D6121E17F3B52EC0B870BB1
+96B9EB52D6C761DE95C286FAB896B7D0B8C12C4AD1933F238C0A9C195EA40BD8
+548AD3B5717DD787EC05DBCD55170B1524A58D39C91936FB9A86CCBD48562A6D
+7D1270F5F9B311E132F43787FA11FE12243A4454154D633A012E174783DEBF32
+997E9A4170F47732F6ADD306DA7AB582E758E8C2FC8363E8C585F3E92A573F54
+CC2D34FAE6F10DDB7A98D4C4F656F6700C6A8C6FC960B0B4B9D446BF52B80B5B
+65CE01B59B8DAFDF3D878084B88728072A97648821400CEA6C9389794186B219
+99A017FA4A809DB2F93FF89A4206CB66FCF588584A6B7BEC990E5A0A33C75FE3
+C95C971044853D750B14FC6227B730D2C00FFAB2221F682A10469B5369E436DD
+526328D2829FB8A82A1F02B77016EE186DC6D4C24E58BE93C9A6450A996A1BAD
+4929DA91FB7D067844C425313D998883B7F2A600390A6DA9F5164D6763E2FB0F
+D047214832B09CF62613C8D3ABFE03479B493340AC36D412C49D7DF39CA89AA1
+17D9FCE14D40E5BA8F587F11A3F7D8DA69F5650B00244DC561B329826E9BF11D
+EBDF8593B20B6A916AD6B4E121A3F72F042A1943DD72DC587D74B1B14C9DFDE4
+05AB26F9B1E5F433D1E6F12AE369203A63DD39F5E2E5870A7097C020584AB252
+8CDE37BFB45DA0B18B4BE37026E700B941F482C6C102EE582E567967D0697245
+878E076AFC025AF1A653EF718E7CD550E214F5798F048895DB759ECB2EDBD4E0
+AC2BAC11B390278CA5C30F1AA6800A87BC6101CD26B217D5901A40B1B0C617D5
+E3058E980F3818B2235B73D6C7EEEA4021B9809433109D837050F29965FFC7C0
+F5321A93D5C2315E0C3388F0208B686973FFF13D78B8DE64C43A60CA70EF4E1B
+DE972C3077BFC5C7B23BA026A77E2930073C8D493F2AC4F3B5D599F716E6051F
+166253EA22C317044C96A7F281D5CE5AFB1E2C6BB72257E864544A5C23BA1273
+59A7F42E0A7CB48A90F5EF47B9A9AAEBF82C78B477B16A4B0B57DAC9117696EB
+E1F1187220FEEA3B0BD19840CA637F2306A185D4A1B7ECA6B0D2CF662473DC24
+8270584083426D200D28426F362BB801D556CDE4E4456566F761E6589403E0FB
+CC154A41D828DAE490E0A223AB5C53BECF7D1FAB3B66A5725A4BDAED4080D773
+83139DBCBBC93B58A34EF16A7491592B27F526C3F0911669A7F5867FA872596C
+E9BA07BC078A9F07052135EB22CB87883B8EC17B9CD6B4E13023FEEBA3C732E6
+843F9D5B27EAAE781BCD534D08F7DE20B713ACD556390A332045B72ED338A70F
+760BCFFD185CBBF7705DB2D55C1FBB8F38A4E5DE0913AA7980A2B92C63A3EEA1
+C49C0DDD54B76325F5F5A0C3F2C42E9897C930D4528A058942680CD35BC12F87
+DB2E409622313A385216585D5C37DFFC9B46F48F2BCA0BDB54721764FEAC99AF
+BFD01B2E63F68A669229F80BCADEB20262923050A875B5EF18232E6E1819B2E0
+AC81684977DBB7F0EB11DAFBB5774E03D63CE0F730A77A5531EA0FE5447E008A
+D2ECD0B30DADD3D1BEAD4B0BB194CCCF4DE9578EC9442F4EAA73B8BB8F138B16
+06565913E554933E4613ED11AC1F824D558DB589262440D175C2C754E6584950
+47494BF87510E31075A6E3D60CB6A32F5B2A885049388035B97B779C42429D4B
+303FE5C64DF7627F92A962A3B8F5271EEDD78F658ECE20B07D19879BD00C8BA3
+ADAC110FBAEEA23E349EB4294CFDF279A7B1CC2A71326982C1241FE7CC8CCD7A
+D613AE2F9C78A853DBA83600B193FB45531998C6D9DCA1B8E3DFBF754B829727
+EA1D5C912CA13FCEDA4256680159FF1F377C0C6B93B9FDB5C748736787C8413D
+32436B4DBE8339E868EC8C42BC5F1B887EDB628335F0FEDE2C7A959E16410852
+954F5C5CAA2B4C557A30AE1D2DEEF673B68B6CE989B27F4E26FF8582C30EE843
+BC7392D42CD728E6C626203F1401D328E9B38770D48ADAE77D87CE04BDF2FF89
+6FCE109028653B8252D4DCC8B34040833F8E8A8FF1A53448C8D289AED30969BE
+7840AD99B77634201B8B9649D14B003836F9ADAA41C302625CD1B6C1A6F40B5A
+ED6A5CF12930E48B9FF647166290439420B6831219DF14F18021CD563FC257BF
+9C368032559F5C1C3CC198FE6D833B8D612890F6114203E90EA7A9D6EC8B3A36
+00486E140B9B76BEBE37888C8831653D237C1AD50E00ECE417C9C8FCF1A9115C
+DAE1B99D11715116E698AFF2DD7F6A34F4EB0B2ECD49854613B1DF522B6E8953
+EEB3D1C90F3179F56FFCE049D06AFD09814FA87D2B0D100B11105609BA8567B5
+181445216C061293C6C9DD0E80FCB290DDB63A55FE3BAA16382654B167E99290
+26DF9BA06A96EEAA33CEE2412D16B0F8C749A7E4C76A889E24FDD9D849B5068E
+F204008372317087891A7ED02D0BA26EA9DDD6BF1649F06F5A3008408B0FED08
+EABE9AE4711B954A3CD36094CB79C964975E6FBECB93C940381B2D0AEC71AEF8
+6ADCACDDDA63FBFE0CAC845E24BAEC24B8EC4F9764655C20AB752BC5FC7BFD92
+EBFB78FF7AF43EAD8C9B7AB75517AE9C06DB5CC0F8CE9EB5217138803B572640
+9AC5C4788CF145ADB5E1F7557B43360C96FF808E5EE15FBC34E6788D0566692B
+787138C1F5A7F6006A94A7E0D9842DC369BBCBEAF10CA5DD000491F5D77BEBE3
+49FC14007B740C8914327EAB77232A75E8435D519F7A4342BD281E11D5FC7925
+172B0B6536C4EA03D8E03ED9DDC97B65E0DB25E944A777AA23BF45521403A879
+953D5AE9E120339495CEF93CD90689AB259B38BD8E598968A3BDDDA4185237BD
+6BD8F1E5C1EE9442DC28283D2E930FD7B4311D53B1B458A9E124812615D3366A
+801A76A7CCA7DB1B5BB4531E7B68068B3E36BD2E9A427885CF360C4240C5B89E
+C1028EEAB4FA4AA2435D4C221120459FF063488743CDCE682D7BD79E59DB018F
+740490742A4F86B2DD34D409DB4D4A8D2C265B788E31D5098B20B9DC6455E3C7
+1CCBC89EB9A6F1DD0B1D15E57C68293D913E2ECEDBBE89801C9E673A2B607B98
+E72B0F608E9D8D69A29DA89371F807148D1B7E6B7B04276719A087658F88ED44
+390462F01C1806A0DBC2C9F0AEA43D107C4F36BB0E2E89C6FCA8DDF67EF5A026
+1B529F9F065ECF945EC664B9E5A280BCAF04472598321E8709649D3F58EDC9B4
+DEEAABA6D9422507307132E73A941FF3CC43904373A4A616FBFEB230B327F360
+2EF5981AF5FA048B9943BDC3E9554322A39454E2DDCF4AE2EEE29FFF07457794
+A1CA38CD0BA815958355A56F656937B7B8F5E9B1645714C22BFCA5C2BD0760C7
+34200ECF6C7F9C5FD384C4139B38D97334F0B3F8100FCDDBB5B497CE327A0A93
+36A0C9B42CE0756ED25CADDA2B1645F92A28A3E22D45E760F9D692D35BD798E0
+7413AE5C5B0A0EFBD23BD02F5BE218DB065BBB9AB8BAA6E406263C21E02646ED
+CB9AB447820912B6B6A223E9735B3DFE16CD1C6E58A9A89FF6824D417FA45DE5
+1BBB05A24AB825C3E34F403E462F875DE9C44A7B70C17711F1F06B978ABA3F03
+03E769493BC1068B6B4E1236BDC385FCAA03BD13EF4CEC29712BC4DAD8A57025
+624FCE0342E5EF96479E4CB19F90563476DF535B7BA290E3537542D130884B2A
+B4557610EAE99F633087F26E3F13FF5F97C87B6DB2C57C8EDB0CF0D9F6F57719
+40CB59793CD2FACA30E88FD7743E8EBB9AF6925C6020AFD1B6F0531F4445F7EA
+A2D944012DB4E209E8EDA63BAFCE1CFC0116E1FEC608FF717AB76DF646FE43E3
+15E80619FA65ECE84CF79243441DBE74622B2399870DC8DB0EB474740E6B0EC6
+C18A95B8E5D1AAE8409CA2DF9C5CCCFEFAD11EAA9F2B4D54AC86E08775012D14
+F1B13CC0E1FCE34630A716CD3BCA21856FCA9D42FCFE22C08DCD3050E05E6E82
+924BD30A95879C27F9DB52A23C4AE542BA3207842AC22815DF40EBCA491FFE90
+23750CBF6C07F65BD0095D9C969AF79DF4D2ACACF5449A50653408CFF59EBDA4
+E0F38F0DA578F7AE56D7C7AB7E46B865AFDBB09AFF6B0AAA978D0EC3B60DE002
+EFB5DE2A8CE2078B94BBE39496D7C2A8DDF2D7097CA8DB7A290F639A6205E37A
+0E3ABCE7CD54858D55837A8BD376580FE59F3D07B788EBEA7BA21B4AEB1177BB
+0508DED552EC197CA71D2AEC178068345F14F351239B01BBA9B37C53F88E7730
+D9836EA38100EBCD162A85BD7B2E38ADDF6F315135D426A6963962D317342805
+A10DB92D6C9089FF578D9F13319A55D72646E70ACEE59172607654C8A45856F3
+9B127D69D50AB5E97279B3257BD88A6CE8338FC236DB01ABCC52F7AACC54A6AC
+314C1FD3065C975A66E93F7020107994385D5006E30D9995317F1D3B6C9FA79A
+441A3C79F5B01A0F45055B114AB6BD2B76915DFB6E31BBF79CA9297EF76090D6
+AA2DB56FC2A948B4B686352D64630BF7434BA122E40EB355FBEA442AE2A9B800
+5534A18DFDE0F83DE229F6440A33F019CE6EDAA82AA839A801BE687E61AC116A
+E64BE4343B25A0A3078EA887E80B7003B35DE11EAC5A40A7AF7EDDC2B4B84526
+1A5EB0CBC872419E8FF01FB7B88D79DF68763A4FE1BBA60DD5F49DBD2FCED03D
+C8AC5C65A5B2B216E169884301F6C1B282906C99CC6C32C5BE4A04ED6D7C7D33
+A277570F1109CCC6A9918CE7C933946AA0DD60D7B30BB3271CA4F8290006A97D
+196731C5030B04E2334E9527F68C2210D10F2CAC8C0BFFE07E3501635804129F
+FAC1041E34BA4C141BCA97E43BC94EC2D955BBAD410CDBD06FA27999A5602507
+D9092E169D44E607AEADE8E4238768B599CFBC46CDCA2FF4CCB6F282AA02AF64
+1B66419AE5184B6C798B7F9C3107E3056B43E2733DDB9365B9BAB3C22E5CA594
+F71F3FC9BC58C45A915496298F4212F80D569CA216B38AE1BEF678CF555EB362
+BE6C2FC4D5EEE09D5F705F54F1C747919CDDE4A7B4EBA1C6CA3DBC06F19BBE38
+ADDA9C0479EE
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMSY10
+%!PS-AdobeFont-1.1: CMSY10 1.0
+%%CreationDate: 1991 Aug 15 07:20:57
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.0) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMSY10) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.035 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMSY10 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 0 /minus put
+dup 2 /multiply put
+dup 15 /bullet put
+dup 20 /lessequal put
+dup 21 /greaterequal put
+dup 25 /approxequal put
+dup 26 /propersubset put
+dup 33 /arrowright put
+dup 41 /arrowdblright put
+dup 49 /infinity put
+dup 50 /element put
+dup 54 /negationslash put
+dup 56 /universal put
+dup 57 /existential put
+dup 102 /braceleft put
+dup 103 /braceright put
+dup 106 /bar put
+readonly def
+/FontBBox{-29 -960 1116 775}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964
+7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4
+A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85
+E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A
+221A37D9A807DD01161779DDE7D31FF2B87F97C73D63EECDDA4C49501773468A
+27D1663E0B62F461F6E40A5D6676D1D12B51E641C1D4E8E2771864FC104F8CBF
+5B78EC1D88228725F1C453A678F58A7E1B7BD7CA700717D288EB8DA1F57C4F09
+0ABF1D42C5DDD0C384C7E22F8F8047BE1D4C1CC8E33368FB1AC82B4E96146730
+DE3302B2E6B819CB6AE455B1AF3187FFE8071AA57EF8A6616B9CB7941D44EC7A
+71A7BB3DF755178D7D2E4BB69859EFA4BBC30BD6BB1531133FD4D9438FF99F09
+4ECC068A324D75B5F696B8688EEB2F17E5ED34CCD6D047A4E3806D000C199D7C
+515DB70A8D4F6146FE068DC1E5DE8BC57034FE2AD655DBC911C76FD991B91DF5
+2DAB3701C2F3703809AA4D01CE2FB5823DBF3DCB8FB55EA6C677A115BFA7781F
+B87B1DA2ADEC303DDD1B4FD1CDE506AE380F938245AADF44DCD3DFA5D86EDDF4
+F696ECB1962420A310F01CF7FDA47567932366429EFDD54BDDAC412C155E41D2
+F4F88BCFA6AFDB11CAC1C833E8BF502FC99F5891D5A8DEC1A4C114E4D9895E0C
+962B36ECB641B597A4942103D6E695A749A91DEA1D65A5B4D9055F387D9C365C
+DA51AE4119A24930D3D1BBFED43BF8846ED0083C7A1ACBB8010EAAA3C263EAEF
+00C1B7099378ABA2DF7833BABA23201D8C9FA4A784A50323BD621D7D5375564E
+79BC09AC1F0B9BB65D5FA943A3E359D9F79FE6EE213EE56F1CD5595D726B5BDF
+67D6DE93F117FCAA51EA345C4E0E160FF6802B23F6BCD33BD0332CA55B3C681A
+2237868613595F87E616005D92D5F66081B4FDD91CC2418128F388CC38279B2D
+4482FCE23663E0A368FA2B3957A387DB9BCEBD4FFA129F070CE7FF314D233DB6
+84B1100086CB09D7F80A24C5590B27A877979EAB3826211ED54CBF8097505FF8
+93F5A1991F8414C02D4ED0E39E70C57025D4AAED565CA38A5D7206AEA68DB95F
+EA5CAD014BFBAA9895D8B6ECDE1C3B0057EBB7F8E94004EE3D2F025CCA598B12
+46DB612CAA8BC28E1A1D03F5655871882F4AFE424E0F1636C5EF7477C9C7AAC7
+B55441AA4C2215F4ADD87C10144950BB7339DD915A8EBBC8099D54638C54769B
+AA953FFEC731E086B37955462878F8B7712CDE117F98A474477F97EC0BB6B9AE
+97DA8ADFD25B96D82BDAF99C99D380920C0FBFC7BCD0A99A9F1B9CD8947A65AA
+3AE1513907B66A6A3A2F243E200531E6C5189C32E634F6F07B68B449D117944B
+4ED1DB4596BA2F732162C24100932645471E301CFFBBD7D4B885C4DBB8FE8089
+09EFBFC715F64E8FF18114EDE2F4D2BD9E87008251914E25C9EED94E5370CF2F
+00AF7374774F2A864988759BF5FE7FB4AD89CDFBA414CD30DD4ABF53C4D66488
+8D623E28150D6F919D9601A5FA2C37DAFDB17542CB2302E3B1D31308BFCEFEDE
+8ECA47CAE8FC68B4CBACC55638521293F696DB54F3C3E9D4A53EECC1DFD2839E
+9DE21F72C3314B9BEA085F7627A0E92F57132F4034B4444C55A425EAACCA6429
+21DE46605D2575CA80A66DD1FF83DC3454C564AF7DFD63CFB1EC8F069E9CF9FB
+F50BCFBBD47783C5310AB50DA1BB3995414E9702EE8FB6CA92D2E474973604CB
+3631E363CD472E4108642C699B587EEBCA0EAB5FDC4855A038E2145D082317AE
+D5602BAB9C005E3D7CC7720C80DCED623FB95952970392A7257F1713970565C2
+0FCCDB109F45A1033E3329F567FEE314219A745DB7037C011E16F7D2C31596CB
+92C2033D34632CDCC770CFCC682AFDAF47A229EFE7DF0EFD6E9F20CF1CDF7316
+2A24CF7BFBDC084ADF96904E4ACF4A683635B1B2FEAA3F391A7B9595EC1F5DFB
+9753E9FE8D813C631E351C6CA99C2818B4D73B3DE25A7D34EC37AE1A8E65DE8D
+E71CAB3BC6D4D2329B9AF1DFB595340F329D14846FAAA80F776A35F3C49FAA3A
+C38C7C66DD26EA957869655E12D28A78A8CF931918B3DBFDFD23C215A6CE65B0
+5576D97108275B34F97F477172BAE043A5E8C90661B06E8AA4EEB6A86E2D1407
+085FC72E7C94766504D7F58EDAAAADC7AF08A0FE5B022E8E57EC523DAB101DE8
+46DBED3C5AB3852BD3BD9D757F2AF984C937BD0DAE690CBE0028F91B1B4C5399
+5076C265C45556AF2A8351611A95FCCA6912B361A8D6854758F9022BDD8777EB
+CFEF842F1D10664B0B1550D7B0104F0FA8114E7355496EB6018991E4FFE82B94
+D83A6DA20FFAFC001AADB9F2886B175147588B4CB8CD2A6755463AA8F5F8E617
+0670A89C0C7EAA408EA67A75756156222A0AEA2A8A35E1F9676AA7F99E3AA6AA
+035DCB233A60248B85B82FF451F3E8DE7B8EAE0FD2ADDB94741C121585E4C4C8
+737AE6186640E96BBE1EAB13EF38FA4911FEBF6D71D7B3D24D529D42F4A9387B
+4FF73A803A71FC3F2CA6FFDCFAE20F6575F53D20584F3B72A72E7334836403E1
+C111D4E4204CAE0AB3F630801F84877E3A57CE95CDAE615EAC9DC146FA32D7AC
+55B9C86154C6BF79767251443038D0554CEF078E69796DB939A5949A9824C3EE
+0EE19DB2D56C128F9280A0970E2FBE7DF44CABBABDB93C01A3F784AB9690A861
+6730D4CFF2946851A273B026C18D55C2A24D612B9D05773ED74A15306FCE57A6
+52399136F78872973DD9C162206BA2FA0A7F121B8E5A8B9FE3587C7393776E68
+168FDC276D4E77468E3378788C81A4A7DC660028317C0485F023676E68C0343C
+92108F2D3E0541E1A02FF488BB8C0027B73C60358148C45828B041417255BC1E
+F0A86ED17332BF158EA209B709E471A5BC6FC1FE131F6B1D9DD64B0C64F945C0
+F22B89ED5969450422FFB41F67340CC7B93D63A6A32D933F3B755456AEF912F7
+92480D3C3F8D5E0423B6D6D92CE72870428D7485528DE35C8A6096309C25506D
+C0E5BFC8A2181E8A8F420E8ABE1D1946B591F6546758A6029BC05859A4A3FC1D
+A6925BA39ADB68BEA37FD215F93E15DB56157597C8D0E6CCE0B024892F540D34
+8327CC5D6475B2BAAD3C1B75E66A62209EF100418FBA3A00A334B551E69F5F2E
+3A631655771B835D2CF917994DF5E3467100DA76EEC1804A4C4678B114470E50
+B78E607BDC6816B81862E56C55ED80B2A0A6AFA80A2599F1F142A68345810F69
+85ED999E4E26F7B3A15039D811516D467039D594A5067B657B1A8944954F0FB4
+981F50C01C96BDE026AC09CD12A4B597E676D3B30292D4FBE1528CD0FC67514C
+531A35D88459D2A229A0131327F3CEBEFE42B622710AAA4D94147F69424A2B83
+31C1BF461480B07EF8A7AC13B2D547266F0DE9F179CE254F1F9A24DABCF7B479
+4E9241C98DA417F26DC1B730DD6F403488D0A130EB66D421F285A77DBBE86D72
+5C7D1ED33F6F69CB55309877832207E7788EBC7B5C4E22FBFDEEE212F6988E64
+CC95D8B563AE465A4F0B89215927BB7D3BFD8634A24AA7FCEEE5500B27E46791
+D7C2A623F9DFD42F3ACB822CD29C6B7347820D1F68B04305CDF92543ABFE9CBC
+7793974C53B66542311BE0B21CB3692444256CA0CB7A12265FC270740AED685B
+556438A29271D544CDA97C78E29E6A7540E46B2E5B644F1CC7F36F2F85BD1208
+97F024FD848829F1BC90BDD38F670F2EA27A1FC93827C197D885EF9554F46E55
+B810AB474056F63E751FA492BEEAABCE753FE7DCBCE43117D06ADFA0301680DA
+E2E9A1FE66DD26A9D1905F4F3764892D79818AEA4F9E3DC4E628119E3C33F38A
+CD1C34BF76B9C04D9E48DD49577EB0BCC21E4168D5B0D4D9EC1E94E47ADD100B
+37EB00833C8CCB492AAD22F8C634B939838E00D42E75380492FFCD1F28A93D27
+915CE6F1780F6B69E2ABD839A0D6A7E92015DE7ED33914AFFDD2C8DA4B40195B
+23497BDD7541FC59327272FF5D25BAC1D88BEF4E7D2A0C6DF1591DEB266BB628
+1EA176485B5D57F3590FC4D5EE8EAF53D9741786859FC871899C0EA73A23292E
+2EE21E88B6E2F997F540BB146DA2379C0FE5AC4FCF8346A1966E103213092EE9
+4132D22AAD
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMSY8
+%!PS-AdobeFont-1.1: CMSY8 1.0
+%%CreationDate: 1991 Aug 15 07:22:10
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.0) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMSY8) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.035 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMSY8 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 0 /minus put
+dup 2 /multiply put
+dup 15 /bullet put
+dup 21 /greaterequal put
+dup 32 /arrowleft put
+dup 50 /element put
+dup 54 /negationslash put
+dup 102 /braceleft put
+dup 103 /braceright put
+readonly def
+/FontBBox{-30 -955 1185 779}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964
+7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4
+A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85
+E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A
+221A37D9A807DD01161779DDE7D5FC1B2109839E5B52DFBB2A7C1B5D8E7E8AA0
+5B10EA43D6A8ED61AF5B23D49920D8F79DAB6A59062134D84AC0100187A6CD1F
+80F5DDD9D222ACB1C23326A7656A635C4A241CCD32CBFDF8363206B8AA36E107
+1477F5496111E055C7491002AFF272E46ECC46422F0380D093284870022523FB
+DA1716CC4F2E2CCAD5F173FCBE6EDDB874AD255CD5E5C0F86214393FCB5F5C20
+9C3C2BB5886E36FC3CCC21483C3AC193485A46E9D22BD7201894E4D45ADD9BF1
+CC5CF6A5010B5654AC0BE0DA903DB563B13840BA3015F72E51E3BC80156388BA
+F83C7D393392BCBC227771CDCB976E93302532471AAA096BDB7D3D00544FCEAE
+86A3196E1683DB53C308F865EE7F6C22EC40D307AE114E328CC80446A3F982AF
+9F6D58B72F017CA3A5E4241120081E58FA971E59192E4671C7792406813C6BB6
+A9D5CF1CDD3F0B68897404FD1C8EBFE91EF253083495F0D92A7AAA065EDA79F8
+7C9F31807E23979F8D77DA7F04B7995FCDF479274EA20690085B37441CBE529D
+FBC2DEFA2D2EEFEA08B828523F05516FF44856947BB35A3023E8D44E8C7843D0
+DEBD78FEA96E4EBCCBE6CF0518DEC7AFF49CA4FEC889658CDDA8D815D37B985E
+246422C972319DEAB98699ADF21AF8ABA7D738EBCE86D057D036DFFB2C173E0C
+BC673338506C9C9A74B4E62D0EDB0932F31C97D7D941F1AB92C8344178EE40EB
+9FD9F188F64930489DC7954201668D8C13D6771001E22F5705B21E471E3B5D64
+DEE474A8D30D4B798AE5775AD90A7F7C6111332FCE120019E7F0097A26D3CA56
+509F077E50CA3487F837C1D047C9426E90DB39CB1351E835EFF1668D43383C53
+3DD7EE40589B8952A4D4C7D2DFD4C26693C23773E66BFBFFCD1FE6B763983571
+50DA339C1FF2DAC8264F7E63C62DBF7233DBCEB419D0AB09031421ACA6087B41
+C65EEAB08E63840DAE4CE1FD48030280DBDDF6FD404017856AAA6547BCC15AA2
+33C11466F7FBEEFE888AAAC8510FEF279D7A334C96615C3BE70D6F38455D1302
+D0DC25A9C867CBA1E91CDDC5AFC0FD702F4D4CA76394FB1F71D2587547F0B6CB
+9B7A6EDC1F3976E80248EDC50F7B44E5611FCF618409E454699A3269EEE11829
+B65E38EB0C414AF52484681E481C11EB0FD068FFA5635E752216F70EEACD553F
+DDE57C9DAD8DF87CEFA452136F2F2F729E36DB27321FBB52301382B8EDB232CB
+E2ECD487E09898D2E21AC82120BBD72392AC1E77BB67E8675801BA3AD936A02D
+745F30A47F189D1049E5844F11C98E975C9F958F2F9B16732F9285B47A2512DC
+A2812F89ECF035686374D4DE2C9DBC56C8AFD1772A5289C46EF51FE7CF7201CC
+C0A9104251C2091456868BCACF740A013174A1274A12C6B74D404C50662AF20D
+365D43592A0F56B9FD6197E86E51222315BFE79403B1471680FBE95E4F195BF9
+FF3697F2042AA882944E05F7A4119C8C263DEB03A9E4BC5232B779AA483868F3
+81F77D28A869FEC766B1169C2715DBD57F5B97756D75AAB94268934BCA947935
+A223D534E9BB485A9EC245B58C6B685F53738EF196CF727BAAE8AD15729D06DF
+BFCAAD6C3C935454C59B18AB27A9992CF9DAB91BE1C4CB99B5AECFCFDD1DB902
+C831A2541C72D1FD12EF76228B99CD5D934E91F6810B0E34042B87E59A60CEEE
+021963452C1FACAF9093DBAA49E4BD9164FE73BF6F28F6903291C33ABF2D978A
+09FF2ED56066E878D23C297D6B5EF3516BFBEA6FB835A3FEA0A87E5AF4EA46A8
+7488627FAA32015E4648D10DA02AD389B8E18DF9B524B036BF21F4B39EF3D0CB
+82A8A4EBFB2457E8F40742B16D09656ECDDADCCBBA9BDD7AE6A6E67D45FE12DA
+D3D5547C257F23E462CFEE452907481FE1FE9970433078408F8C0FEEAAE553D2
+146B5B5049A9F25CACFC14BE5AA65D18501F68D5BAAA43AC403535A74C5637C0
+1EE0B6838C5BBCD271A5AAAFB8B2C46A70540571A8E890323298A4E43F8F3939
+F06FD69C154548E185EDD64DACDBADAA50D1EC81F245C64F82F5F41383B0E70E
+F7788725B6E1BD626472797E4E28F0AB7CBCEACAA75C988D8B98C00D5FF3EB8E
+B8AD0F5D83A69CCE1DE349AE70AB95A1C0595206FDE0753C16EFF3AB743F1F07
+6F81C2D9FEAAF165ED0D323B35D75B806A4D3A0CF91B4A8C844F8ADEF9E1315C
+858825E8E59EDA0E39DF24C5C0E8C04126816A80D23232ECA1E0DCA95B14F8AF
+B2057A682D8728B6AD59BC57A0274C7AE0D303465087D3C8B9FE9DF2F2A9011B
+513C163A62834E7CDB5381A5EBBB30FD9353DD2B12636F6D650F284978F2
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+%%BeginFont: CMMI7
+%!PS-AdobeFont-1.1: CMMI7 1.100
+%%CreationDate: 1996 Jul 23 07:53:53
+% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.
+11 dict begin
+/FontInfo 7 dict dup begin
+/version (1.100) readonly def
+/Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def
+/FullName (CMMI7) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.04 def
+/isFixedPitch false def
+end readonly def
+/FontName /CMMI7 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 11 /alpha put
+dup 17 /eta put
+dup 28 /tau put
+dup 60 /less put
+dup 66 /B put
+dup 78 /N put
+dup 86 /V put
+dup 100 /d put
+dup 105 /i put
+dup 106 /j put
+dup 107 /k put
+dup 108 /l put
+dup 110 /n put
+dup 114 /r put
+dup 115 /s put
+dup 116 /t put
+dup 120 /x put
+readonly def
+/FontBBox{0 -250 1171 750}readonly def
+currentdict end
+currentfile eexec
+D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE
+3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B
+532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470
+B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B
+986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE
+D919C2DDD26BDC0D99398B9F4D03D77639DF1232A4D6233A9CAF69B151DFD33F
+C0962EAC6E3EBFB8AD256A3C654EAAF9A50C51BC6FA90B61B60401C235AFAB7B
+B078D20B4B8A6D7F0300CF694E6956FF9C29C84FCC5C9E8890AA56B1BC60E868
+DA8488AC4435E6B5CE34EA88E904D5C978514D7E476BF8971D419363125D4811
+4D886EDDDCDDA8A6B0FDA5CF0603EA9FA5D4393BEBB26E1AB11C2D74FFA6FEE3
+FAFBC6F05B801C1C3276B11080F5023902B56593F3F6B1F37997038F36B9E3AB
+76C2E97E1F492D27A8E99F3E947A47166D0D0D063E4E6A9B535DC9F1BED129C5
+123775D5D68787A58C93009FD5DA55B19511B95168C83429BD2D878207C39770
+012318EA7AA39900C97B9D3859E3D0B04750B8390BF1F1BC29DC22BCAD50ECC6
+A3C633D0937A59E859E5185AF9F56704708D5F1C50F78F43DFAC43C4E7DC9413
+44CEFE43279AFD3C167C942889A352F2FF806C2FF8B3EB4908D50778AA58CFFC
+4D1B14597A06A994ED8414BBE8B26E74D49F6CF54176B7297CDA112A69518050
+01337CBA5478EB984CDD22020DAED9CA8311C33FBCC84177F5CE870E709FC608
+D28B3A7208EFF72988C136142CE79B4E9C7B3FE588E9824ABC6F04D141E589B3
+914A73A42801305439862414F893D5B6C327A7EE2730DEDE6A1597B09C258F05
+261BC634F64C9F8477CD51634BA648FC70F659C90DC042C0D6B68CD1DF36D615
+24F362B85A58D65A8E6DFD583EF9A79A428F2390A0B5398EEB78F4B5A89D9AD2
+A517E0361749554ABD6547072398FFDD863E40501C316F28FDDF8B550FF8D663
+9843D0BEA42289F85BD844891DB42EC7C51229D33EE7E83B1290404C799B8E8C
+889787CDC2BAF26F242EBDCFACBDBB4366B3FF8B61EB77A2D5CB8ED043CC677F
+065CB219AE7093997133905126A3555B89E83F0FEA679B2E45E3C4D16BB578F6
+83778A44C76A5EC27B66C8D35AFB9F04D1979A59007A57A3B36EF9FA34CE5233
+324EC98F38FF79B7F6C29D16C498D0F26FBE1E2CFC9A46EA99F7717795F145F4
+A5565AF88877C525ECD0E9ECD1D19B731E50363A46D5B576351B4657116EA4AE
+60FD15F8F94834684DA50CB1B30D2B647AAFB2E46AFE1B18CB859210A02318F5
+5FFAC83A06F9A29D11C64BF5F3B2F05F7573F6AB8C938C783F832674A775B047
+C8F9249ECA759C70C7DBE31A20BE54981042CF338C20FAB5101FE265A2A2848A
+05D5B8743FDBFFB746014AFD04E194767578BB4BC09C4BA1718654F22BE0923A
+ACDBBC1D55536150E3C8882DDE937CC0FDCD022DF344C7BFDEA6C7DCA46DF1A0
+E650760D02F9FEA92E2054BD3AB7929C2681D29302935DF4EBBC79E94BFF2981
+6AA850454DD5D1484B7B2C77E041B8D8704EEC0C125F876611B8734F92D2D42F
+1E105D556D760A67D53F63C21F2966ECEA481FCBA69A085474D09244E57A2949
+515CC7E42F3BC53D3351582F413CBE9D5F0AA250010DF0B8852DCDEFDB413E6A
+0A52476549E949B19FAB5ADBC822B75CE2BAFCB9AA2BDD0F1B09A0488909FAF7
+5248E195C9FECD66D31D2154BE3C5F7E9D5999A3D98887FF6AC592AAC1B333BD
+2BA0E7FEBE34AAD138972FFB0893B4322E8645A207120454BC08C20E4261B48D
+D4A334431324EBA58D35756A8B8B2FD10B2D83021582F4606FDB40ECD6719195
+938531D9645973067D2444D81E302BE473EE06BB0893331F84AB44249C56F527
+BE62E63C2478BE969A713BB65D6483DE21E6AEB9F1EAF0372A05BE6FC8329D24
+8267497DD6B34210744A5C2EA400B522A40C59F9996D3753D9BA6A5E14878AC3
+0E15662ED4D857D9719D1B0F0C2A4B74F2DC3E9702DE4E2C2F10F9393A21F9B0
+C4B115359D25C9F2DA0128A91AE272ABFD45A4F454CC9D7A064FD0E639CD7BBE
+E21ADF9346AA80F24999CA788B4A8FED53E3388664B9D51D6E2F4FADD3A70AC9
+8243F24072A524F43F5D72CFE53060EA80636B66B6399CA44F2E74E0D10C97A2
+3C0205E7D880453E46BC1547FF2CBFAD095757F030D647E3E86F3224B336F26A
+D6835FE239158219B5FD715B3B2E8F74A053BE279A1188E2950E62DF353AC6A3
+BDD4F2E80225FA9DBD60E648DD0C5B4537D37F529F9E05D273422A577AD06102
+5C4DD3BF98C4348C3164EFFE730583EFBC984E752E634045F005A006F983AFD7
+E52F3DB0775E8C563E7BA885350F82680252F88BE2779C407398FC10F4BD5B47
+67D59D232048FCEB25F25CFB1CDBF9424112F2296615EC701949BAD7214CD031
+3CEE6CBE843A3AE24171DC8DF8E2187857C95EEADD57209F35A1F395BD1FC1D7
+8A897F8DDC326F7D54554685A5360E28CCF0E140E00CE7BAA3E5D31BB9835CA7
+5BD8EDF15F75CF786724CA913F9F53A0D31E2F0E4965D2D3A218B09155BEAF25
+852D8407C2D1F14D7A1EB2FAE19752BECCD343E3FA070294B572C31D4F0773AF
+1EDC366D7938F5D3AD59D0B752B7631FF6C5D1FCA3D14EA18FEA28DE9B208C8A
+BEEBE3E8D3CAC61E769CC6A02971E6FF9A5E464551912750C604E314C4A2EA60
+DE5372EBAB851336E4DB3B7736A8A836283D97CA05D3F68373EE53DB20B54E6B
+F632C08B90644B190B2AF07423F5E432442BA187E15C5D70458E2D3EEAB2BB81
+54870B4ECA71C5D3E8F8BED323E6B2BF0014B66ABD4D7DC362CD4FBE29D0D6F4
+5AEA8CFC020F9B3B9D30BBE3E8AB88353ED669F70B0117E792BCFFE56D1CA794
+A2E2601C43F02E71F5A59D9EE6B9580C54FCFC09706FBD2BE11EAE3C0CB6F0AF
+D1A1116CB023E17340C9BCBE291BDA5BA88866E3D8862F13772A3CAF168970D3
+ECE65BCE9CD69D7BB87D42D75F3EC10480B642BC7C06797CC24B06ED2459538C
+E73327A102689DF0E16258CBA0F6793E226DF350930442A2A904A3F537604BD7
+479E0EFCA3EE2AB78E63C028673683D203BDB1F30480BF01C50162FEEF71917F
+B240CF393F6D5E8AF3E8E2F1A9CA0D0EE0E8B1449890250FAD0A8DFB1FBC663B
+2E225613EB5D1A1B0BCE536B4999428034EC9BA602A4A605D64E6F7204413669
+1A295DB9DFF2EFB1A2FD4153A2714D4FB9EB868CE0C20065932562F271B8F0C0
+1645F0DACBF12BDC4C162749B986CBD7ABDAEAD8DD94B3C2B87D1C9E18DE3F45
+E9B8A21630EE83E832C6A3887D3150684F1F9B28ED4C438A145B7C26ABC7B41D
+22D633E713A146B718894055A0C5ACE6D556E9882EF23E7229D00E2038251DE6
+71EBF0B910E4B2ABF00774F3BAFDA91B893E217CFAA277CAB718D21E2432921B
+B82C5FFB8BF276719F6815C09493BC8FE82E33DB0EF703F3F54890D4129102A7
+5FC02DF9701988D3F6B5445793205FDB224C61C9D9C30E262C044D773BCEAF69
+6162C2C76EDB31978907A8F5EB41A5B2A48EAB6C1195655F6E6997B6D9A5A6C0
+A78105E503F1E02DF706DB93DC8AF589BCFD6ADAF983541DEAC144F640DD4582
+7AE7688E17150775A69DDF03AFD9594B715D3722589AE210157F44692F330AC3
+F5260A3A795803A001E4342BB0474A23734F0D779FFBD7FA96FF81418DECD960
+9BACEF3159544A5A167705B297D517A49CB87D8FF5DF8A8C1EA77671AAB3AD93
+6EE3F25283820B64F400FC633043F5242F86AD93C1B7F0246CA60B4C894C87F2
+EF125ED3C271B45F90AE0B937E9F763C84256F3F47BDFB83CE926A8C371191AC
+312928DF5C87A3282A881A520592C62295408AD92A767E1084861DB010919616
+59FD6DE85787A18CB27DC6C0C2F4DDD68CA539D900774696CEB53FBAA4CA6BF9
+4D7AFF39DB99019B8008D8403CFB0B56CD84E592FA5CE57E4BB97C57C8FD80C4
+7BCC26E150DBFAB0CA59A0ACA70345CD00B0B00428421C13173D49D74F8D6684
+302AC70BBD77036FC71750D670F8B0C8162BCEF3DB3CFF161FA1A18F9FBD23C9
+CFE9E9AE82B804B236F74EB2A197936EBAFB01D4E6939B90A4BC5350BDCC0FBD
+49E97502F9125C11F8C7BA7B2C20074766D9D431ED27039C82D87C35C3E7D318
+2830647F250858FE041E01BFAC3B68ADC806BA957074E078B2429C872B8F5AC3
+3742327FF14FC0E3C92F3288FA564B8679EA8D8F12241B8AB3D838697B8E77E5
+9850C9A9A8C003973B6A8D01EE6481ADD3EA7170FDEA3D7154A3B6CC7A57E77B
+8EEDACF237DBE78500A1A8BA50D742A0E96155BA4FE0B957739BDF7A3750813F
+3E46A33D18126974A28D776CC89A462A4468B5A83B9504953EF2F860804B5858
+CBA60B752245F82D6F6351150441DC1A1FF10D1C21E9D30C9372AC3C98EA4D0C
+F5D7F0ADFA32B4795F30AF0D70F3726B5554B401C56E9B8F22737CB95F2DC629
+8115139AD53EF5AEEAD88FB188A76EC9742DFDBF8FF7875C6AE1FC95FFC0CE5B
+DF1FCD7237BCFD950B51C7242AFD827DF3D8A33924FD382EB384E0D597B47402
+1439BE425507C45E2A3E84C2E10C2D3049A56D29EF07E7D8BA97AC78AC67712A
+E1250D02881E151A0B35323DB7965F0ADAB0FBCAC6993915FA369A9DD5B352F5
+CCA00FAA6058378CA6595873984EF6602C56DF9C2A3647316E3C1F223E40531A
+C2DF6531CB053D996577EE1C3084484456E01C1BE186AC66C14E640D3FFBA030
+78CD7A5A6D11562A5D939D21CD2C618E9648684A62DC5A0B7031FE9E4E46D443
+29BA0188D4334D93B2B08E5A1645D3DD8F89F6AD12DE50D712729212849614A0
+37F6FE2BA4AC810E536C02254554F461F912E904B2832C00E7FDC67A3972EEB5
+309599D6CD4C744DB0125FDA4C8514FE0E1F7E0E65ACEAAD0A01DC92EF630A1D
+5B57BBE25DF1F7A184E9D8DC6F65F139725BC4AB4CB085AF49A2260838DE4985
+084C7DBE968D16B03E4CC33FEF7CA14AB0FED4A7B2F3E25254D9AD5375BE6B8C
+8A5F649849F06EE2E4230F33E8AF7B2305315021C106C3C162739A7D8B8F251E
+58F206991E6126D4AC94AB025F3901F3DFDA06D949DD8454581501DC58D813CB
+DFEFCBA7B4E77F3071451E06310E8E2FE68A2DF24A96D6FA97F0CADA5D583B4C
+D69DCE527D0595ED1926D98EF6E9244B01B69CE38FDC29164CDD044F460FDE8C
+3E0D42EAAA1FE3FB78852CCC182A29B3F6CD100BAD23609C1E628F6F6F87C9B4
+140556B9E7B4F959926074576186A3A29ACCF2F087B790F3D74657C5172D511B
+DD0D469E3A5C6020359CBAF5E30FA2069644DF98E98D972ACEB4022A56EB7D2B
+86A6F5F7F8CBB569425E7FF4FEECE58ABAF7A0ACE28D56938F5373441E444B0A
+67EDA16E5C8D503EEF9891CA7DA993087DBD9E725D1B21CEF96A9B5D8144D00E
+D980B98D4DFBA4D84FDC8EDCE0847D979FADCA832E6EA28485F6A36024ADEE8C
+08F7848B2B2AC7806B713D6E6B9FB4FE1EDDD17AE2F9D52E705F4F23386977A0
+FACEE53745A829D745A641E36963E61E99196830241BE1F1350F1A25D3D1F8AD
+05797E1E1520F87AD6867E6744946AC63F3ED1CB18F6AF5BC0A2D01D40FA85BD
+FDB0EA39A2224783B23FC254007F7035668C2D937790C75BC5EDEBCC1EFF361F
+9E0F3DCB1ED7A8095DE536C8BB9221CD5A5E038DC9C2ECAF59BEBA15C280FE7F
+E8E237C804A48D69039ABF7D57F8410C64B97B4BB058A1BC3D066DDA0CDF6A7E
+67D6BCD368F25BE95A7BCFF7FDBCAE674EE1035E0D2FF7CE93AD592BA10CF31F
+5C7F53A42D6579933E855F94AB40B4CA7D3C001C8A13EB69784958E64348D73F
+50914BF5B3C238D1B9CA0BBD50917430062D848833CB80FDC5FACB8131A6587F
+182FA0CB4CD5B2883D3A5D464D84559A38AFBEBE68028B40B33442AA225689E9
+ADF8DC21924B95
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndFont
+TeXDict begin 39139632 55387786 1000 600 600
+(D:/Texte/Sensors/Fusion/Fusion-chapitre/Fusion-chapter.dvi)
+@start /Fa 133[27 31 1[47 1[35 20 27 27 1[35 35 35 51
+20 31 20 20 35 35 20 31 35 31 35 35 12[39 35 43 1[43
+1[47 59 2[31 23 2[43 43 51 47 1[43 6[23 1[35 1[35 35
+35 1[35 1[35 1[18 23 18 2[23 23 23 39[{ TeXBase1Encoding ReEncodeFont }
+49 70.5687 /Times-Italic rf /Fb 175[70 80[{}1 58.1154
+/CMEX10 rf /Fc 201[0 50[31 2[45{}3 41.511 /CMSY5 rf /Fd
+194[43 8[28 28 28 28 28 48[{}6 41.511 /CMR5 rf /Fe 193[65
+62[{}1 83.022 /MSAM10 rf /Ff 214[24 24 40[{}2 49.8132
+/CMR6 rf /Fg 205[42 50[{}1 49.8132 /CMSY6 rf /Fh 167[102
+88[{}1 66.4176 /CMEX10 rf /Fi 173[48 82[{}1 66.4176 /MSBM7
+rf /Fj 139[24 7[20 1[25 22 8[26 17[48 78[{}6 49.8132
+/CMMI6 rf /Fk 162[20 1[20 29[55 11[35 35 4[55 1[27 27
+40[{}8 66.4176 /CMR8 rf /Fl 133[33 1[40 2[41 25 33 32
+3[43 62 21 37 29 24 3[33 36 2[37 29 11[41 43 3[54 56
+6[55 2[58 2[53 3[35 55 1[20 23[33 16[35 5[45 9[59 1[{}30
+66.4176 /CMMI8 rf /Fm 138[39 23 1[31 1[39 35 39 1[20
+2[20 39 35 23 31 39 1[39 35 12[47 5[51 7[43 14[35 35
+35 35 35 35 35 2[18 46[{ TeXBase1Encoding ReEncodeFont }26
+70.5687 /Times-Bold rf /Fn 139[23 5[37 1[20 31 24 22
+38[43 66[{}7 41.511 /CMMI5 rf /Fo 201[0 3[45 66 19 14[66
+12[52 16[34 2[52{}8 58.1154 /CMSY7 rf /Fp 206[25 49[{
+ TeXBase1Encoding ReEncodeFont }1 49.3978 /Times-Roman
+rf /Fq 194[51 8[33 33 33 33 33 4[51 1[26 26 40[{}9 58.1154
+/CMR7 rf /Fr 167[120 4[69 2[88 14[73 73 3[74 1[74 1[74
+6[73 73 14[66 66 5[62 6[61 61 50 50 6[48 48 6[38 38{}21
+83.022 /CMEX10 rf /Fs 173[60 3[60 78[{}2 83.022 /MSBM10
+rf /Ft 135[44 9[46 69 23 2[23 7[42 3[23 1[23 29[65 1[23
+1[42 42 42 42 42 42 42 42 42 42 4[65 1[32 32 40[{}23
+83.022 /CMR10 rf /Fu 133[39 41 47 1[40 1[30 39 37 1[42
+40 50 73 25 43 34 29 3[39 43 36 1[44 10[48 7[67 81 5[65
+1[61 69 1[63 3[65 42 65 23 23 23[39 5[36 10[41 2[37 1[47
+53 4[65 4[69 1[{}39 83.022 /CMMI10 rf /Fv 133[39 44 50
+66 44 55 28 39 39 1[50 50 55 78 28 50 1[28 55 50 1[44
+1[44 1[50 12[61 55 2[61 1[72 1[61 2[39 2[66 66 72 66
+66 66 11[50 50 50 50 50 2[25 4[33 33 40[{
+ TeXBase1Encoding ReEncodeFont }41 99.6264 /Times-BoldItalic
+rf /Fw 206[29 49[{ TeXBase1Encoding ReEncodeFont }1 58.1154
+/Times-Roman rf /Fx 149[23 2[42 42 44[46 46 1[0 3[55
+83 7[83 7[83 6[65 65 3[65 65 4[42 12[65 1[65{}17 83.022
+/CMSY10 rf /Fy 107[46 25[32 37 37 55 37 42 23 32 32 42
+42 42 42 60 23 37 1[23 42 42 23 37 42 37 1[42 12[46 3[51
+3[46 2[28 7[51 13[42 42 42 2[21 28 21 2[28 28 28 35[42
+42 2[{ TeXBase1Encoding ReEncodeFont }41 83.022 /Times-Italic
+rf /Fz 152[35 35 47[0 3[47 17[71 10[55 5[35 12[55 1[55{}9
+66.4176 /CMSY8 rf /FA 75[23 29[35 1[31 25[31 35 35 51
+35 35 20 27 23 35 35 35 35 55 20 35 20 20 35 35 23 31
+35 31 35 31 7[51 51 67 51 51 43 39 47 1[39 51 51 63 43
+51 27 23 51 51 39 43 51 47 47 51 65 4[20 20 35 35 35
+35 35 35 35 35 35 35 20 18 23 18 40 1[23 23 37[39 2[{
+ TeXBase1Encoding ReEncodeFont }74 70.5687 /Times-Roman
+rf /FB 135[38 3[25 31 31 3[41 1[21 35 27 23 4[35 13[39
+7[53 11[50 5[52 31[31 10[34 5[43 11[{}17 58.1154 /CMMI7
+rf /FC 134[50 50 72 50 55 33 39 44 1[55 50 55 83 28 55
+1[28 55 50 33 44 55 44 55 50 9[100 3[55 72 1[61 78 72
+4[39 2[61 66 72 72 1[72 10[50 50 50 50 50 50 2[25 46[{
+ TeXBase1Encoding ReEncodeFont }42 99.6264 /Times-Bold
+rf /FD 138[46 28 32 37 1[46 42 46 69 23 2[23 46 42 1[37
+1[37 46 42 12[55 7[55 7[60 2[60 12[42 42 42 42 2[21 43[46
+2[{ TeXBase1Encoding ReEncodeFont }26 83.022 /Times-Bold
+rf /FE 64[37 42[37 25[37 42 42 60 42 42 23 32 28 42 42
+42 42 65 23 42 23 23 42 42 28 37 42 37 42 37 3[28 1[28
+3[78 1[60 51 46 55 2[60 60 74 51 60 32 28 60 60 46 51
+60 55 55 60 1[37 3[23 23 42 42 42 42 42 42 42 42 42 42
+23 21 28 21 47 1[28 28 28 35[46 46 2[{ TeXBase1Encoding ReEncodeFont }
+73 83.022 /Times-Roman rf /FF 134[66 1[96 1[74 44 52
+59 2[66 74 111 1[74 1[37 74 1[44 59 1[59 1[66 13[74 4[96
+7[81 1[96 2[96 65[{ TeXBase1Encoding ReEncodeFont }21
+132.835 /Times-Bold rf /FG 139[39 1[52 1[65 7[65 2[52
+3[58 29[84 17[58 49[{ TeXBase1Encoding ReEncodeFont }8
+116.231 /Times-Bold rf end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+ end
+%%EndSetup
+%%Page: 1 1
+TeXDict begin 1 0 bop 523 282 a FG(Chapter)27 b(1)523
+448 y FF(An)33 b(Asynchr)n(onous)g(Diffusion)g(Scheme)f(f)m(or)i(Data)
+523 598 y(Fusion)f(in)g(Sensor)g(Netw)o(orks)523 886
+y FE(Jacques)20 b(M.)g(Bahi,)h(Abdallah)e(Makhoul)f(and)i(Ahmed)f
+(Mostef)o(aoui)523 1720 y FD(Abstract)34 b FE(One)17
+b(important)e(issue)j(in)f(sensor)f(netw)o(orks)g(is)i(parameters)e
+(estimation)g(based)h(on)523 1820 y(nodes)i(measurements.)f(Se)n(v)o
+(eral)h(approaches)f(ha)n(v)o(e)h(been)h(proposed)d(in)j(the)g
+(literature)f(\(cen-)523 1919 y(tralized)i(and)g(distrib)n(uted)f
+(ones\).)g(Because)i(of)f(the)g(particular)f(noisy)h(en)m(vironment,)d
+(usually)523 2019 y(observ)o(ed)26 b(in)j(sensor)f(netw)o(orks,)f
+(centralized)g(approaches)g(are)h(not)g(ef)n(\002cient)g(and)g(present)
+523 2119 y(se)n(v)o(eral)g(dra)o(wbacks)f(\(important)f(ener)o(gy)h
+(consumption,)f(routing)h(information)f(maintain-)523
+2218 y(ing,)19 b(etc.\).)g(In)g(distrib)n(uted)g(approaches)e(ho)n(we)n
+(v)o(er)m(,)g(nodes)i(e)o(xchange)e(data)j(with)f(their)h(neigh-)523
+2318 y(bours)f(and)f(update)h(their)g(o)n(wn)g(data)g(accordingly)e
+(until)j(reaching)d(con)m(v)o(er)o(gence)f(to)k(the)f(right)523
+2417 y(parameters)24 b(estimate.)i(These)f(approaches,)e(although)h
+(pro)o(vide)f(some)i(rob)n(ustness)g(against)523 2517
+y(nodes)d(f)o(ailure,)g(does)h(not)g(address)f(important)g(issues)h(as)
+h(communication)c(delay)j(tolerance)523 2617 y(and)d(asynchronism)e
+(\(i.e.,)h(the)o(y)h(require)f(that)h(nodes)g(remain)f(synchronous)e
+(in)k(communica-)523 2716 y(tion)k(and)f(processing\).)f(In)i(this)g
+(chapter)m(,)f(we)h(tackle)g(these)g(issues)h(by)f(proposing)d(a)k
+(totally)523 2816 y(asynchronous)21 b(scheme)j(that)g(is)g
+(communication)d(delay)j(tolerant.)f(The)g(e)o(xtensi)n(v)o(e)g
+(simula-)523 2916 y(tions)d(series)h(we)g(conducted)d(ha)n(v)o(e)h(sho)
+n(wed)g(the)i(ef)n(fecti)n(v)o(eness)d(of)i(our)g(approach.)523
+3281 y FC(1.1)41 b(Intr)n(oduction)523 3513 y FE(Recent)17
+b(years)f(ha)n(v)o(e)h(witnessed)f(signi\002cant)h(adv)n(ances)e(in)i
+(wireless)h(sensor)e(netw)o(orks)g(which)523 3613 y(emer)o(ge)21
+b(as)i(one)f(of)g(the)g(most)h(promising)d(technologies)h(for)h(the)g
+(21)2555 3583 y FB(st)2638 3613 y FE(century)f([1)o(].)h(In)g(f)o(act,)
+523 3713 y(the)o(y)17 b(present)f(huge)g(potential)g(in)i(se)n(v)o
+(eral)e(domains)g(ranging)g(from)g(health)h(care)g(applications)523
+3812 y(to)24 b(military)g(applications.)e(In)i(general,)f(the)h
+(primary)e(objecti)n(v)o(e)h(of)h(a)g(wireless)h(sensor)f(net-)523
+3912 y(w)o(ork)g(is)h(to)g(collect)f(data)g(from)f(the)i(monitored)d
+(area)i(and)g(to)g(transmit)h(it)g(to)f(a)h(base)f(station)523
+4011 y(\(sink\))d(for)g(processing.)g(Often,)g(the)h(ultimate)f(goal)h
+(is)g(to)g(deri)n(v)o(e)f(an)h(estimate)g(of)g(a)g(parame-)523
+4111 y(ter)i(or)f(function)f(of)h(interest)h(from)f(these)g(ra)o(w)h
+(data)f(\(e.g.,)g(source)g(location,)f(etc.\))h([2,)g(3,)h(4)o(].)p
+523 4182 851 4 v 523 4279 a FA(Computer)19 b(Science)g(Laboratory)-5
+b(,)20 b(Uni)n(v)o(ersity)f(of)f(Franche-Comt)t(\264)-27
+b(e)21 b(\(LIFC\))523 4362 y(Rue)d(Engel-Gros,)i(BP)e(527)523
+4445 y(90016)h(Belfort)g(Cede)o(x,)f(France)523 4528
+y(e-mail:)g Fz(f)p FA(\002rstname.lastname)p Fz(g)p FA(@uni)n
+(v-fcomte.fr)3252 4960 y(1)p eop end
+%%Page: 2 2
+TeXDict begin 2 1 bop 523 100 a FA(2)1011 b(Jacques)20
+b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
+282 y FE(In)23 b(case)h(where)f(the)h(sensors)g(are)f(carrying)f(out)h
+(multiple)g(tasks)h(and)f(need)g(this)h(estimate)g(to)523
+382 y(mak)o(e)c(local)g(decision,)f(the)h(deri)n(v)o(ed)f(estimate)h
+(is)h(then)f(sent)h(back)e(to)h(them.)623 482 y(The)j(abo)o(v)o(e)g
+(data)g(processing)g(scheme)g(is)i(usually)f(kno)n(wn)e(as)j
+Fy(centr)o(alized)e(data)g(fusion)p FE(.)523 581 y(In)i(this)g(scheme,)
+f(each)h(sensor)g(sends)g(its)h(data)e(either)h(directly)-5
+b(,)23 b(if)j(it)f(is)h(located)e(in)i(the)f(im-)523
+681 y(mediate)e(neighbourhood)18 b(of)23 b(the)g(sink,)g(or)f(by)h
+(multi)g(hops)g(relays)f(to)i(the)f(data)g(fusion)f(cen-)523
+780 y(ter)k(via)f(wireless)i(communications.)22 b(Besides)27
+b(the)f(important)e(cost)i(in)f(term)h(of)f(ener)o(gy)f(re-)523
+880 y(sources)e(consumption)e(due)i(mainly)f(to)i(wireless)g
+(communications)d(\(i.e.,)i(sensors)g(that)g(are)523
+980 y(located)c(v)o(ery)f(f)o(ar)i(a)o(w)o(ay)f(from)g(the)h(base)f
+(station,)h(requires)e(an)i(important)e(amount)g(of)h(ener)o(gy)523
+1079 y(to)26 b(send/recei)n(v)o(e)f(data)h(to/from)f(the)h(sink\),)g
+(this)h(scheme)f(does)g(not)g(hold)f(good)g(rob)n(ustness)523
+1179 y(against)d(communication)d(loss)k(neither)f(against)f(nodes)h(f)o
+(ailures.)g(Furthermore,)d(it)k(requires)523 1279 y(that)g(each)f(node)
+g(maintains)g(rooting)g(information)e(to)j(reach)f(the)h(sink.)f(This)h
+(is)h(particularly)523 1378 y(challenging)18 b(and)h(resources)g
+(consuming)f(in)i(case)h(where)e(netw)o(ork)g(topology)f(is)j
+(constantly)523 1478 y(changing)d(due)h(either)g(to)h(nodes)f(f)o
+(ailures)h(or)f(communications)e(unreliability)i(or)g(nodes)g(mo-)523
+1577 y(bility)-5 b(.)623 1677 y(Distrib)n(uted)38 b(approaches)e(were)i
+(proposed)f(as)i(interesting)e(alternates)i(based)f(on)g
+Fy(in-)523 1777 y(network)31 b FE(processing)e(which)i(may)-5
+b(,)29 b(in)i(man)o(y)f(cases,)h(signi\002cantly)f(decrease)h(the)f
+(ener)o(gy)523 1876 y(consumed.)17 b(In)j(f)o(act,)f(in)h(such)f
+(approaches,)e(nodes)i(do)g(not)g(need)g(to)g(hold)g(global)g(kno)n
+(wledge)523 1976 y(about)e(the)h(current)f(netw)o(ork)g(topology)f
+(since)i(each)g(node)f(communicates)f(only)h(with)h(its)i(im-)523
+2076 y(mediate)k(neighbours.)e(The)i(unkno)n(wn)e(parameter)h(estimate)
+i(is)g(then)g(successi)n(v)o(ely)e(carried)523 2175 y(out)18
+b(through)e(local)i(computation)e(from)h(the)h(e)o(xchanged)d(data.)j
+(The)g(adv)n(antages)e(of)i(such)g(ap-)523 2275 y(proaches)23
+b(are)g(numerous:)g(\(a\))g(no)h(central)f(data)h(fusion)f(base)h
+(station)g(is)h(required)d(as)j(e)n(v)o(ery)523 2374
+y(node)d(holds)h(the)g(estimate)h(of)f(the)g(unkno)n(wn)e(parameter;)h
+(\(b\))h(multi-hop)e(communications)523 2474 y(are)g(a)n(v)n(oided)e
+(\(only)h(direct)g(communications)e(between)i(neighbours)e(are)j
+(needed\))e(and)h(con-)523 2574 y(sequently)j(maintaining)f(rooting)h
+(data)g(is)i(not)f(needed)f(an)o(y)g(more;)g(\(c\))h(better)g(beha)n
+(viour)d(is)523 2673 y(observ)o(ed)i(in)i(front)e(of)i(communication)c
+(unreliability;)j(\(d\))g(Netw)o(ork)g(scalability)g(is)i(better)523
+2773 y(supported)i(than)h(in)g(centralized)g(approach)e(due)i(mainly)g
+(to)h(direct)f(communications)e(be-)523 2873 y(tween)20
+b(neighbours;)e(etc.)623 2972 y(Ne)n(v)o(ertheless,)23
+b(man)o(y)g(of)h(the)g(proposed)f(distrib)n(uted)g(approaches)f
+(present)i(some)g(insuf-)523 3072 y(\002ciencies)f(\(see)g(ne)o(xt)f
+(section\).)g(F)o(or)h(instance,)f(the)h(\003ooding)e(approach)g
+(requires)h(that)h(each)523 3171 y(node)18 b(holds)g(a)h(relati)n(v)o
+(ely)e(important)g(storage)h(space.)h(Other)f(approaches)e(mak)o(e)j
+(the)f(unprac-)523 3271 y(tical)24 b(assumption)f(of)g(communication)e
+(synchronization)g(between)i(sensors)h([2)o(,)g(5])g(and)f(do)523
+3371 y(not)18 b(tolerate)g(communication)e(delays)i(neither)f(nodes)h
+(f)o(ailures.)g(These)g(weaknesses)g(remain)523 3470
+y(v)o(ery)j(restricti)n(v)o(e)h(in)g(sensor)g(netw)o(ork)f(en)m
+(vironment)e(where)j(on)f(one)h(hand)f(nodes)h(are)g(prone)523
+3570 y(to)17 b(frequent)d(f)o(ailures)i(as)h(the)o(y)f(are)h(dri)n(v)o
+(en)d(by)i(batteries)h(and)e(on)h(the)h(other)e(hand)h(communica-)523
+3670 y(tions)21 b(are)g(almost)g(unreliable)f(and)h(prone)e(to)j
+(delays.)e(Moreo)o(v)o(er)m(,)e(these)k(tw)o(o)f(limitati)n(v)o(e)g
+(fea-)523 3769 y(tures)i(lead,)g(in)g(addition)f(to)h(nodes)g(mobility)
+-5 b(,)21 b(to)j(dynamically)d(changing)g(netw)o(ork)h(topolo-)523
+3869 y(gies.)16 b(In)f(order)g(to)h(o)o(v)o(ercome)d(the)j(abo)o(v)o(e)
+e(mentioned)g(weaknesses,)h(we)h(propose)e(and)h(in)m(v)o(esti-)523
+3968 y(gate)g(in)h(this)g(chapter)f(a)h(no)o(v)o(el)f(approach)e(for)i
+(data)h(fusion)f(in)h(sensor)f(netw)o(orks.)g(The)g(k)o(e)o(y)h(idea)
+523 4068 y(behind)22 b(is)i(to)g(de)n(v)o(elop)d(a)j(consensus)e
+(algorithm)g(that)h(allo)n(ws)h(all)g(nodes)e(of)h(the)h(sensor)f(net-)
+523 4168 y(w)o(ork)16 b(to)g(track)g(the)g(a)n(v)o(erage)f(of)h(their)g
+(pre)n(vious)f(measurements)g([6)o(,)i(2)o(,)g(5)o(,)g(7)o(,)g(8)o(,)g
+(9,)f(10)o(,)h(11)o(,)f(12)o(].)523 4267 y(More)j(speci\002cally)-5
+b(,)19 b(our)g(proposition)f(is)j(based)e(on)h(an)g Fy(in-network)f
+(async)o(hr)l(onous)e(iter)o(ative)523 4367 y(algorithm)p
+FE(,)23 b(run)g(by)g(each)h(node)f(and)g(in)h(which)f(nodes)g
+(communicate)f(with)i(only)f(their)h(im-)523 4467 y(mediate)c
+(neighbours.)d(The)j(main)g(contrib)n(utions)e(of)i(our)f(w)o(ork)h
+(are:)523 4611 y Fx(\017)58 b FE(Our)23 b(approach)e(does)i(not)g
+(require)f(an)o(y)g(synchronization)e(between)j(nodes)f(as)i(it)g(is)g
+(basi-)623 4711 y(cally)i(asynchronous.)c(In)k(other)f(w)o(ords,)g
+(each)h(node)f(communicates)f(its)j(data)f(to)g(its)h(in-)p
+eop end
+%%Page: 3 3
+TeXDict begin 3 2 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)n
+(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)581
+b(3)623 282 y FE(stantaneous)16 b(neighbours)f(at)j(its)g(o)n(wn)f
+(\224rhythm\224)e(i.e.,)i(no)g(delays)h(between)e(nodes)h(are)g(ob-)623
+382 y(serv)o(ed)f(in)g(our)h(approach.)d(This)j(is)h(particularly)d
+(important)g(because)h(in)h(the)g(synchronous)623 482
+y(schemes,)i(as)h(the)g(one)f(reported)f(in)i([2)o(],)g(an)o(y)e(delay)
+h(between)g(tw)o(o)h(nodes)f(in)h(the)g(netw)o(ork)623
+581 y(will)j(result)g(in)f(a)i(global)d(delay)h(o)o(v)o(er)g(the)g
+(whole)g(netw)o(ork)g(since)h(all)g(the)f(nodes)g(are)h(syn-)623
+681 y(chronous.)16 b(This)j(is)h(particularly)e(limitati)n(v)o(e)g(in)h
+(heterogeneous)d(sensor)j(netw)o(orks)f(where)623 780
+y(nodes)h(ha)n(v)o(e)h(dif)n(ferent)e(processing)h(speeds.)523
+880 y Fx(\017)58 b FE(As)27 b(a)f(consequence)e(of)j(its)g
+(asynchronism,)d(our)h(proposed)f(approach)g(totally)j(tolerates)623
+980 y(communication)14 b(delays.)j(This)g(feature)f(is)i(of)f(an)g
+(important)f(matter)g(because)h(sensor)g(net-)623 1079
+y(w)o(orks,)22 b(as)i(it)h(is)f(commonly)d(kno)n(wn,)h(are)h(prone)f
+(to)h(en)m(vironmental)d(perturbations)i([13)n(])623
+1179 y(when)d(communication)f(delays)h(occur)h(more)f(frequently)-5
+b(.)523 1279 y Fx(\017)58 b FE(The)24 b(proposed)f(distrib)n(uted)h
+(algorithm,)f(as)j(pro)o(v)o(en)d(theoretical)h(and)g(v)n(alidated)g(e)
+o(xperi-)623 1378 y(mentally)-5 b(,)17 b(supports)g(dynamic)g
+(topologies)g(and)h(guarantees)f(that)i(each)f(sensor)g(node)g(will)623
+1478 y(con)m(v)o(er)o(ge)f(to)j(an)g(accurate)f(estimate)i(of)f(the)g
+(unkno)n(wn)e(parameter)-5 b(.)623 1644 y(Ho)n(we)n(v)o(er)m(,)27
+b(as)j(for)e(an)o(y)h(iterati)n(v)o(e)g(approach,)d(our)j(approach)e
+(could,)h(under)g(certain)h(en-)523 1743 y(vironmental)37
+b(conditions,)h(consume)g(more)g(netw)o(ork)g(resources,)g(mainly)h
+(communica-)523 1843 y(tions,)15 b(than)g(other)g(centralized)f
+(approaches,)f(speci\002cally)i(in)h(\224perfect)e(en)m(vironment\224)e
+(where)523 1943 y(nodes)27 b(and)g(communications)e(are)j(totally)f
+(reliable)g(and)g(the)h(netw)o(ork)e(topology)g(is)i(\002x)o(ed.)523
+2042 y(Ne)n(v)o(ertheless,)h(we)i(note)g(here)f(that)g(our)g(concern)f
+(is)j(more)d(focused)h(on)g Fy(\224noisy)h(en)m(vir)l(on-)523
+2142 y(ment\224)20 b FE(in)h(which)e(communication)f(unreliability)g
+(and)i(nodes)f(f)o(ailures)h(are)g(usual.)523 2507 y
+FC(1.2)41 b(Ov)o(er)o(view)24 b(of)h(A)-10 b(v)o(eraging)25
+b(Pr)n(oblem)g(in)g(Sensor)h(Netw)o(orks)523 2740 y FE(The)20
+b(\002rst)g(and)g(the)g(simplest)g(approach)e(for)h(distrib)n(uted)g(a)
+n(v)o(erage)g(estimation)g(in)h(sensor)g(net-)523 2839
+y(w)o(orks)e(is)h(called)f Fy(\003ooding)e FE(approach)f([2].)j(In)f
+(this)i(approach,)d(each)i(sensor)f(node)g(broadcasts)523
+2939 y(all)22 b(its)g(stored)e(and)g(recei)n(v)o(ed)g(data)h(to)g(its)h
+(neighbours.)c(After)j(a)g(while,)g(each)g(node)e(will)j(hold)523
+3039 y(all)e(the)f(data)g(of)g(the)g(netw)o(ork)f(and)g(acts)i(as)g(a)f
+(fusion)g(center)f(to)h(compute)f(the)h(estimate)h(of)e(the)523
+3138 y(unkno)n(wn)26 b(parameter)-5 b(.)27 b(This)i(technique)e(has)h
+(ho)n(we)n(v)o(er)f(se)n(v)o(eral)h(disadv)n(antages)e([2)o(].)j
+(First,)523 3238 y(it)22 b(results)g(in)f(huge)g(amount)f(of)h(e)o
+(xchanged)e(duplicate)h(messages,)h(which)g(represents)g(a)g(real)523
+3337 y(limitation)c(in)h(en)m(vironments)d(lik)o(e)j(sensor)f(netw)o
+(orks.)f(Second,)h(\003ooding)e(requires)i(that)h(each)523
+3437 y(node)24 b(stores)h(at)h(least)f(one)g(message)g(per)f(node)g
+(\(in)h(order)f(to)h(compute)e(the)i(a)n(v)o(erage\).)e(This)523
+3537 y(could)k(lead)g(to)h(an)g(important)e(storage)h(memory)f
+(requirement)f(in)j(case)g(of)g(a)g(lar)o(ge)f(sensor)523
+3636 y(netw)o(ork)19 b(with)h(the)f(associated)h(operations)e(\(reads)h
+(and)g(writes\).)h(Finally)-5 b(,)19 b(it)i(is)f(ob)o(vious)e(that)523
+3736 y(those)23 b(requirements)e(will)j(consume)e(much)g(resources)g
+(leading)g(to)h(an)h(important)d(decrease)523 3836 y(of)f(the)g(whole)g
+(netw)o(ork)f(lifetime.)623 3935 y(Alternati)n(v)o(ely)-5
+b(,)22 b(in)j([3)o(])g(the)f(authors)g(proposed)f(a)i(scalable)f
+(sensor)h(fusion)e(scenario)h(that)523 4035 y(performs)33
+b(fusion)h(of)g(sensor)h(measurements)e(combined)g(with)h(local)h
+(Kalman)f(\002ltering.)523 4134 y(The)o(y)19 b(de)n(v)o(eloped)e(a)j
+(distrib)n(uted)f(algorithm)g(that)g(allo)n(ws)i(the)e(sensor)h(nodes)f
+(to)h(compute)e(the)523 4234 y(a)n(v)o(erage)e(of)g(all)i(of)f(their)f
+(measurements.)g(It)h(is)h(w)o(orthy)d(to)i(note)g(that)g(man)o(y)f
+(other)g(sensor)h(data)523 4334 y(fusion)i(approaches)g(are)h(based)f
+(on)h(Kalman)g(\002lters)h(and)e(mobile)h(agents)g([4)o(,)g(7,)g(14)o
+(,)h(10)o(,)f(11)o(].)p eop end
+%%Page: 4 4
+TeXDict begin 4 3 bop 523 100 a FA(4)1011 b(Jacques)20
+b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)623
+282 y FE(An)24 b(iterati)n(v)o(e)f(method)g(for)g(distrib)n(uted)g
+(data)h(fusion)f(in)h(sensor)g(netw)o(orks)f(based)h(on)f(the)523
+382 y(calculation)i(of)i(an)f(a)n(v)o(erage)f(consensus)1762
+352 y Fw(1)1822 382 y FE(has)i(been)f(proposed)e(in)j([2)o(].)g(The)f
+(authors)f(con-)523 482 y(sider)h(that)f(e)n(v)o(ery)g(node)f(tak)o(es)
+i(a)g(noisy)f(measurement)f(of)i(the)f(unkno)n(wn)f(parameter)-5
+b(.)24 b(Each)523 581 y(node)d(broadcasts)g(its)j(data)e(to)g(its)i
+(neighbours)19 b(and)j(updates)f(its)j(estimation)d(according)g(to)h(a)
+523 681 y(weighted)c(sum)h(of)f(the)h(recei)n(v)o(ed)e(data.)h(In)h
+(this)g(scheme)g(all)g(the)g(communications)d(are)j(direct)523
+780 y(ones.)623 880 y(Although)34 b(the)i(abo)o(v)o(e)e(mentioned)g(w)o
+(orks)h(and)h(other)f(e)o(xisting)g(data)h(fusion)f(scenar)n(-)523
+980 y(ios)g(guarantee)e(some)h(le)n(v)o(el)g(of)g(rob)n(ustness)g(to)h
+(nodes)f(f)o(ailures)g(and)g(dynamic)f(topology)523 1079
+y(changes)e([2)o(,)h(3,)g(4)o(,)g(9,)g(5],)f(the)o(y)g(either)h(put)f
+(some)h(unpractical)e(assumptions)h(lik)o(e)h(nodes)523
+1179 y(synchronization)17 b(or)j(do)g(not)g(support)e(practical)i
+(issues)h(as)g(the)f(communication)e(delays.)623 1279
+y(T)-7 b(o)25 b(the)g(best)g(of)g(our)f(kno)n(wledge,)e(the)j(abo)o(v)o
+(e)f(issues)i(which)e(are)h(e)o(xtremely)e(important,)523
+1378 y(especially)29 b(in)h(noisy)f(en)m(vironments,)d(are)k(not)f(tak)
+o(en)g(into)g(account)f(in)i(pre)n(vious)e(data)h(fu-)523
+1478 y(sion)d(approaches.)e(In)i(this)g(chapter)m(,)f(we)h(present)g
+(an)g(asynchronous)d(data)j(fusion)f(scheme,)523 1577
+y(particularly)g(tailored)h(to)g(perturbed)f(sensor)h(netw)o(orks.)f
+(It)i(focuses)f(on)h(a)g(distrib)n(uted)e(iter)n(-)523
+1677 y(ati)n(v)o(e)k(algorithm)e(for)i(calculating)f(a)n(v)o(erages)g
+(o)o(v)o(er)g(asynchronous)e(sensor)j(netw)o(orks.)f(The)523
+1777 y(sensor)i(nodes)g(e)o(xchange)f(and)h(update)f(their)h(data)h(by)
+f(the)h(mean)f(of)g(a)h(weighted)f(sum)g(in)523 1876
+y(order)24 b(to)h(achie)n(v)o(e)g(the)g(a)n(v)o(erage)f(consensus.)g
+(The)h(suggested)f(algorithm)g(does)h(not)g(rely)g(on)523
+1976 y(synchronization)18 b(between)i(the)h(nodes)f(nor)h(does)f(it)i
+(require)e(an)o(y)g(kno)n(wledge)f(of)h(the)h(global)523
+2076 y(topology)-5 b(.)25 b(T)-7 b(o)29 b(round)d(up,)h(the)h(con)m(v)o
+(er)o(gence)d(of)i(the)h(proposed)e(algorithm)h(is)i(pro)o(v)o(ed)d(in)
+i(a)523 2175 y(general)19 b(asynchronous)e(en)m(vironment.)523
+2540 y FC(1.3)41 b(Asynchr)n(onous)26 b(Fusion)f(Scheme)523
+2790 y Fv(1.3.1)41 b(F)-7 b(ormalization)523 3022 y FE(A)20
+b(sensor)e(netw)o(ork)g(is)i(modelled)e(as)i(a)f(connected)e
+(undirected)g(graph)h Fu(G)23 b Ft(=)g(\()p Fu(V)5 b(;)14
+b(E)5 b Ft(\))p FE(.)20 b(The)f(set)523 3122 y(of)26
+b(nodes)g(is)i(denoted)d(by)h Fu(V)46 b FE(\(the)26 b(set)i(of)e(v)o
+(ertices\),)g(and)g(the)g(links)h(between)f(nodes)g(by)g
+Fu(E)523 3221 y FE(\(the)f(set)g(of)g(edges\).)f(The)g(nodes)g(are)h
+(labelled)g Fu(i)31 b Ft(=)g(1)p Fu(;)14 b Ft(2)p Fu(;)g(:)g(:)g(:)f(;)
+h(n)p FE(,)25 b(and)f(a)h(link)g(between)f(tw)o(o)523
+3321 y(nodes)g Fu(i)h FE(and)f Fu(j)31 b FE(is)25 b(denoted)f(by)g
+Ft(\()p Fu(i;)14 b(j)5 b Ft(\))p FE(.)25 b(The)g(dynamic)e(topology)g
+(changes)g(are)i(represented)523 3421 y(by)e(the)g(time)g(v)n(arying)e
+(graph)h Fu(G)p Ft(\()p Fu(t)p Ft(\))30 b(=)e(\()p Fu(V)5
+b(;)14 b(E)5 b Ft(\()p Fu(t)p Ft(\)\))p FE(,)24 b(where)f
+Fu(E)5 b Ft(\()p Fu(t)p Ft(\))24 b FE(is)g(the)f(set)h(of)f(acti)n(v)o
+(e)g(edges)523 3520 y(at)28 b(time)g Fu(t)p FE(.)g(The)f(set)h(of)f
+(neighbours)e(of)i(node)g Fu(i)h FE(at)g(time)f Fu(t)h
+FE(is)h(denoted)d(by)h Fu(N)2855 3532 y FB(i)2882 3520
+y Ft(\()p Fu(t)p Ft(\))37 b(=)f Fx(f)p Fu(j)41 b Fx(2)523
+3620 y Fu(V)51 b Fx(j)32 b Ft(\()p Fu(i;)14 b(j)5 b Ft(\))31
+b Fx(2)i Fu(E)5 b Ft(\()p Fu(t)p Ft(\))p Fx(g)p FE(,)25
+b(and)f(the)h(de)o(gree)f(\(number)f(of)h(neighbours\))e(of)j(node)f
+Fu(i)h FE(at)g(time)g Fu(t)h FE(by)523 3719 y Fu(\021)564
+3731 y FB(i)592 3719 y Ft(\()p Fu(t)p Ft(\))e(=)e Fx(j)p
+Fu(N)887 3731 y FB(i)915 3719 y Ft(\()p Fu(t)p Ft(\))p
+Fx(j)p FE(.)623 3819 y(Each)28 b(node)h(tak)o(es)g(initial)h
+(measurement)d Fu(z)1944 3831 y FB(i)1971 3819 y FE(.)j(F)o(or)f(sak)o
+(e)g(of)g(simplicity)g(let)h(us)f(suppose)523 3919 y(that)24
+b Fu(z)711 3931 y FB(i)767 3919 y Fx(2)30 b Fs(R)p FE(.)24
+b(Then,)e Fu(z)28 b FE(will)c(refer)f(to)h(the)f(v)o(ector)g(whose)g
+Fu(i)p FE(th)g(component)e(is)k Fu(z)2883 3931 y FB(i)2934
+3919 y FE(in)f(case)g(we)523 4018 y(are)f(concerned)d(with)j(se)n(v)o
+(eral)f(parameters.)g(Each)g(node)g(on)g(the)h(netw)o(ork)f(also)h
+(maintains)f(a)523 4118 y(dynamic)d(state)i Fu(x)1050
+4130 y FB(i)1078 4118 y Ft(\()p Fu(t)p Ft(\))i Fx(2)h
+Fs(R)c FE(which)g(is)h(initially)f(set)h(to)g Fu(x)2179
+4130 y FB(i)2207 4118 y Ft(\(0\))i(=)g Fu(z)2463 4130
+y FB(i)2490 4118 y FE(.)623 4218 y(Intuiti)n(v)o(ely)29
+b(each)i(node')-5 b(s)31 b(state)h Fu(x)1661 4230 y FB(i)1689
+4218 y Ft(\()p Fu(t)p Ft(\))g FE(is)g(its)g(current)e(estimate)i(of)f
+(the)g(a)n(v)o(erage)f(v)n(alue)523 4255 y Fr(P)611 4275
+y FB(n)611 4342 y(i)p Fq(=1)736 4317 y Fu(z)775 4329
+y FB(i)802 4317 y Fu(=n)p FE(.)h(The)f(goal)g(of)h(the)f(a)n(v)o
+(eraging)f(algorithm,)g(is)i(to)g(let)g(all)h(the)e(states)i
+Fu(x)3050 4329 y FB(i)3078 4317 y Ft(\()p Fu(t)p Ft(\))g
+FE(go)523 4417 y(to)e(the)f(a)n(v)o(erage)1034 4355 y
+Fr(P)1122 4375 y FB(n)1122 4442 y(i)p Fq(=1)1247 4417
+y Fu(z)1286 4429 y FB(i)1314 4417 y Fu(=n)p FE(,)g(as)h
+Fu(t)40 b Fx(!)g(1)p FE(.)30 b(This)f(will)h(be)g(done)e(through)f
+(data)j(e)o(xchange)p 523 4495 851 4 v 523 4568 a Fp(1)574
+4591 y FA(In)23 b(the)f(rest)h(of)f(the)h(paper)m(,)g(the)f(terms)h
+(\224a)o(v)o(erage)h(consensus\224)i(and)d(\224parameter)h
+(estimation\224)e(are)i(used)f(to)523 4674 y(denote)c(the)f(same)g
+(mechanism)h(of)g(\002nding)f(an)h(estimate)f(of)g(the)g(unkno)n(wn)h
+(parameter)h(a)o(v)o(erage.)p eop end
+%%Page: 5 5
+TeXDict begin 5 4 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)n
+(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)581
+b(5)523 282 y FE(between)30 b(neighbouring)c(nodes)k(where)f(each)h
+(node)g(at)g(e)n(v)o(ery)f(time)i(iteration)e Fu(t)i
+FE(performs)523 382 y(weighted)19 b(sum)h(of)g(the)g(recei)n(v)o(ed)f
+(data)h(as)h(follo)n(ws)f([5)o(,)g(2]:)877 581 y Fu(x)924
+593 y FB(i)952 581 y Ft(\()p Fu(t)e Ft(+)g(1\))23 b(=)g
+Fu(x)1347 593 y FB(i)1375 581 y Ft(\()p Fu(t)p Ft(\))c
+Fx(\000)1588 502 y Fr(X)1571 680 y FB(j)s Fo(2)p FB(N)1699
+688 y Fn(i)1739 581 y Fu(\013)1792 593 y FB(ij)1851 581
+y Ft(\()p Fu(t)p Ft(\)\()p Fu(x)2024 593 y FB(i)2053
+581 y Ft(\()p Fu(t)p Ft(\))g Fx(\000)f Fu(x)2296 593
+y FB(j)2331 581 y Ft(\()p Fu(t)p Ft(\)\))p Fu(;)c(i)24
+b Ft(=)e(1)p Fu(;)14 b(:)g(:)g(:)f(;)h(n:)195 b FE(\(1.1\))623
+820 y(Where)20 b Fu(\013)918 832 y FB(ij)976 820 y Ft(\()p
+Fu(t)p Ft(\))i FE(is)f(the)f(weight)g(on)f Fu(x)1687
+832 y FB(j)1723 820 y Ft(\()p Fu(t)p Ft(\))i FE(at)g(node)e
+Fu(i)p FE(,)h(and)g Fu(\013)2365 832 y FB(ij)2423 820
+y Ft(\()p Fu(t)p Ft(\))k(=)f(0)d FE(for)f Fu(j)28 b Fx(62)c
+Fu(N)3016 832 y FB(i)3043 820 y Ft(\()p Fu(t)p Ft(\))p
+FE(.)623 920 y(In)18 b(order)f(to)h(handle)g(communication)d(delays,)j
+(we)h(consider)e(that)h(at)h(time)g Fu(t)f FE(a)h(node)f
+Fu(i)g FE(gets)523 1020 y(the)i(state)h(of)f(its)h(neighbour)d
+Fu(j)25 b FE(at)c(time)f Fu(d)1716 989 y FB(i)1716 1041
+y(j)1752 1020 y Ft(\()p Fu(t)p Ft(\))p FE(,)h(where)e
+Ft(0)k Fx(\024)g Fu(d)2307 989 y FB(i)2307 1041 y(j)2342
+1020 y Ft(\()p Fu(t)p Ft(\))g Fx(\024)g Fu(t)623 1129
+y(d)666 1099 y FB(i)666 1151 y(j)701 1129 y Ft(\()p Fu(t)p
+Ft(\))g FE(represents)e(the)h(transmission)f(delay)h(between)f(nodes)g
+Fu(i)h FE(and)g Fu(j)5 b FE(.)22 b(Therefore,)d(let)k(us)523
+1239 y(denote)f Fu(x)815 1209 y FB(i)815 1261 y(j)851
+1239 y Ft(\()p Fu(t)p Ft(\))29 b(=)f Fu(x)1114 1251 y
+FB(j)1150 1239 y Ft(\()p Fu(d)1225 1209 y FB(i)1225 1261
+y(j)1260 1239 y Ft(\()p Fu(t)p Ft(\)\))h Fx(2)h Fs(R)23
+b FE(the)h(state)f(of)g(node)g Fu(j)28 b FE(at)c(time)f
+Fu(d)2523 1209 y FB(i)2523 1261 y(j)2559 1239 y Ft(\()p
+Fu(t)p Ft(\))p Fu(;)h FE(recei)n(v)o(ed)e(at)h(time)h
+Fu(t)523 1339 y FE(by)e(node)f Fu(i)p FE(.)i(Then,)e(we)i(de\002ned)e
+(the)i(e)o(xtended)d(neighbourhood)e(of)k(node)f Fu(i)i
+FE(at)g(time)f Fu(t)h FE(as)g(the)523 1438 y(set:)p 729
+1654 76 4 v 729 1721 a Fu(N)805 1733 y FB(i)833 1721
+y Ft(\()p Fu(t)p Ft(\))g(=)1038 1653 y Fr(\010)1087 1721
+y Fu(j)28 b Fx(j)43 b(9)21 b Fu(d)1325 1686 y FB(i)1325
+1741 y(j)1360 1721 y Ft(\()p Fu(t)p Ft(\))j Fx(2)f(f)p
+Fu(t)18 b Fx(\000)g Fu(B)23 b Ft(+)18 b(1)p Fu(;)c(:::;)g(t)p
+Fx(g)f Fu(;)h FE(such)20 b(that)g Fu(j)28 b Fx(2)23 b
+Fu(N)2730 1733 y FB(i)2758 1721 y Ft(\()p Fu(d)2833 1686
+y FB(i)2833 1741 y(j)2868 1721 y Ft(\()p Fu(t)p Ft(\)\))2994
+1653 y Fr(\011)3057 1721 y Ft(;)623 1917 y FE(note)c(that)i
+Fu(N)999 1929 y FB(i)1026 1917 y Ft(\()p Fu(t)p Ft(\))j
+Fx(\032)p 1231 1851 V 22 w Fu(N)1307 1929 y FB(i)1335
+1917 y Ft(\()p Fu(t)p Ft(\))p FE(.)623 2017 y(The)34
+b(problem,)e(as)k(for)e(an)o(y)f(distrib)n(uted)h(algorithmic)f
+(approach,)f(is)k(ho)n(w)e(and)g(under)523 2116 y(which)23
+b(conditions,)f(will)i(we)f(ensure)g(con)m(v)o(er)o(gence)d(of)j(the)g
+(proposed)e(algorithm?)h(In)h(other)523 2216 y(terms,)18
+b(are)f(we)i(sure)e(that)h(all)h(the)f(node')-5 b(s)17
+b Fu(x)1785 2228 y FB(i)1831 2216 y FE(will)i(con)m(v)o(er)o(ge)c(to)j
+(the)f(right)h(estimate)g(of)f(the)h(un-)523 2316 y(kno)n(wn)f
+(parameter)g(a)n(v)o(erage)h(v)n(alue?)g(Also,)h(ho)n(w)f(can)g(we)i
+(choose)d(the)i(parameters)f Fu(\013)3041 2328 y FB(ij)3099
+2316 y Ft(\()p Fu(t)p Ft(\))i FE(so)523 2415 y(to)e(impro)o(v)o(e)e
+(the)j(con)m(v)o(er)o(gence)14 b(speed)k(and)g(the)g(quality)f(of)h
+(the)h(deri)n(v)o(ed)d(estimate?)i(Hereafter)523 2515
+y(we)j(present)e(and)h(analyse)f(our)h(proposal.)e(W)-7
+b(e)22 b(used)e(the)g(notations)f(reported)f(in)j(T)-7
+b(able)20 b(1.1)p 980 2703 1851 5 v 980 2707 V 978 2786
+5 84 v 1130 2761 a Fm(N)p FA(otation)p 1526 2786 V 637
+w(Description)p 2828 2786 V 980 2790 1851 5 v 978 2873
+5 84 v 1186 2848 a Fl(G)p Fk(\()p Fl(t)p Fk(\))p 1526
+2873 V 539 w FA(the)e(time)f(v)n(arying)j(graph)p 2828
+2873 V 980 2877 1851 5 v 978 2961 5 84 v 1172 2936 a
+Fl(N)1228 2946 y Fj(i)1255 2936 y Fk(\()p Fl(t)p Fk(\))p
+1526 2961 V 304 w FA(the)e(set)g(of)g(neighbors)i(of)e(node)h
+Fl(i)f FA(at)g(time)f Fl(t)p 2828 2961 V 980 2965 1851
+5 v 978 3048 5 84 v 1224 3023 a(z)1257 3033 y Fj(i)p
+1526 3048 V 1711 3023 a FA(the)h(initial)e(measurement)k(of)f(node)g
+Fl(i)p 2828 3048 V 980 3052 1851 5 v 978 3135 5 84 v
+1181 3110 a(x)1221 3120 y Fj(i)1247 3110 y Fk(\()p Fl(t)p
+Fk(\))p 1526 3135 V 469 w FA(the)f(dynamic)h(state)f(of)g(node)h
+Fl(i)p 2828 3135 V 980 3139 1851 5 v 978 3228 5 90 v
+1179 3197 a(d)1215 3174 y Fj(i)1215 3219 y(j)1248 3197
+y Fk(\()p Fl(t)p Fk(\))p 1526 3228 V 213 w FA(the)f(transmission)h
+(delay)g(between)g(nodes)g Fl(i)f FA(and)g Fl(j)p 2828
+3228 V 980 3232 1851 5 v 978 3322 5 90 v 993 3291 a(x)1033
+3267 y Fj(i)1033 3312 y(j)1064 3291 y Fk(\()p Fl(t)p
+Fk(\))j(=)f Fl(x)1279 3301 y Fj(j)1311 3291 y Fk(\()p
+Fl(d)1374 3267 y Fj(i)1374 3312 y(j)1407 3291 y Fk(\()p
+Fl(t)p Fk(\)\))p 1523 3322 V 164 w FA(the)d(state)h(of)h(node)g
+Fl(j)i FA(at)c(time)g Fl(t)g Fz(\000)e Fl(d)2568 3267
+y Fj(i)2568 3312 y(j)2601 3291 y Fk(\()p Fl(t)p Fk(\))p
+2828 3322 V 980 3326 1851 5 v 978 3411 5 86 v 1169 3332
+64 3 v 1169 3386 a Fl(N)1232 3396 y Fj(i)1258 3386 y
+Fk(\()p Fl(t)p Fk(\))p 1526 3411 5 86 v 272 w FA(the)j(e)o(xtended)h
+(neighborhood)i(of)d Fl(i)g FA(at)f(time)g Fl(t)p 2828
+3411 V 980 3415 1851 5 v 978 3498 5 84 v 1170 3473 a(s)1203
+3483 y Fj(ij)1257 3473 y Fk(\()p Fl(t)p Fk(\))p 1526
+3498 V 413 w FA(the)h(data)g(sent)g(by)h Fl(i)e FA(to)h
+Fl(j)j FA(at)c(time)g Fl(t)p 2828 3498 V 980 3502 1851
+5 v 978 3586 5 84 v 1170 3561 a(r)1202 3571 y Fj(j)s(i)1257
+3561 y Fk(\()p Fl(t)p Fk(\))p 1526 3586 V 310 w FA(the)h(data)h(recei)n
+(v)o(ed)g(by)g Fl(i)e FA(from)i Fl(j)i FA(at)d(time)f
+Fl(t)p 2828 3586 V 980 3590 1851 5 v 523 3681 a Fm(T)-6
+b(able)18 b(1.1)35 b FA(Notations)523 4287 y Fv(1.3.2)41
+b(Async)o(hronous)26 b(sc)o(heme)523 4519 y FE(Our)17
+b(algorithm)f(to)i(compute)e(the)i(a)n(v)o(erage)e(consensus)h(o)o(v)o
+(er)f(the)h(netw)o(ork)g(is)h(based)f(on)g(infor)n(-)523
+4619 y(mation)24 b(dif)n(fusion)f(i.e.,)i(each)g(node)f(tak)o(es)h(a)h
+(measurement)d(and)h(then)h(cooperates)e(with)i(its)p
+eop end
+%%Page: 6 6
+TeXDict begin 6 5 bop 523 100 a FA(6)1011 b(Jacques)20
+b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
+282 y FE(neighbours)j(in)i(a)h(dif)n(fusion)d(manner)h(to)h(estimate)g
+(the)g(a)n(v)o(erage)f(of)h(all)h(the)f(collected)f(infor)n(-)523
+382 y(mation.)e(It)i(is)h(inspired)d(from)h(the)g(w)o(ork)g(of)g
+(Bertsekas)h(and)f(Tsitsiklis)i([15)n(,)f(section)f(7.4])g(on)523
+482 y(load)k(balancing)f(and)i(e)o(xtends)e(it)j(to)f(cope)f(with)h
+(dynamic)e(topologies)g(and)i(messages)g(loss)523 581
+y(and)20 b(delays.)f(Algorithm)g(1)h(presents)g(the)g(main)g(steps)h
+(of)f(our)f(proposed)f(algorithm.)p 523 780 2764 7 v
+523 854 a FD(Algorithm)i(1)g FE(The)g(General)f(Algorithm.)p
+523 892 2764 4 v 553 958 a FA(1:)35 b(Each)18 b(node)g(maintains)f(an)g
+(instantaneous)i(state)e Fl(x)1916 968 y Fj(i)1942 958
+y Fk(\()p Fl(t)p Fk(\))k Fz(2)f Fi(R)p FA(,)c(and)i(at)e
+Fl(t)21 b Fk(=)e(0)e FA(\(after)i(all)d(nodes)i(ha)o(v)o(e)g(tak)o(en)
+643 1041 y(the)g(measurement\),)i(each)f(node)g(initializes)e(its)g
+(state)h(as)h Fl(x)2124 1051 y Fj(i)2150 1041 y Fk(\(0\))h(=)g
+Fl(z)2367 1051 y Fj(i)2393 1041 y FA(.)553 1124 y(2:)35
+b(At)17 b(e)n(v)o(ery)j(step)e Fl(t)g FA(each)h(node)g
+Fl(i)p FA(:)643 1257 y Fz(\017)65 b FA(compares)20 b(its)d(state)h(to)g
+(the)f(states)i(of)f(its)g(neighbours;)643 1340 y Fz(\017)65
+b FA(chooses)30 b(and)f(computes)g Fl(s)1455 1350 y Fj(ij)1510
+1340 y Fk(\()p Fl(t)p Fk(\))p FA(.)f(The)o(y)h(ha)o(v)o(e)g(to)f(be)g
+(chosen)i(carefully)g(in)e(order)i(to)d(ensure)k(the)743
+1423 y(con)m(v)o(er)o(gence)21 b(of)d(the)g(algorithm;)643
+1506 y Fz(\017)65 b FA(dif)n(fuses)20 b(its)d(information;)643
+1589 y Fz(\017)65 b FA(recei)n(v)o(es)20 b(the)e(information)g(sent)h
+(by)f(its)f(neighbours)j Fl(r)2110 1599 y Fj(j)s(i)2165
+1589 y Fk(\()p Fl(t)p Fk(\))p FA(;)643 1672 y Fz(\017)65
+b FA(updates)20 b(its)e(state)h(with)g(a)g(combination)g(of)h(its)e(o)n
+(wn)i(state)f(and)g(the)g(states)h(at)f(its)f(instantaneous)j(and)743
+1755 y(e)o(xtended)e(neighbours)h(\()p 1368 1701 64 3
+v Fl(N)1432 1765 y Fj(i)1458 1755 y Fk(\()p Fl(t)p Fk(\))p
+FA(\))g(as)e(follo)n(ws:)1267 1920 y Fl(x)1307 1930 y
+Fj(i)1333 1920 y Fk(\()p Fl(t)e Fk(+)g(1\))k(=)g Fl(x)1669
+1930 y Fj(i)1695 1920 y Fk(\()p Fl(t)p Fk(\))d Fz(\000)1918
+1857 y Fh(X)1861 2005 y Fj(j)s Fg(2)p Fj(N)1979 2016
+y Fn(i)2006 2005 y Ff(\()p Fj(t)p Ff(\))2089 1920 y Fl(s)2122
+1930 y Fj(ij)2177 1920 y Fk(\()p Fl(t)p Fk(\))g(+)2403
+1857 y Fh(X)2343 2014 y Fj(j)s Fg(2)p 2413 1973 54 3
+v Fj(N)2467 2025 y Fn(i)2493 2014 y Ff(\()p Fj(t)p Ff(\))2576
+1920 y Fl(r)2608 1930 y Fj(j)s(i)2663 1920 y Fk(\()p
+Fl(t)p Fk(\))p Fl(:)390 b FA(\(1.2\))p 523 2125 2764
+4 v 523 2491 a Fv(1.3.3)41 b(Theoretical)24 b(Analysis)h(\(Con)l(v)o
+(ergence\))523 2723 y FE(W)-7 b(e)21 b(no)n(w)f(introduce)e(three)i
+(assumptions)f(that)i(ensure)e(the)h(con)m(v)o(er)o(gence)d(of)i(our)h
+(algorithm.)523 2889 y FD(Assumption)h(1)41 b Fy(Ther)m(e)21
+b(e)n(xists)g Fu(B)27 b Fx(2)d Fs(N)c Fy(suc)o(h)g(that)g
+Fx(8)p Fu(t)j Fe(>)g Ft(0)p Fu(;)523 2989 y(t)i Fx(\000)g
+Fu(B)43 b(<)d(d)922 2959 y FB(i)922 3010 y(j)957 2989
+y Ft(\()p Fu(t)p Ft(\))g Fx(\024)f Fu(t)30 b Fy(and)e(the)h(union)f(of)
+h(communication)e(gr)o(aphs)2654 2927 y Fr(S)2723 2947
+y FB(t)p Fq(+)p FB(B)s Fo(\000)p Fq(1)2723 3014 y FB(\034)7
+b Fq(=)p FB(t)2955 2989 y Fu(G)p Ft(\()p Fu(\034)i Ft(\))31
+b Fy(is)f(a)523 3088 y(connected)18 b(gr)o(aph.)623 3254
+y FE(This)h(assumption,)e(kno)n(wn)h(as)i(jointly)e(connected)f
+(condition)g([2)o(,)j(16)o(],)f(implies)g(that)g(each)523
+3354 y(node)f Fu(i)h FE(is)h(connected)e(to)h(a)h(node)e
+Fu(j)24 b FE(within)19 b(an)o(y)f(time)i(interv)n(al)e(of)h(length)f
+Fu(B)24 b FE(and)18 b(that)i(the)f(de-)523 3454 y(lay)e(between)e(tw)o
+(o)i(nodes)f(cannot)f(e)o(xceeds)h Fu(B)t FE(.)h(Recall)g(that,)f(a)h
+(graph)e(is)j(connected)c(if)j(for)f(an)o(y)523 3553
+y(tw)o(o)g(v)o(ertices)e Fu(i)i FE(and)e Fu(j)21 b FE(there)15
+b(e)o(xists)g(a)h(sequence)e(of)h(edges)g Ft(\()p Fu(i;)29
+b(k)2374 3565 y Fq(1)2412 3553 y Ft(\))p Fu(;)14 b Ft(\()p
+Fu(k)2556 3565 y Fq(1)2594 3553 y Fu(;)g(k)2674 3565
+y Fq(2)2711 3553 y Ft(\))p Fu(;)g(:)g(:)g(:)g(;)g Ft(\()p
+Fu(k)3003 3565 y FB(l)p Fo(\000)p Fq(1)3114 3553 y Fu(;)30
+b(k)3210 3565 y FB(l)3235 3553 y Ft(\))p Fu(;)523 3653
+y Ft(\()p Fu(k)598 3665 y FB(l)624 3653 y Fu(;)35 b(j)5
+b Ft(\))p FE(.)623 3753 y(In)20 b(Figure)g(1.1)g(we)h(sho)n(w)g(an)f(e)
+o(xample)f(of)i(jointly)f(connected)f(graphs,)g(we)i(notice)f(that)h
+(at)523 3852 y Fu(t)i Ft(=)g(1)c FE(the)g(graph)e Fu(G)1119
+3864 y Fq(1)1176 3852 y FE(is)j(not)f(connected;)e(the)i(same)g(case)h
+(for)e Fu(G)2411 3864 y Fq(2)2468 3852 y FE(at)i Fu(t)j
+Ft(=)g(2)p FE(;)c(while)g(the)g(union)523 3952 y Fu(G)i
+FE(of)f Fu(G)764 3964 y Fq(1)822 3952 y FE(and)g Fu(G)1028
+3964 y Fq(2)1086 3952 y FE(is)h(a)g(connected)d(graph.)523
+4118 y FD(Assumption)j(2)41 b Fy(Ther)m(e)21 b(e)n(xists)g
+Fu(\013)j(>)e Ft(0)p Fu(;)14 b Fx(8)p Fu(t)23 b Fe(>)f
+Ft(0)p Fu(;)523 4218 y Fx(8)p Fu(i)h Fx(2)g Fu(N)t(;)14
+b Fx(8)p Fu(j)28 b Fx(2)c Fu(N)1061 4230 y FB(i)1088
+4218 y Ft(\()p Fu(t)p Ft(\))p Fy(,)d(suc)o(h)f(that)g
+Fu(\013)p Ft(\()p Fu(x)1678 4230 y FB(i)1707 4218 y Ft(\()p
+Fu(t)p Ft(\))f Fx(\000)f Fu(x)1950 4187 y FB(i)1950 4239
+y(j)1985 4218 y Ft(\()p Fu(t)p Ft(\)\))24 b Fx(\024)f
+Fu(s)2262 4230 y FB(ij)2320 4218 y Ft(\()p Fu(t)p Ft(\))p
+Fu(:)523 4262 y Fr(\000)561 4329 y Fu(s)600 4341 y FB(ij)658
+4329 y Ft(\()p Fu(t)p Ft(\))h(=)f(0)d Fy(if)h Ft(\()p
+Fu(x)1072 4341 y FB(i)1100 4329 y Ft(\()p Fu(t)p Ft(\))j
+Fx(\024)f Fu(x)1353 4299 y FB(i)1353 4351 y(j)1388 4329
+y Ft(\()p Fu(t)p Ft(\)\))f Fy(for)e(all)h Fu(j)28 b Fx(2)23
+b Fu(N)1969 4341 y FB(i)1996 4329 y Ft(\()p Fu(t)p Ft(\))2090
+4262 y Fr(\001)2129 4329 y Fy(.)623 4495 y FE(The)28
+b(second)h(assumption)e(postulates)i(that)g(when)g(a)g(node)f
+Fu(i)h FE(detects)g(a)h(dif)n(ference)d(be-)523 4595
+y(tween)20 b(its)i(state)f(and)f(the)g(states)h(of)g(its)g(neighbours,)
+d(it)j(therefore)d(computes)h(non)h(ne)o(gligible)523
+4695 y Fu(s)562 4707 y FB(ij)641 4695 y FE(to)h(all)f(nodes)g
+Fu(j)25 b FE(where)20 b Ft(\()p Fu(x)1407 4707 y FB(i)1435
+4695 y Ft(\()p Fu(t)p Ft(\))k Fu(>)f(x)1688 4664 y FB(i)1688
+4716 y(j)1723 4695 y Ft(\()p Fu(t)p Ft(\)\))p FE(.)p
+eop end
+%%Page: 7 7
+TeXDict begin 7 6 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)n
+(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)581
+b(7)1121 1629 y @beginspecial 0 @llx 0 @lly 342 @urx
+312 @ury 1881 @rwi @setspecial
+%%BeginDocument: jointly.eps
+%!PS-Adobe-2.0 EPSF-2.0
+%%Title: jointly.fig
+%%Creator: fig2dev Version 3.2 Patchlevel 5-alpha7
+%%CreationDate: Tue Apr 8 16:04:24 2008
+%%For: makhoul@soleil4 (makhoul,,,)
+%%BoundingBox: 0 0 342 312
+%Magnification: 1.0000
+%%EndComments
+/$F2psDict 200 dict def
+$F2psDict begin
+$F2psDict /mtrx matrix put
+/col-1 {0 setgray} bind def
+/col0 {0.000 0.000 0.000 srgb} bind def
+/col1 {0.000 0.000 1.000 srgb} bind def
+/col2 {0.000 1.000 0.000 srgb} bind def
+/col3 {0.000 1.000 1.000 srgb} bind def
+/col4 {1.000 0.000 0.000 srgb} bind def
+/col5 {1.000 0.000 1.000 srgb} bind def
+/col6 {1.000 1.000 0.000 srgb} bind def
+/col7 {1.000 1.000 1.000 srgb} bind def
+/col8 {0.000 0.000 0.560 srgb} bind def
+/col9 {0.000 0.000 0.690 srgb} bind def
+/col10 {0.000 0.000 0.820 srgb} bind def
+/col11 {0.530 0.810 1.000 srgb} bind def
+/col12 {0.000 0.560 0.000 srgb} bind def
+/col13 {0.000 0.690 0.000 srgb} bind def
+/col14 {0.000 0.820 0.000 srgb} bind def
+/col15 {0.000 0.560 0.560 srgb} bind def
+/col16 {0.000 0.690 0.690 srgb} bind def
+/col17 {0.000 0.820 0.820 srgb} bind def
+/col18 {0.560 0.000 0.000 srgb} bind def
+/col19 {0.690 0.000 0.000 srgb} bind def
+/col20 {0.820 0.000 0.000 srgb} bind def
+/col21 {0.560 0.000 0.560 srgb} bind def
+/col22 {0.690 0.000 0.690 srgb} bind def
+/col23 {0.820 0.000 0.820 srgb} bind def
+/col24 {0.500 0.190 0.000 srgb} bind def
+/col25 {0.630 0.250 0.000 srgb} bind def
+/col26 {0.750 0.380 0.000 srgb} bind def
+/col27 {1.000 0.500 0.500 srgb} bind def
+/col28 {1.000 0.630 0.630 srgb} bind def
+/col29 {1.000 0.750 0.750 srgb} bind def
+/col30 {1.000 0.880 0.880 srgb} bind def
+/col31 {1.000 0.840 0.000 srgb} bind def
+
+end
+save
+newpath 0 312 moveto 0 0 lineto 342 0 lineto 342 312 lineto closepath clip newpath
+-155.0 429.0 translate
+1 -1 scale
+
+/cp {closepath} bind def
+/ef {eofill} bind def
+/gr {grestore} bind def
+/gs {gsave} bind def
+/sa {save} bind def
+/rs {restore} bind def
+/l {lineto} bind def
+/m {moveto} bind def
+/rm {rmoveto} bind def
+/n {newpath} bind def
+/s {stroke} bind def
+/sh {show} bind def
+/slc {setlinecap} bind def
+/slj {setlinejoin} bind def
+/slw {setlinewidth} bind def
+/srgb {setrgbcolor} bind def
+/rot {rotate} bind def
+/sc {scale} bind def
+/sd {setdash} bind def
+/ff {findfont} bind def
+/sf {setfont} bind def
+/scf {scalefont} bind def
+/sw {stringwidth} bind def
+/tr {translate} bind def
+/tnt {dup dup currentrgbcolor
+ 4 -2 roll dup 1 exch sub 3 -1 roll mul add
+ 4 -2 roll dup 1 exch sub 3 -1 roll mul add
+ 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
+ bind def
+/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
+ 4 -2 roll mul srgb} bind def
+ /DrawEllipse {
+ /endangle exch def
+ /startangle exch def
+ /yrad exch def
+ /xrad exch def
+ /y exch def
+ /x exch def
+ /savematrix mtrx currentmatrix def
+ x y tr xrad yrad sc 0 0 1 startangle endangle arc
+ closepath
+ savematrix setmatrix
+ } def
+
+/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
+/$F2psEnd {$F2psEnteredState restore end} def
+
+$F2psBegin
+10 setmiterlimit
+0 slj 0 slc
+ 0.06299 0.06299 sc
+%
+% Fig objects follow
+%
+%
+% here starts figure with depth 50
+% Ellipse
+7.500 slw
+n 2700 2250 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 2700 3600 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 4050 3600 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Polyline
+0 slj
+0 slc
+n 2700 2295 m 2700 3600 l
+ 4050 3600 l gs col0 s gr
+% Polyline
+n 3375 2925 m
+ 3825 1935 l gs col0 s gr
+/Times-Bold ff 222.25 scf sf
+2475 2340 m
+gs 1 -1 sc (1) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+2475 3690 m
+gs 1 -1 sc (2) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+3150 3015 m
+gs 1 -1 sc (4) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+3600 2025 m
+gs 1 -1 sc (5) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+4140 3690 m
+gs 1 -1 sc (3) col0 sh gr
+% Ellipse
+n 3825 1935 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 3330 2925 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 4545 4950 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 4545 6300 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 5895 6300 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Polyline
+n 4545 4995 m 4545 6300 l
+ 5895 6300 l gs col0 s gr
+% Polyline
+n 5220 5625 m
+ 5670 4635 l gs col0 s gr
+/Times-Bold ff 222.25 scf sf
+4320 5040 m
+gs 1 -1 sc (1) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+4320 6390 m
+gs 1 -1 sc (2) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+4995 5715 m
+gs 1 -1 sc (4) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+5445 4725 m
+gs 1 -1 sc (5) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+5985 6390 m
+gs 1 -1 sc (3) col0 sh gr
+% Ellipse
+n 5670 4635 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 5175 5625 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 6300 2250 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 6300 3600 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 7605 3600 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 6885 2880 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Ellipse
+n 7470 1935 64 64 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr
+
+% Polyline
+n 6300 2250 m 7470 1980 l
+ 6885 2880 l gs col0 s gr
+% Polyline
+n 6345 3600 m
+ 7650 3600 l gs col0 s gr
+% Polyline
+n 4500 4993 m
+ 5625 4678 l gs col0 s gr
+/Times-Bold ff 222.25 scf sf
+6075 2340 m
+gs 1 -1 sc (1) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+6660 2970 m
+gs 1 -1 sc (4) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+6075 3690 m
+gs 1 -1 sc (2) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+7245 2025 m
+gs 1 -1 sc (5) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+7740 3690 m
+gs 1 -1 sc (3) col0 sh gr
+/Times-Bold ff 238.13 scf sf
+2745 4050 m
+gs 1 -1 sc (G) col0 sh gr
+/Times-Roman ff 190.50 scf sf
+2970 4095 m
+gs 1 -1 sc (1) col0 sh gr
+/Times-Bold ff 238.13 scf sf
+3150 4050 m
+gs 1 -1 sc (@ t = 1) col0 sh gr
+/Times-Bold ff 238.13 scf sf
+6300 4050 m
+gs 1 -1 sc (G) col0 sh gr
+/Times-Bold ff 238.13 scf sf
+6750 4050 m
+gs 1 -1 sc (@ t = 2) col0 sh gr
+/Times-Roman ff 190.50 scf sf
+6525 4095 m
+gs 1 -1 sc (2) col0 sh gr
+/Times-Bold ff 238.13 scf sf
+4590 6750 m
+gs 1 -1 sc (G) col0 sh gr
+/Times-Bold ff 238.13 scf sf
+4860 6750 m
+gs 1 -1 sc (=) col0 sh gr
+/Times-Bold ff 238.13 scf sf
+5130 6750 m
+gs 1 -1 sc (G) col0 sh gr
+/Times-Bold ff 238.13 scf sf
+5850 6750 m
+gs 1 -1 sc (G) col0 sh gr
+/Times-Roman ff 190.50 scf sf
+6075 6795 m
+gs 1 -1 sc (2) col0 sh gr
+/Times-Roman ff 190.50 scf sf
+5355 6795 m
+gs 1 -1 sc (1) col0 sh gr
+/Times-Bold ff 206.38 scf sf
+5535 6750 m
+gs 1 -1 sc (U) col0 sh gr
+% here ends figure;
+$F2psEnd
+rs
+showpage
+%%Trailer
+%EOF
+
+%%EndDocument
+ @endspecial 523 1754 a Fm(Fig)o(.)17 b(1.1)36 b FA(Example)18
+b(of)h(jointly)e(connected)i(graphs)523 2051 y FD(Assumption)i(3)1254
+2164 y Fu(x)1301 2176 y FB(i)1329 2164 y Ft(\()p Fu(t)p
+Ft(\))e Fx(\000)1584 2085 y Fr(X)1525 2267 y FB(k)q Fo(2)p
+FB(N)1659 2275 y Fn(i)1686 2267 y Fq(\()p FB(t)p Fq(\))1777
+2164 y Fu(s)1816 2176 y FB(ik)1880 2164 y Ft(\()p Fu(t)p
+Ft(\))k Fx(\025)g Fu(x)2132 2129 y FB(i)2132 2184 y(j)2168
+2164 y Ft(\()p Fu(t)p Ft(\))c(+)f Fu(s)2403 2176 y FB(ij)2461
+2164 y Ft(\()p Fu(t)p Ft(\))573 b FE(\(1.3\))523 2421
+y(The)29 b(third)f(assumption)g(prohibits)g(node)g Fu(i)h
+FE(to)h(compute)d(v)o(ery)h(lar)o(ge)g Fu(s)2669 2433
+y FB(ij)2757 2421 y FE(which)h(creates)g(a)523 2521 y(ping-pong)15
+b(state.)j(Recall)g(that,)g(the)g(ping-pong)c(state)19
+b(is)f(established)g(when)f(tw)o(o)h(nodes)f(k)o(eep)523
+2620 y(sending)k(data)h(to)g(each)g(other)f(back)h(and)f(forth,)g
+(without)h(e)n(v)o(er)f(reaching)g(equilibrium.)e(Note)523
+2720 y(that)30 b(these)h(tw)o(o)g(assumptions)e(are)h(similar)h(to)f
+(assumption)g(4.2)f(introduced)f(in)j([15)n(,)g(sec-)523
+2819 y(tion)20 b(7.4].)523 2994 y FD(Theor)o(em)g(1.)k
+Fy(if)c(the)e(assumptions)g(1,)h(2)f(and)g(3)h(ar)m(e)g(satis\002ed,)f
+(Algorithm)g(1)h(guar)o(antees)e(that)1515 3239 y Ft(lim)1494
+3289 y FB(t)p Fo(!1)1665 3239 y Fu(x)1712 3251 y FB(i)1740
+3239 y Ft(\()p Fu(t)p Ft(\))24 b(=)1959 3183 y(1)p 1955
+3220 50 4 v 1955 3296 a Fu(n)2055 3135 y FB(n)2015 3160
+y Fr(X)2021 3337 y FB(i)p Fq(=1)2135 3239 y Fu(x)2182
+3251 y FB(i)2210 3239 y Ft(\(0\))812 b FE(\(1.4\))623
+3460 y Fy(i.e)o(.,)27 b(all)i(node)e(states)i(con)m(ver)m(g)o(e)e(to)i
+(the)f(aver)o(a)o(g)o(e)f(of)i(the)f(initial)g(measur)m(ements)g(of)g
+(the)523 3560 y(network.)523 3734 y(Pr)l(oof)623 3834
+y FE(Let)20 b Fu(m)p Ft(\()p Fu(t)p Ft(\))k(=)e(min)1171
+3846 y FB(i)1212 3834 y Ft(min)1350 3846 y FB(t)p Fo(\000)p
+FB(B)s(<\034)7 b Fo(\024)p FB(t)1665 3834 y Fu(x)1712
+3846 y FB(i)1740 3834 y Ft(\()p Fu(\034)i Ft(\))p Fu(:)22
+b FE(Note)e(that)g Fu(x)2268 3804 y FB(i)2268 3855 y(j)2304
+3834 y Ft(\()p Fu(\034)9 b Ft(\))24 b Fx(\025)f Fu(m)p
+Ft(\()p Fu(t)p Ft(\))p Fu(;)e Fx(8)p Fu(i;)14 b(j;)g(t:)523
+3933 y FE(Lemma)22 b(1)g(and)h(2)f(belo)n(w)g(can)h(be)f(pro)o(v)o(en)e
+(similarly)j(to)f(the)h(lemma)f(of)g(pages)h(521)e(and)h(522)523
+4033 y(in)e([15)o(].)623 4179 y(Denote)e(by)g Fu(v)1024
+4191 y FB(ij)1083 4179 y Ft(\()p Fu(t)p Ft(\))24 b(=)1291
+4100 y FB(t)p Fo(\000)p Fq(1)1302 4117 y Fr(P)1288 4251
+y FB(s)p Fq(=0)1418 4179 y Ft(\()p Fu(s)1489 4191 y FB(ij)1547
+4179 y Ft(\()p Fu(s)p Ft(\))19 b Fx(\000)f Fu(r)1789
+4191 y FB(ij)1848 4179 y Ft(\()p Fu(s)p Ft(\)\))d Fu(;)k
+FE(the)g(data)g(sent)g(by)g Fu(i)g FE(and)f(not)h(yet)g(recei)n(v)o(ed)
+523 4330 y(by)h Fu(j)26 b FE(at)20 b(time)h Fu(t:)f FE(W)-7
+b(e)22 b(suppose)d(that)h Fu(v)1612 4342 y FB(ij)1671
+4330 y Ft(\(0\))j(=)g(0)p Fu(:)d FE(Then)f(by)h(data)g(conserv)n
+(ation,)e(we)j(obtain)1022 4511 y FB(n)982 4536 y Fr(X)988
+4713 y FB(i)p Fq(=1)1116 4448 y Fr(0)1116 4598 y(@)1189
+4615 y Fu(x)1236 4627 y FB(i)1264 4615 y Ft(\()p Fu(t)p
+Ft(\))e(+)1515 4536 y Fr(X)1460 4718 y FB(j)s Fo(2)p
+FB(N)1588 4726 y Fn(i)1614 4718 y Fq(\()p FB(t)p Fq(\))1705
+4615 y Fu(v)1745 4627 y FB(ij)1804 4615 y Ft(\()p Fu(t)p
+Ft(\))1898 4448 y Fr(1)1898 4598 y(A)1994 4615 y Ft(=)2121
+4511 y FB(n)2082 4536 y Fr(X)2088 4713 y FB(i)p Fq(=1)2215
+4615 y Fu(x)2262 4627 y FB(i)2290 4615 y Ft(\(0\))p Fu(;)180
+b Fx(8)p Fu(t)24 b Fe(>)e Ft(0)300 b FE(\(1.5\))p eop
+end
+%%Page: 8 8
+TeXDict begin 8 7 bop 523 100 a FA(8)1011 b(Jacques)20
+b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
+282 y FE(\277From)30 b(assumption)g(1)h(we)g(can)g(conclude)e(that)i
+(the)g(data)g Fu(v)2359 294 y FB(ij)2417 282 y Ft(\()p
+Fu(t)p Ft(\))h FE(in)f(the)g(netw)o(ork)f(before)523
+382 y(time)23 b Fu(t)h FE(consists)g(in)f(data)g(sent)g(in)g(the)h
+(interv)n(al)e(time)h Fx(f)o Fu(t)c Fx(\000)f Fu(B)23
+b Ft(+)18 b(1)p Fu(;)c(:::;)g(t)j Fx(\000)i Ft(1)p Fx(g)12
+b Fu(;)24 b FE(so)g Fu(v)3041 394 y FB(ij)3099 382 y
+Ft(\()p Fu(t)p Ft(\))29 b Fx(\024)523 431 y Fr(P)611
+451 y FB(t)p Fo(\000)p Fq(1)611 518 y FB(\034)7 b Fq(=)p
+FB(t)p Fo(\000)p FB(B)s Fq(+1)931 493 y Fu(s)970 505
+y FB(ij)1028 493 y Ft(\()p Fu(t)p Ft(\))p Fu(;)22 b Fx(8)p
+Fu(nodei;)14 b Fx(8)p Fu(j)27 b Fx(2)d Fu(N)1704 505
+y FB(i)1731 493 y Ft(\()p Fu(t)p Ft(\))p Fu(:)523 664
+y FD(Lemma)d(1.)j Fy(The)40 b(sequence)e Fu(m)p Ft(\()p
+Fu(t)p Ft(\))j Fy(is)f(monotone)o(,)d(nondecr)m(easing)g(and)i(con)m
+(ver)m(g)o(es)f(and)523 763 y Fx(8)p Fu(i;)14 b Fx(8)p
+Fu(s)23 b Fx(\025)f Ft(0)p Fu(;)1120 924 y(x)1167 936
+y FB(i)1195 924 y Ft(\()p Fu(t)d Ft(+)f Fu(s)p Ft(\))23
+b Fx(\025)g Fu(m)p Ft(\()p Fu(t)p Ft(\))c(+)1810 806
+y Fr(\022)1885 867 y Ft(1)p 1881 904 50 4 v 1881 981
+a Fu(n)1941 806 y Fr(\023)2002 824 y FB(t)2027 832 y
+Fd(1)2059 824 y Fo(\000)p FB(t)2136 832 y Fd(0)2187 924
+y Ft(\()p Fu(x)2266 936 y FB(i)2294 924 y Ft(\()p Fu(t)p
+Ft(\))g Fx(\000)f Fu(m)p Ft(\()p Fu(t)p Ft(\)\))623 1144
+y FE(Let)i Fu(i)k Fx(2)g Fu(V)5 b(;)14 b(t)1006 1156
+y Fq(0)1067 1144 y Fx(2)24 b Fs(N)p Fu(;)d FE(and)f Fu(t)k
+Fx(\025)f Fu(t)1563 1156 y Fq(0)1600 1144 y Fu(;)f(j)28
+b Fx(2)c Fu(V)5 b(;)22 b FE(we)f(say)f(that)h(the)g(e)n(v)o(ent)e
+Fu(E)2660 1156 y FB(j)2696 1144 y Ft(\()p Fu(t)p Ft(\))i
+FE(occurs)f(if)h(there)523 1244 y(e)o(xists)g Fu(j)28
+b Fx(2)p 872 1177 76 4 v 23 w Fu(N)948 1256 y FB(i)975
+1244 y Ft(\()p Fu(t)p Ft(\))22 b FE(such)e(that)1187
+1447 y Fu(x)1234 1413 y FB(i)1234 1468 y(j)1270 1447
+y Ft(\()p Fu(t)p Ft(\))j Fu(<)g(m)p Ft(\()p Fu(t)1610
+1459 y Fq(0)1647 1447 y Ft(\))c(+)1879 1391 y Fu(\013)p
+1791 1428 230 4 v 1791 1504 a Ft(2)p Fu(n)1883 1480 y
+FB(t)p Fo(\000)p FB(t)1985 1488 y Fd(0)2045 1447 y Ft(\()p
+Fu(x)2124 1459 y FB(i)2152 1447 y Ft(\()p Fu(t)2214 1459
+y Fq(0)2252 1447 y Ft(\))g Fx(\000)f Fu(m)p Ft(\()p Fu(t)2521
+1459 y Fq(0)2558 1447 y Ft(\)\))506 b FE(\(1.6\))523
+1652 y(and)1439 1752 y Fu(s)1478 1764 y FB(ij)1537 1752
+y Ft(\()p Fu(t)p Ft(\))23 b Fx(\025)g Fu(\013)1809 1685
+y Fr(\000)1847 1752 y Fu(x)1894 1764 y FB(i)1922 1752
+y Ft(\()p Fu(t)p Ft(\))c Fx(\000)f Fu(x)2165 1718 y FB(i)2165
+1773 y(j)2201 1752 y Ft(\()p Fu(t)p Ft(\))2295 1685 y
+Fr(\001)2347 1752 y Fu(;)758 b FE(\(1.7\))523 1901 y(where)20
+b Fu(\013)h FE(is)g(de\002ned)e(in)h(assumption)f(2,)h(and)g
+Fu(V)40 b FE(is)21 b(the)f(set)h(of)f(all)h(nodes.)523
+2072 y FD(Lemma)g(2.)j Fy(Let)29 b Fu(t)1068 2084 y Fq(1)1143
+2072 y Fx(\025)38 b Fu(t)1276 2084 y Fq(0)1313 2072 y
+Fu(;)29 b Fy(if)g Fu(E)1501 2084 y FB(j)1537 2072 y Ft(\()p
+Fu(t)1599 2084 y Fq(1)1636 2072 y Ft(\))g Fy(occur)o(s,)g(then)f
+Fu(E)2201 2084 y FB(j)2236 2072 y Ft(\()p Fu(\034)9 b
+Ft(\))30 b Fy(doesn')n(t)d(occur)h(for)h(any)e Fu(\034)48
+b Fx(\025)523 2172 y Fu(t)553 2184 y Fq(1)609 2172 y
+Ft(+)18 b(2)p Fu(B)t Fy(.)523 2342 y FD(Lemma)j(3.)j
+Fx(8)p Fu(i)f Fx(2)g Fu(V)5 b(;)14 b Fx(8)p Fu(t)1245
+2354 y Fq(0)1306 2342 y Fx(2)23 b Fs(N)p Fu(;)14 b Fx(8)p
+Fu(j)28 b Fx(2)p 1667 2275 76 4 v 23 w Fu(N)1743 2354
+y FB(i)1771 2342 y Ft(\()p Fu(t)p Ft(\))p Fu(;)808 2590
+y(t)23 b Fx(\025)g Fu(t)979 2602 y Fq(0)1034 2590 y Ft(+)18
+b(3)p Fu(nB)27 b Fx(\))c Fu(x)1452 2602 y FB(j)1487 2590
+y Ft(\()p Fu(t)p Ft(\))h Fx(\025)f Fu(m)p Ft(\()p Fu(t)1828
+2602 y Fq(0)1865 2590 y Ft(\))c(+)f Fu(\021)2057 2473
+y Fr(\022)2132 2534 y Ft(1)p 2128 2571 50 4 v 2128 2647
+a Fu(n)2188 2473 y Fr(\023)2249 2490 y FB(t)p Fo(\000)p
+FB(t)2351 2498 y Fd(0)2401 2590 y Ft(\()p Fu(x)2480 2602
+y FB(i)2509 2590 y Ft(\()p Fu(t)2571 2602 y Fq(0)2608
+2590 y Ft(\))h Fx(\000)f Fu(m)p Ft(\()p Fu(t)2877 2602
+y Fq(0)2914 2590 y Ft(\)\))p Fu(:)523 2850 y Fy(wher)m(e)j
+Fu(\021)26 b Ft(=)908 2817 y FB(\013)p 908 2831 44 4
+v 913 2879 a Fq(2)975 2783 y Fr(\000)1027 2817 y Fq(1)p
+1023 2831 42 4 v 1023 2879 a FB(n)1074 2783 y Fr(\001)1113
+2800 y FB(B)1183 2850 y Fu(:)523 3020 y Fy(Pr)l(oof)o(.)40
+b FE(Let)26 b(us)f(\002x)h Fu(i)f FE(and)g Fu(t)1349
+3032 y Fq(0)1386 3020 y Fu(:)h FE(Let)f(us)h(consider)e
+Fu(t)2008 3032 y Fq(1)2045 3020 y Fu(;)14 b(:::;)g(t)2218
+3032 y FB(n)2289 3020 y FE(such)25 b(that)g Fu(t)2647
+3032 y FB(k)q Fo(\000)p Fq(1)2795 3020 y Ft(+)c(2)p Fu(B)36
+b Fx(\024)c Fu(t)3149 3032 y FB(k)3222 3020 y Fx(\024)523
+3120 y Fu(t)553 3132 y FB(k)q Fo(\000)p Fq(1)700 3120
+y Ft(+)21 b(3)p Fu(B)t(:)j FE(Lemma)g(2)g(implies)g(that)g(if)g
+Fu(k)34 b Fx(6)p Ft(=)29 b Fu(l)r(;)c FE(then)e Fu(E)2254
+3132 y FB(j)2289 3120 y Ft(\()p Fu(t)2351 3132 y FB(k)2392
+3120 y Ft(\))i FE(and)f Fu(E)2655 3132 y FB(j)2690 3120
+y Ft(\()p Fu(t)2752 3132 y FB(l)2778 3120 y Ft(\))h FE(doesn')o(t)d
+(occur)523 3220 y(together)-5 b(.)31 b(Hence,)h(there)g(e)o(xists)i
+Fu(t)1561 3232 y FB(k)1634 3220 y FE(for)e(which)g(\(1.6\))g(is)h(not)f
+(satis\002ed)i(for)e(all)h Fu(d)3015 3190 y FB(i)3015
+3241 y(j)3050 3220 y Ft(\()p Fu(t)3112 3232 y FB(k)3153
+3220 y Ft(\))46 b Fx(2)523 3329 y(f)p Fu(t)595 3341 y
+FB(k)654 3329 y Fx(\000)18 b Fu(B)k Ft(+)c(1)p Fu(;)c(:::;)g(t)1120
+3341 y FB(k)1161 3329 y Fx(g)f Fu(;)21 b FE(and)f Fu(j)28
+b Fx(2)23 b Fu(N)1608 3341 y FB(i)1635 3329 y Ft(\()p
+Fu(d)1710 3299 y FB(i)1710 3351 y(j)1746 3329 y Ft(\()p
+Fu(t)1808 3341 y FB(k)1849 3329 y Ft(\)\))p Fu(:)623
+3439 y FE(Let)g Fu(j)796 3409 y Fo(\003)864 3439 y Fx(2)29
+b Fu(N)1015 3451 y FB(i)1043 3439 y Ft(\()p Fu(d)1118
+3409 y FB(i)1118 3461 y(j)1153 3439 y Ft(\()p Fu(t)1215
+3451 y FB(k)1256 3439 y Ft(\)\))c FE(such)e(that)h Fu(x)1717
+3409 y FB(i)1717 3461 y(j)1747 3444 y Fc(\003)1787 3439
+y Ft(\()p Fu(t)1849 3451 y FB(k)1890 3439 y Ft(\))30
+b Fx(\024)f Fu(x)2093 3409 y FB(i)2093 3461 y(j)2128
+3439 y Ft(\()p Fu(t)2190 3451 y FB(k)2231 3439 y Ft(\))p
+Fu(;)14 b Fx(8)p Fu(j)35 b Fx(2)29 b Fu(N)2566 3451 y
+FB(i)2594 3439 y Ft(\()p Fu(d)2669 3409 y FB(i)2669 3461
+y(j)2704 3439 y Ft(\()p Fu(t)2766 3451 y FB(k)2807 3439
+y Ft(\)\))p Fu(:)c FE(Since)f(\(1.6\))523 3539 y(is)d(not)f
+(satis\002ed)h(for)e Fu(j)28 b Ft(=)23 b Fu(j)1325 3509
+y Fo(\003)1363 3539 y Fu(;)e FE(we)g(ha)n(v)o(e)787 3800
+y Fu(x)834 3769 y FB(i)834 3821 y(j)869 3800 y Ft(\()p
+Fu(t)931 3812 y FB(k)973 3800 y Ft(\))i Fx(\025)h Fu(x)1164
+3769 y FB(i)1164 3821 y(j)1194 3805 y Fc(\003)1235 3800
+y Ft(\()p Fu(t)1297 3812 y FB(k)1338 3800 y Ft(\))752
+3919 y Fu(x)799 3888 y FB(i)799 3940 y(j)829 3924 y Fc(\003)869
+3919 y Ft(\()p Fu(t)931 3931 y FB(k)973 3919 y Ft(\))f
+Fx(\025)h Fu(m)p Ft(\()p Fu(t)1252 3931 y Fq(0)1290 3919
+y Ft(\))19 b(+)1434 3886 y FB(\013)p 1434 3900 44 4 v
+1439 3947 a Fq(2)1500 3851 y Fr(\000)1552 3886 y Fq(1)p
+1549 3900 42 4 v 1549 3947 a FB(n)1600 3851 y Fr(\001)1638
+3868 y FB(t)1663 3877 y Fn(k)1699 3868 y Fo(\000)p FB(t)1776
+3876 y Fd(0)1826 3919 y Ft(\()q Fu(x)1906 3931 y FB(i)1934
+3919 y Ft(\()p Fu(t)1996 3931 y Fq(0)2033 3919 y Ft(\))g
+Fx(\000)f Fu(m)p Ft(\()p Fu(t)2302 3931 y Fq(0)2339 3919
+y Ft(\)\))d Fu(;)34 b Fx(8)p Fu(j)29 b Fx(2)23 b Fu(N)2729
+3931 y FB(i)2756 3919 y Ft(\()p Fu(d)2831 3888 y FB(i)2831
+3940 y(j)2867 3919 y Ft(\()p Fu(t)2929 3931 y FB(k)2970
+3919 y Ft(\)\))p Fu(:)623 4111 y FE(F)o(or)c Fu(t)24
+b Fx(\025)e Fu(t)928 4123 y Fq(0)984 4111 y Ft(+)c(3)p
+Fu(nB)t(;)i FE(we)h(ha)n(v)o(e)e Fu(t)k Fx(\025)g Fu(t)1732
+4123 y FB(k)1796 4111 y Fx(\025)g Fu(d)1927 4081 y FB(i)1927
+4133 y(j)1962 4111 y Ft(\()p Fu(t)2024 4123 y FB(k)2065
+4111 y Ft(\))p Fu(:)e FE(Lemma)e(1)i(gi)n(v)o(es,)e Fx(8)p
+Fu(j)28 b Fx(2)c Fu(N)2945 4123 y FB(i)2972 4111 y Ft(\()p
+Fu(d)3047 4081 y FB(i)3047 4133 y(j)3082 4111 y Ft(\()p
+Fu(t)3144 4123 y FB(k)3186 4111 y Ft(\)\))890 4322 y
+Fu(x)937 4334 y FB(j)972 4322 y Ft(\()p Fu(t)p Ft(\))g
+Fx(\025)g Fu(m)p Ft(\()p Fu(d)1327 4292 y FB(i)1327 4344
+y(j)1363 4322 y Ft(\()p Fu(t)1425 4334 y FB(k)1466 4322
+y Ft(\)\))19 b(+)1632 4255 y Fr(\000)1684 4289 y Fq(1)p
+1680 4303 V 1680 4351 a FB(n)1731 4255 y Fr(\001)1769
+4272 y FB(t)p Fo(\000)p FB(d)1881 4247 y Fn(i)1881 4289
+y(j)1911 4272 y Fq(\()p FB(t)1962 4281 y Fn(k)1999 4272
+y Fq(\))2043 4322 y Ft(\()p Fu(x)2122 4334 y FB(j)2157
+4322 y Ft(\()p Fu(d)2232 4292 y FB(i)2232 4344 y(j)2268
+4322 y Ft(\()p Fu(t)2330 4334 y FB(k)2371 4322 y Ft(\)\))g
+Fx(\000)f Fu(m)p Ft(\()p Fu(d)2685 4292 y FB(i)2685 4344
+y(j)2720 4322 y Ft(\()p Fu(t)2782 4334 y FB(k)2823 4322
+y Ft(\)\)\))1090 4445 y Fx(\025)24 b Fu(m)p Ft(\()p Fu(t)1314
+4457 y Fq(0)1352 4445 y Ft(\))18 b(+)1495 4412 y FB(\013)p
+1495 4426 44 4 v 1500 4473 a Fq(2)1562 4377 y Fr(\000)1614
+4412 y Fq(1)p 1610 4426 42 4 v 1610 4473 a FB(n)1661
+4377 y Fr(\001)1699 4395 y FB(B)1770 4377 y Fr(\000)1822
+4412 y Fq(1)p 1818 4426 V 1818 4473 a FB(n)1869 4377
+y Fr(\001)1907 4395 y FB(t)p Fo(\000)p FB(t)2009 4403
+y Fd(0)2060 4445 y Ft(\()p Fu(x)2139 4457 y FB(i)2167
+4445 y Ft(\()p Fu(t)2229 4457 y Fq(0)2267 4445 y Ft(\))g
+Fx(\000)g Fu(m)p Ft(\()p Fu(t)2535 4457 y Fq(0)2573 4445
+y Ft(\)\))c Fu(:)523 4611 y FD(De\002nition)20 b(1.)25
+b FE(W)-7 b(e)39 b(say)f(that)g(a)g(sensor)f Fu(j)44
+b FE(is)39 b Fu(l)r FE(-connected)c(to)j(a)g(sensor)f
+Fu(i)h FE(if)h(it)f(is)h(logi-)523 4711 y(cally)g(connected)e(to)i
+Fu(i)g FE(by)f Fu(l)j FE(communication)36 b(graphs,)h(i.e.)i(if)g
+(there)f(e)o(xists)h Fu(r)2999 4681 y FB(i)2997 4735
+y(k)3039 4711 y Ft(\()p Fu(t)3101 4723 y FB(k)3142 4711
+y Ft(\))57 b Fx(2)p eop end
+%%Page: 9 9
+TeXDict begin 9 8 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)n
+(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)581
+b(9)523 282 y Fx(f)p Fu(t)595 294 y FB(k)654 282 y Fx(\000)18
+b Fu(B)k Ft(+)c(1)p Fu(;)c(:::;)g(t)1120 294 y FB(k)1161
+282 y Fx(g)f Fu(;)23 b FE(where)f Fu(k)30 b Fx(2)d(f)p
+Fu(i)1714 294 y Fq(1)1751 282 y Fu(;)14 b(:::;)g(i)1923
+294 y FB(l)1948 282 y Fx(g)o FE(,)23 b(such)f(that)h
+Fu(i)j Ft(=)h Fu(i)2532 294 y Fq(1)2596 282 y Fx(2)h
+Fu(N)2746 294 y FB(i)2769 302 y Fd(2)2805 282 y Ft(\()p
+Fu(r)2876 245 y FB(i)2899 253 y Fd(2)2874 305 y FB(i)2897
+313 y Fd(1)2937 282 y Ft(\()p Fu(t)2999 294 y Fq(1)3037
+282 y Ft(\)\))p Fu(;)14 b(i)3167 294 y Fq(2)3231 282
+y Fx(2)523 397 y Fu(N)590 409 y FB(i)613 417 y Fd(3)650
+397 y Ft(\()p Fu(r)721 360 y FB(i)744 368 y Fd(3)719
+421 y FB(i)742 429 y Fd(2)782 397 y Ft(\()p Fu(t)844
+409 y Fq(2)881 397 y Ft(\)\))p Fu(;)g(:::;)523 515 y(i)552
+527 y FB(l)600 515 y Fx(2)24 b Fu(N)746 527 y FB(j)780
+515 y Ft(\()p Fu(r)851 476 y FB(j)849 541 y(l)887 515
+y Ft(\()p Fu(t)949 527 y FB(l)975 515 y Ft(\)\))p Fu(:)523
+690 y FD(Lemma)d(4.)j Fy(If)d(sensor)f Fu(j)26 b Fy(is)21
+b Fu(l)r Fy(-connected)c(to)k(sensor)f Fu(i)g Fy(then)746
+908 y Fx(8)p Fu(t)j Fx(\025)g Fu(t)963 920 y Fq(0)1019
+908 y Ft(+)18 b(3)p Fu(nl)r(B)t(;)33 b(x)1391 920 y FB(j)1427
+908 y Ft(\()p Fu(t)p Ft(\))23 b Fx(\025)g Fu(m)p Ft(\()p
+Fu(t)1767 920 y Fq(0)1804 908 y Ft(\))c(+)f(\()p Fu(\021)s
+Ft(\))2047 866 y FB(l)2086 908 y Ft(\()2133 852 y(1)p
+2128 889 50 4 v 2128 965 a Fu(n)2188 908 y Ft(\))2220
+874 y Fq(\()p FB(t)p Fo(\000)p FB(t)2348 882 y Fd(0)2381
+874 y Fq(\))2407 849 y Fn(l)2449 908 y Ft(\()p Fu(x)2528
+920 y FB(i)2556 908 y Ft(\()p Fu(t)2618 920 y Fq(0)2656
+908 y Ft(\))h Fx(\000)f Fu(m)p Ft(\()p Fu(t)2925 920
+y Fq(0)2962 908 y Ft(\)\))c Fu(:)523 1114 y Fy(Pr)l(oof)o(.)40
+b FE(By)32 b(induction.)d(Suppose)i(that)g(the)g(lemma)g(is)h(true)f
+(for)g Fu(t)2532 1126 y Fq(0)2595 1114 y Ft(+)c(3)p Fu(nl)r(B)34
+b FE(then)d(if)h Fu(j)k FE(is)523 1214 y Fu(l)r FE(-connected)17
+b(to)k Fu(j)5 b FE(,)20 b(we)h(ha)n(v)o(e)819 1462 y
+Fu(x)866 1474 y FB(l)892 1462 y Ft(\()p Fu(t)954 1474
+y Fq(0)1010 1462 y Ft(+)d(3)p Fu(nl)r(B)t Ft(\))23 b
+Fx(\025)f Fu(m)p Ft(\()p Fu(t)1556 1474 y Fq(0)1594 1462
+y Ft(\))c(+)g(\()q Fu(\021)s Ft(\))1836 1420 y FB(l)1875
+1345 y Fr(\022)1937 1462 y Ft(\()1983 1405 y(1)p 1979
+1443 V 1979 1519 a Fu(n)2039 1462 y Ft(\))2071 1427 y
+Fq(\(3)p FB(nlB)s Fq(\))2275 1345 y Fr(\023)2337 1362
+y FB(l)2376 1462 y Ft(\()p Fu(x)2455 1474 y FB(i)2483
+1462 y Ft(\()p Fu(t)2545 1474 y Fq(0)2583 1462 y Ft(\))g
+Fx(\000)h Fu(m)p Ft(\()p Fu(t)2852 1474 y Fq(0)2889 1462
+y Ft(\)\))14 b Fu(:)623 1661 y FE(Consider)23 b(a)i(sensor)f
+Fu(k)j FE(connected)22 b(to)j Fu(j)k FE(\()p Fu(k)e FE(is)f
+Ft(\()p Fu(l)20 b Ft(+)e(1\))o FE(-connected)k(to)j Fu(i)p
+FE(\),)e(Lemma)h(3)g(and)523 1761 y(the)c(abo)o(v)o(e)f(inequality)g
+(gi)n(v)o(e)g(\(replacing)f Fu(t)1762 1773 y Fq(0)1820
+1761 y FE(by)i Fu(t)1954 1773 y Fq(0)2010 1761 y Ft(+)e(3)p
+Fu(nl)r(B)t Ft(\))p Fu(;)2799 2021 y(x)2846 2033 y FB(k)2887
+2021 y Ft(\()p Fu(t)p Ft(\))24 b Fx(\025)716 2147 y Fu(m)p
+Ft(\()p Fu(t)851 2159 y Fq(0)907 2147 y Ft(+)18 b(3)p
+Fu(nl)r(B)t Ft(\))f(+)h Fu(\021)s Ft(\()1399 2114 y Fq(1)p
+1395 2128 42 4 v 1395 2175 a FB(n)1446 2147 y Ft(\))1478
+2091 y Fn(t)p Fc(\000)p Fn(t)1569 2103 y Fd(0)1602 2091
+y Fc(\000)p Fd(3)p Fn(nlB)1799 2054 y Fr(\020)1849 2147
+y Ft(\()p Fu(\021)s Ft(\))1957 2105 y FB(l)1997 2079
+y Fr(\000)2035 2147 y Ft(\()2081 2114 y Fq(1)p 2077 2128
+V 2077 2175 a FB(n)2128 2147 y Ft(\))2160 2116 y Fq(\(3)p
+FB(nlB)s Fq(\))2365 2079 y Fr(\001)2403 2093 y FB(l)2442
+2147 y Ft(\()p Fu(x)2521 2159 y FB(i)2549 2147 y Ft(\()p
+Fu(t)2611 2159 y Fq(0)2649 2147 y Ft(\))h Fx(\000)f Fu(m)p
+Ft(\()p Fu(t)2918 2159 y Fq(0)2955 2147 y Ft(\)\))3020
+2054 y Fr(\021)3005 2270 y Fx(\025)1401 2394 y Fu(m)p
+Ft(\()p Fu(t)1536 2406 y Fq(0)1573 2394 y Ft(\))h(+)f(\()p
+Fu(\021)s Ft(\))1816 2352 y FB(l)p Fq(+1)1939 2326 y
+Fr(\000)1977 2394 y Ft(\()2024 2361 y Fq(1)p 2020 2375
+V 2020 2422 a FB(n)2071 2394 y Ft(\))2103 2364 y Fq(\()p
+FB(t)p Fo(\000)p FB(t)2231 2372 y Fd(0)2263 2364 y Fq(\))2293
+2326 y Fr(\001)2331 2341 y FB(l)p Fq(+1)2455 2394 y Ft(\()p
+Fu(x)2534 2406 y FB(i)2562 2394 y Ft(\()p Fu(t)2624 2406
+y Fq(0)2662 2394 y Ft(\))g Fx(\000)g Fu(m)p Ft(\()p Fu(t)2930
+2406 y Fq(0)2968 2394 y Ft(\)\))c Fu(:)523 2572 y Fy(Pr)l(oof)41
+b(\(Pr)l(oof)35 b(of)g(Theor)m(em)f(1\).)h FE(Consider)f(a)i(sensor)e
+Fu(i)h FE(and)g(a)g(time)h Fu(t)2713 2584 y Fq(0)2750
+2572 y Fu(:)f FE(Assumption)f(1)523 2671 y(implies)40
+b(that)h(sensor)f Fu(i)h FE(is)g Fu(B)t FE(-connected)d(to)j(an)o(y)e
+(sensor)i Fu(j:)g FE(Lemma)e(4)i(gi)n(v)o(es:)f Fx(8)p
+Fu(t)60 b Fx(2)523 2771 y Ft([)p Fu(t)576 2783 y Fq(0)632
+2771 y Ft(+)18 b(3)p Fu(nM)9 b(B)t(;)14 b(t)1031 2783
+y Fq(0)1085 2771 y Ft(+)k(3)p Fu(nM)9 b(B)22 b Ft(+)c
+Fu(B)t Ft(])c Fu(;)21 b Fx(8)p Fu(j)28 b Fx(2)23 b Fu(V)5
+b(;)996 2954 y(x)1043 2966 y FB(j)1079 2954 y Ft(\()p
+Fu(t)1141 2966 y Fq(0)1196 2954 y Ft(+)19 b(3)p Fu(nM)9
+b(B)21 b Ft(+)d Fu(B)t Ft(\))24 b Fx(\025)e Fu(m)p Ft(\()p
+Fu(t)1974 2966 y Fq(0)2012 2954 y Ft(\))c(+)g Fu(\016)f
+Ft(\()q Fu(x)2279 2966 y FB(i)2307 2954 y Ft(\()p Fu(t)2369
+2966 y Fq(0)2406 2954 y Ft(\))i Fx(\000)f Fu(m)p Ft(\()p
+Fu(t)2675 2966 y Fq(0)2712 2954 y Ft(\)\))d Fu(;)523
+3136 y FE(where)20 b Fu(\016)26 b(>)c Ft(0)p Fu(:)f FE(Thus,)899
+3335 y Fu(m)p Ft(\()p Fu(t)1034 3347 y Fq(0)1090 3335
+y Ft(+)d(3)p Fu(nM)9 b(B)22 b Ft(+)c Fu(B)t Ft(\))23
+b Fx(\025)g Fu(m)p Ft(\()p Fu(t)1868 3347 y Fq(0)1905
+3335 y Ft(\))c(+)f Fu(\016)2093 3243 y Fr(\020)2143 3335
+y Ft(max)2208 3387 y FB(i)2311 3335 y Fu(x)2358 3347
+y FB(i)2386 3335 y Ft(\()p Fu(t)2448 3347 y Fq(0)2486
+3335 y Ft(\))g Fx(\000)g Fu(m)p Ft(\()p Fu(t)2754 3347
+y Fq(0)2792 3335 y Ft(\))2824 3243 y Fr(\021)2887 3335
+y Fu(:)523 3549 y FE(Note)i(that)g Ft(lim)966 3561 y
+FB(t)991 3569 y Fd(0)1023 3561 y Fo(!1)1174 3549 y Ft(max)1328
+3561 y FB(i)1370 3549 y Fu(x)1417 3561 y FB(i)1445 3549
+y Ft(\()p Fu(t)1507 3561 y Fq(0)1544 3549 y Ft(\))f Fx(\000)f
+Fu(m)p Ft(\()p Fu(t)1813 3561 y Fq(0)1850 3549 y Ft(\))24
+b(=)e(0)f FE(\(otherwise)523 3649 y Ft(lim)638 3661 y
+FB(t)663 3669 y Fd(0)696 3661 y Fo(!1)846 3649 y Fu(m)p
+Ft(\()p Fu(t)981 3661 y Fq(0)1019 3649 y Ft(\))30 b(=)g(+)p
+Fx(1)p FE(\).)23 b(On)h(the)g(other)f(hand,)g(as)h Ft(lim)2259
+3661 y FB(t)p Fo(!1)2434 3649 y Fu(m)p Ft(\()p Fu(t)p
+Ft(\))31 b(=)e Fu(c)c FE(and)e(as)i Fu(m)p Ft(\()p Fu(t)p
+Ft(\))30 b Fx(\024)523 3748 y Fu(x)570 3760 y FB(j)605
+3748 y Ft(\()p Fu(t)p Ft(\))24 b Fx(\024)f Ft(max)965
+3760 y FB(i)1007 3748 y Fu(x)1054 3760 y FB(i)1082 3748
+y Ft(\()p Fu(t)p Ft(\))p Fu(;)d FE(we)g(deduce)e(that)h
+Fx(8)p Fu(j)28 b Fx(2)c Fu(V)5 b(;)20 b Ft(lim)2133 3760
+y FB(t)p Fo(!1)2309 3748 y Fu(x)2356 3760 y FB(j)2391
+3748 y Ft(\()p Fu(t)p Ft(\))k(=)e Fu(c;)e FE(which)f(implies)g(that)523
+3848 y Ft(lim)638 3860 y FB(t)p Fo(!1)814 3848 y Fu(s)853
+3860 y FB(ij)911 3848 y Ft(\()p Fu(t)p Ft(\))33 b(=)f(0)p
+FE(.)25 b(Thanks)f(to)h(assumption)f(1,)h(we)h(deduce)e(that)h
+Ft(lim)2724 3860 y FB(t)p Fo(!1)2900 3848 y Fu(v)2940
+3860 y FB(ij)2999 3848 y Ft(\()p Fu(t)p Ft(\))32 b(=)g(0)p
+Fu(;)523 3948 y FE(and)c(thanks)h(to)g(\(1.5\),)e(we)i(deduce)f(that)h
+Fu(nc)39 b Ft(=)f(lim)2111 3960 y FB(t)p Fo(!1)2286 3948
+y Fu(x)2333 3960 y FB(i)2361 3948 y Ft(\()p Fu(t)p Ft(\))i(=)2599
+3885 y Fr(P)2686 3906 y FB(n)2686 3972 y(i)p Fq(=1)2812
+3948 y Fu(x)2859 3960 y FB(i)2887 3948 y Ft(\(0\))p Fu(;)p
+FE(i.e.)29 b Fu(c)39 b Ft(=)523 4056 y Fr(P)611 4076
+y FB(n)611 4143 y(i)p Fq(=1)736 4118 y Fu(x)783 4130
+y FB(i)811 4118 y Ft(\(0\))p Fu(=n;)21 b FE(which)e(yields)h(to)h
+Ft(lim)1696 4130 y FB(t)p Fo(!1)1871 4118 y Fu(x)1918
+4130 y FB(i)1946 4118 y Ft(\()p Fu(t)p Ft(\))j(=)2166
+4085 y Fq(1)p 2162 4099 V 2162 4146 a FB(n)2252 4014
+y(n)2213 4039 y Fr(X)2219 4216 y FB(i)p Fq(=1)2333 4118
+y Fu(x)2380 4130 y FB(i)2408 4118 y Ft(\(0\))d FE(pro)o(ving)c(Theorem)
+i(1.)p eop end
+%%Page: 10 10
+TeXDict begin 10 9 bop 523 100 a FA(10)976 b(Jacques)20
+b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
+282 y Fv(1.3.4)41 b(Practical)24 b(Issues)523 515 y FE(W)-7
+b(e)37 b(no)n(w)e(discuss)h(some)f(practical)g(aspects)h(related)f(to)h
+(the)f(implementation)f(of)h(Algo-)523 614 y(rithm)27
+b(1.)g(The)g(main)g(tw)o(o)h(points)f(are)g(ho)n(w)g(to)g(choose)g
+Fu(s)2243 626 y FB(ij)2301 614 y Ft(\()p Fu(t)p Ft(\))h
+FE(and)f(ho)n(w)g(to)h(o)o(v)o(ercome)c(the)523 714 y(loss)d(of)f
+(messages?)623 814 y(Each)g(node)g(updates)f(its)j(state)g(follo)n
+(wing)d(equation)g(\(1.2\).)g(This)i(is)h(achie)n(v)o(ed,)c(by)j
+(updat-)523 913 y(ing)26 b(each)f(sensors)h Fu(s)1144
+925 y FB(ij)1202 913 y Ft(\()p Fu(t)p Ft(\))h FE(through)d(time.)i(F)o
+(or)f(sak)o(e)h(of)g(simplicity)-5 b(,)25 b(the)g(v)n(alue)h(of)f
+Fu(s)3052 925 y FB(ij)3111 913 y Ft(\()p Fu(t)p Ft(\))h
+FE(is)523 1013 y(chosen)18 b(to)g(be)g(computed)f(by)h(the)g(weighted)g
+(dif)n(ference)e(between)i(the)g(states)i(of)e(nodes)f
+Fu(i)i FE(and)523 1112 y Fu(j)26 b FE(as)21 b(follo)n(ws:)933
+1342 y Fu(s)972 1354 y FB(ij)1030 1342 y Ft(\()p Fu(t)p
+Ft(\))j(=)1235 1225 y Fr(\032)1310 1290 y Fu(\013)1363
+1302 y FB(ij)1422 1290 y Ft(\()p Fu(t)p Ft(\)\()p Fu(x)1595
+1302 y FB(i)1624 1290 y Ft(\()p Fu(t)p Ft(\))19 b Fx(\000)f
+Fu(x)1867 1260 y FB(i)1867 1312 y(j)1902 1290 y Ft(\()p
+Fu(t)p Ft(\)\))192 b FE(if)83 b Fu(x)2401 1302 y FB(i)2429
+1290 y Ft(\()p Fu(t)p Ft(\))23 b Fu(>)g(x)2681 1260 y
+FB(i)2681 1312 y(j)2716 1290 y Ft(\()p Fu(t)p Ft(\))f
+Fu(;)1310 1393 y Ft(0)868 b FE(otherwise)o Fu(:)623 1543
+y FE(The)15 b(choice)g(of)h Fu(s)1126 1555 y FB(ij)1184
+1543 y Ft(\()p Fu(t)p Ft(\))h FE(is)g(then)f(deduced)e(from)h(the)g
+(proper)g(choice)g(of)g(the)h(weights)g Fu(\013)3113
+1555 y FB(ij)3172 1543 y Ft(\()p Fu(t)p Ft(\))p FE(.)523
+1643 y(Hence,)24 b Fu(\013)834 1655 y FB(ij)893 1643
+y Ft(\()p Fu(t)p Ft(\))i FE(must)e(be)h(chosen)f(such)h(that)g(the)f
+(states)i(of)f(all)g(the)g(nodes)f(con)m(v)o(er)o(ge)d(to)k(the)523
+1742 y(a)n(v)o(erage)799 1680 y Fr(P)887 1701 y FB(n)887
+1767 y(i)p Fq(=1)1012 1742 y Fu(z)1051 1754 y FB(i)1078
+1742 y Fu(=n)p FE(,)20 b(i.e.,)g(assumptions)g(2)g(and)f(3)i(must)f(be)
+g(satis\002ed.)623 1842 y(Denote)25 b(by)h Fu(j)1038
+1812 y Fo(\003)1103 1842 y FE(the)g(sensor)g(node)f(satisfying)h
+Fu(x)2055 1812 y FB(i)2055 1864 y(j)2085 1847 y Fc(\003)2159
+1842 y Ft(=)34 b(min)2396 1857 y FB(k)q Fo(2)p FB(N)2530
+1865 y Fn(i)2556 1857 y Fq(\()p FB(t)p Fq(\))2651 1842
+y Fu(x)2698 1812 y FB(i)2698 1865 y(k)2740 1842 y Ft(\()p
+Fu(t)p Ft(\))27 b FE(\(note)e(that)i Fu(j)3249 1812 y
+Fo(\003)523 1942 y FE(depends)20 b(on)g Fu(i)h FE(and)f(time)h
+Fu(t)p FE(\))p Fu(:)h FE(The)e(v)n(alues)h(of)f Fu(\013)1909
+1954 y FB(ij)1968 1942 y Ft(\()p Fu(t)p Ft(\))i FE(must)f(be)g
+(selected)f(so)i(that)f(to)g(a)n(v)n(oid)f(the)523 2041
+y(ping)f(pong)g(condition)g(presented)g(in)h(assumption)f(3.)623
+2141 y(This)i(is)i(equi)n(v)n(alent)c(to)j(choose)e Fu(\013)1625
+2153 y FB(ij)1684 2141 y Ft(\()p Fu(t)p Ft(\))j FE(so)e(that)h
+Fx(8)p Fu(t)j Fe(>)g Ft(0)p Fu(;)14 b Fx(8)p Fu(i)25
+b Fx(2)g Fu(N)t(;)e FE(and)e Fu(j)30 b Fx(6)p Ft(=)25
+b Fu(j)2945 2111 y Fo(\003)3008 2141 y Fx(2)p 3089 2074
+76 4 v 26 w Fu(N)3165 2153 y FB(i)3192 2141 y Ft(\()p
+Fu(t)p Ft(\))523 2240 y FE(satisfying)20 b Fu(x)914 2252
+y FB(i)942 2240 y Ft(\()p Fu(t)p Ft(\))j Fu(>)g(x)1194
+2210 y FB(i)1194 2262 y(j)1229 2240 y Ft(\()p Fu(t)p
+Ft(\))p Fu(;)1015 2494 y Ft(0)f Fx(\024)h Fu(\013)1220
+2506 y FB(ij)1279 2494 y Ft(\()p Fu(t)p Ft(\))g Fx(\024)1494
+2438 y Ft(1)p 1494 2475 42 4 v 1494 2551 a(2)1559 2352
+y Fr( )1625 2494 y Ft(1)18 b Fx(\000)1778 2363 y Fr(P)1865
+2450 y FB(j)s Fo(6)p Fq(=)p FB(i)1989 2425 y Fu(\013)2042
+2437 y FB(ik)2106 2425 y Ft(\()p Fu(t)p Ft(\)\()p Fu(x)2279
+2437 y FB(i)2308 2425 y Ft(\()p Fu(t)p Ft(\))h Fx(\000)f
+Fu(x)2551 2395 y FB(k)2551 2447 y(i)2592 2425 y Ft(\()p
+Fu(t)p Ft(\)\))p 1778 2475 942 4 v 1992 2563 a(\()p Fu(x)2071
+2575 y FB(i)2100 2563 y Ft(\()p Fu(t)p Ft(\))h Fx(\000)f
+Fu(x)2343 2523 y FB(j)2343 2586 y(i)2378 2563 y Ft(\()p
+Fu(t)p Ft(\)\))2729 2352 y Fr(!)3128 2494 y FE(\(1.8\))623
+2718 y(The)25 b(weights)g Fu(\013)1115 2730 y FB(ij)1174
+2718 y Ft(\()p Fu(t)p Ft(\))h FE(must)g(also)g(be)f(chosen)g(in)g
+(order)g(to)g(respect)h(assumption)e(2.)h(This)523 2817
+y(assumption)19 b(can)h(be)g(carried)f(out)h(by)g(\002xing)g(a)g
+(constant)g Fu(\014)27 b Fx(2)c Ft([0)p Fu(;)14 b Ft(1])20
+b FE(and)g(choosing)889 2930 y Fr(8)889 3005 y(<)889
+3154 y(:)976 2933 y(P)1063 3020 y FB(k)q Fo(6)p Fq(=)p
+FB(j)1180 3003 y Fc(\003)1216 3020 y Fo(2)p FB(N)1314
+3028 y Fn(i)1340 3020 y Fq(\()p FB(t)p Fq(\))1435 2995
+y Fu(\013)1488 3007 y FB(ik)1552 2995 y Ft(\()p Fu(t)p
+Ft(\)\()p Fu(x)1725 3007 y FB(i)1754 2995 y Ft(\()p Fu(t)p
+Ft(\))f Fx(\000)f Fu(x)1997 2965 y FB(i)1997 3019 y(k)2039
+2995 y Ft(\()p Fu(t)p Ft(\)\))24 b Fx(\024)e Fu(\014)t
+Ft(\()p Fu(x)2406 3007 y FB(i)2435 2995 y Ft(\()p Fu(t)p
+Ft(\))d Fx(\000)f Fu(x)2678 2965 y FB(i)2678 3017 y(j)2708
+3000 y Fc(\003)2748 2995 y Ft(\()p Fu(t)p Ft(\)\))p Fu(;)976
+3155 y(\013)1029 3167 y FB(ij)1082 3151 y Fc(\003)1122
+3155 y Ft(\()p Fu(t)p Ft(\))24 b(=)1337 3122 y Fq(1)p
+1337 3136 34 4 v 1337 3184 a(2)1394 3038 y Fr(\022)1455
+3155 y Ft(1)18 b Fx(\000)1608 3059 y Fb(P)1678 3121 y
+Fn(k)q Fc(6)p Fd(=)p Fn(j)1779 3109 y Fc(\003)1830 3102
+y FB(\013)1873 3111 y Fn(ik)1931 3102 y Fq(\()p FB(t)p
+Fq(\)\()p FB(x)2072 3110 y Fn(i)2098 3102 y Fq(\()p FB(t)p
+Fq(\))p Fo(\000)p FB(x)2265 3077 y Fn(i)2265 3119 y(k)2301
+3102 y Fq(\()p FB(t)p Fq(\)\))p 1608 3136 796 4 v 1793
+3187 a(\()p FB(x)1857 3195 y Fn(i)1883 3187 y Fq(\()p
+FB(t)p Fq(\))p Fo(\000)p FB(x)2050 3167 y Fn(i)2050 3210
+y(j)2076 3198 y Fc(\003)2116 3187 y Fq(\()p FB(t)p Fq(\)\))2414
+3038 y Fr(\023)3128 3100 y FE(\(1.9\))523 3349 y(Indeed,)g(from)i
+(\(1.9\))e(we)j(deduce)839 3588 y Fu(\013)892 3600 y
+FB(ij)945 3584 y Fc(\003)986 3588 y Ft(\()p Fu(t)p Ft(\))i
+Fx(\025)1201 3523 y Ft(\()p Fu(x)1280 3535 y FB(i)1308
+3523 y Ft(\()p Fu(t)p Ft(\))c Fx(\000)f Fu(x)1551 3493
+y FB(i)1551 3545 y(j)1581 3528 y Fc(\003)1621 3523 y
+Ft(\()p Fu(t)p Ft(\)\))i Fx(\000)e Fu(\014)t Ft(\()p
+Fu(x)1980 3535 y FB(i)2008 3523 y Ft(\()p Fu(t)p Ft(\))h
+Fx(\000)f Fu(x)2251 3493 y FB(i)2251 3545 y(j)2281 3528
+y Fc(\003)2322 3523 y Ft(\()p Fu(t)p Ft(\)\))p 1201 3569
+1248 4 v 1530 3646 a(2\()p Fu(x)1651 3658 y FB(i)1679
+3646 y Ft(\()p Fu(t)p Ft(\))h Fx(\000)f Fu(x)1922 3618
+y FB(i)1922 3670 y(j)1952 3653 y Fc(\003)1992 3646 y
+Ft(\()p Fu(t)p Ft(\)\))2481 3588 y(=)2579 3532 y(1)g
+Fx(\000)g Fu(\014)p 2579 3569 195 4 v 2655 3645 a Ft(2)2806
+3588 y(=)23 b Fu(\013:)523 3846 y FE(Hence,)d Fx(8)p
+Fu(i;)14 b(j)928 3815 y Fo(\003)965 3846 y Fu(;)g(t)21
+b FE(such)f(that)g Fu(j)1410 3815 y Fo(\003)1471 3846
+y Fx(2)p 1550 3779 76 4 v 24 w Fu(N)1626 3858 y FB(i)1653
+3846 y Ft(\()p Fu(t)p Ft(\))h FE(and)f Fu(x)1956 3815
+y FB(i)1956 3867 y(j)1986 3851 y Fc(\003)2026 3846 y
+Ft(\()p Fu(t)p Ft(\))k(=)e(min)2370 3861 y FB(k)q Fo(2)p
+FB(N)2504 3869 y Fn(i)2530 3861 y Fq(\()p FB(t)p Fq(\))2625
+3846 y Fu(x)2672 3815 y FB(i)2672 3869 y(k)2713 3846
+y Ft(\()p Fu(t)p Ft(\))p Fu(;)943 4042 y(s)982 4054 y
+FB(ij)1035 4038 y Fc(\003)1075 4042 y Ft(\()p Fu(t)p
+Ft(\))h(=)g Fu(\013)1333 4054 y FB(ij)1386 4038 y Fc(\003)1426
+4042 y Ft(\()p Fu(t)p Ft(\))1534 3975 y Fr(\000)1573
+4042 y Fu(x)1620 4054 y FB(i)1648 4042 y Ft(\()p Fu(t)p
+Ft(\))c Fx(\000)f Fu(x)1891 4008 y FB(i)1891 4063 y(j)1921
+4046 y Fc(\003)1961 4042 y Ft(\()p Fu(t)p Ft(\))2055
+3975 y Fr(\001)2117 4042 y Fx(\025)k Fu(\013)2271 3975
+y Fr(\000)2310 4042 y Fu(x)2357 4054 y FB(i)2385 4042
+y Ft(\()p Fu(t)p Ft(\))d Fx(\000)f Fu(x)2628 4008 y FB(i)2628
+4063 y(j)2658 4046 y Fc(\003)2698 4042 y Ft(\()p Fu(t)p
+Ft(\))2792 3975 y Fr(\001)2844 4042 y Fu(:)623 4225 y
+FE(The)23 b(\002rst)i(inequation)d(of)i(\(1.9\))f(can)g(be)h(written)g
+(as)2179 4163 y Fr(P)2267 4250 y FB(k)q Fo(6)p Fq(=)p
+FB(j)2384 4233 y Fc(\003)2420 4250 y Fo(2)p FB(V)2504
+4258 y Fn(i)2530 4250 y Fq(\()p FB(t)p Fq(\))2625 4225
+y Fu(s)2664 4237 y FB(ik)2728 4225 y Ft(\()p Fu(t)p Ft(\))31
+b Fx(\024)f Fu(\014)t Ft(\()p Fu(x)3078 4237 y FB(i)3106
+4225 y Ft(\()p Fu(t)p Ft(\))22 b Fx(\000)523 4341 y Fu(x)570
+4311 y FB(i)570 4363 y(j)600 4346 y Fc(\003)640 4341
+y Ft(\()p Fu(t)p Ft(\)\))p Fu(;)27 b FE(this)e(means)f(that)h(the)g
+(totality)g(of)g(data)f(sent)i(to)f(the)g(neighbours)d(of)i
+Fu(i)i FE(\(e)o(xcept)d Fu(j)3221 4311 y Fo(\003)3259
+4341 y FE(\))523 4451 y(doesn')o(t)c(e)o(xceed)g(a)h(portion)f
+Fu(\014)25 b FE(of)20 b Ft(\()p Fu(x)1596 4463 y FB(i)1624
+4451 y Ft(\()p Fu(t)p Ft(\))f Fx(\000)f Fu(x)1867 4421
+y FB(i)1867 4473 y(j)1897 4456 y Fc(\003)1937 4451 y
+Ft(\()p Fu(t)p Ft(\)\))p Fu(:)623 4551 y FE(Equations)25
+b(\(1.8\))g(and)g(\(1.9\))g(are)i(deri)n(v)o(ed)d(from)h(the)i
+(assumptions)e(2)i(and)e(3.)i(Therefore)523 4651 y(the)20
+b(choice)g(of)g(the)g(weights)g Fu(\013)1427 4663 y FB(ij)1506
+4651 y FE(must)g(tak)o(e)h(into)f(consideration)e(these)i(tw)o(o)g
+(equations.)p eop end
+%%Page: 11 11
+TeXDict begin 11 10 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)
+n(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)545
+b(11)p 523 206 2764 7 v 523 280 a FD(Algorithm)20 b(2)g
+FE(T)-6 b(emporally)18 b(updating)h(weights)h(of)g(node)f
+Fu(i)p FE(.)p 523 318 2764 4 v 553 383 a FA(1:)35 b Fm(f)n(or)19
+b Fl(j)k Fz( )c Fk(1)f FA(to)g Fl(n)f Fm(do)553 466 y
+FA(2:)118 b Fm(if)18 b Fl(j)23 b Fz(6)p Fk(=)c Fl(i)f
+Fm(then)553 549 y FA(3:)201 b Fl(s)842 559 y Fj(ij)916
+549 y Fz( )19 b Fk(0)553 632 y FA(4:)201 b Fl(\013)854
+642 y Fj(ij)929 632 y Fz( )19 b Fk(0)553 715 y FA(5:)118
+b Fm(end)18 b(if)553 798 y FA(6:)35 b Fm(end)18 b(f)n(or)553
+881 y FA(7:)35 b Fl(k)21 b Fz( )e Fk(0)553 964 y FA(8:)35
+b Fl(S)t(um)20 b Fz( )f Fk(0)553 1047 y FA(9:)35 b(\002nd)18
+b Fl(`)g FA(such)h(that)e Fl(\001)1146 1024 y Fj(`)1146
+1069 y(i)1196 1047 y Fk(=)i Fl(D)r(el)q(ta)1447 1057
+y Fj(i)1474 1047 y Fk([)p Fl(k)r Fk(])523 1130 y FA(10:)36
+b Fl(\013)694 1142 y Fj(i`)766 1130 y Fk(=)19 b(1)p Fl(=)p
+Fk(\()p Fl(\021)972 1140 y Fj(i)1016 1130 y Fk(+)c(1\))523
+1213 y FA(11:)36 b Fl(s)682 1225 y Fj(i`)753 1213 y Fk(=)19
+b Fl(\013)872 1225 y Fj(i`)941 1213 y Fz(\002)c Fl(\001)1070
+1190 y Fj(`)1070 1235 y(i)523 1296 y FA(12:)36 b Fm(r)o(epeat)523
+1379 y FA(13:)119 b Fl(S)t(um)19 b Fz( )g Fl(S)t(um)d
+Fk(+)f Fl(s)1260 1391 y Fj(il)523 1462 y FA(14:)119 b
+Fl(k)21 b Fz( )e Fl(k)e Fk(+)f(1)523 1545 y FA(15:)119
+b(\002nd)18 b Fl(`)f FA(such)i(that)f Fl(\001)1235 1522
+y Fj(`)1235 1567 y(i)1284 1545 y Fk(=)i Fl(D)r(el)q(ta)1536
+1555 y Fj(i)1563 1545 y Fk([)p Fl(k)r Fk(])523 1628 y
+FA(16:)119 b Fl(\013)777 1640 y Fj(i`)849 1628 y Fz( )19
+b Fk(1)p Fl(=)p Fk(\()p Fl(\021)1071 1638 y Fj(i)1114
+1628 y Fk(+)d(1\))523 1711 y FA(17:)119 b Fl(s)765 1723
+y Fj(i`)836 1711 y Fz( )19 b Fl(\013)971 1723 y Fj(i`)1039
+1711 y Fz(\002)d Fl(\001)1169 1688 y Fj(`)1169 1733 y(i)523
+1794 y FA(18:)36 b Fm(until)f Fl(N)7 b(O)r(T)27 b FA(\()p
+Fk(\()p Fl(x)1102 1804 y Fj(i)1145 1794 y Fz(\000)15
+b Fl(S)t(um)20 b Fz(\025)f Fl(x)1499 1771 y Fj(i)1499
+1817 y(`)1545 1794 y Fk(+)c Fl(s)1648 1806 y Fj(i`)1700
+1794 y Fk(\))j Fl(AN)7 b(D)20 b Fk(\()p Fl(k)h(<)f(n)p
+Fk(\))p FA(\))p 523 1851 V 623 2134 a FE(First)h(let)f(de\002ne)g(the)g
+(de)n(viation)f Fu(\001)1642 2094 y FB(j)1642 2157 y(i)1677
+2134 y Ft(\()p Fu(t)p Ft(\))i FE(of)f(node)g Fu(i)g FE(as:)861
+2363 y Fu(\001)930 2324 y FB(j)930 2387 y(i)965 2363
+y Ft(\()p Fu(t)p Ft(\))k(=)1170 2246 y Fr(\032)1245 2311
+y Fu(x)1292 2323 y FB(i)1320 2311 y Ft(\()p Fu(t)p Ft(\))19
+b Fx(\000)f Fu(x)1563 2281 y FB(i)1563 2333 y(j)1599
+2311 y Ft(\()p Fu(t)p Ft(\))191 b FE(if)p Fu(j)28 b Fx(2)23
+b Fu(N)2142 2323 y FB(i)2170 2311 y Ft(\()p Fu(t)p Ft(\))e
+FE(and)e Fu(x)2472 2323 y FB(i)2501 2311 y Ft(\()p Fu(t)p
+Ft(\))k Fu(>)g(x)2753 2281 y FB(i)2753 2333 y(j)2788
+2311 y Ft(\()p Fu(t)p Ft(\))f Fu(;)1245 2414 y Ft(0)597
+b FE(otherwise.)623 2559 y(Algorithm)17 b(2)i(presents)f(our)g(method)f
+(for)h(temporally)f(updating)g(the)i(a)n(v)o(eraging)e(weights.)523
+2658 y(Node)27 b Fu(i)i FE(computes)d(the)j(dif)n(ference)d(between)h
+(its)i(current)e(state)h(and)g(current)f(states)i(of)e(its)523
+2758 y(neighbours.)16 b(The)i(positi)n(v)o(e)f(de)n(viations)h(\()p
+Fu(\001)1814 2718 y FB(j)1814 2781 y(i)1871 2758 y Fu(>)23
+b Ft(0)p FE(\))18 b(are)h(then)f(stored)f(in)i(the)f(array)g
+Fu(D)r(el)r(ta)3156 2770 y FB(i)3182 2758 y FE(,)h(in)523
+2857 y(a)j(decreasing)f(order)-5 b(.)21 b(Then,)f(it)j(sets)g(the)f
+(weight)f Fu(\013)2028 2869 y FB(ij)2110 2857 y FE(to)h
+Ft(1)p Fu(=)p Ft(\()p Fu(\021)2354 2869 y FB(i)2381 2857
+y Ft(\()p Fu(t)p Ft(\))e(+)f(1\))p FE(,)j(where)g Fu(\021)2963
+2869 y FB(i)2991 2857 y Ft(\()p Fu(t)p Ft(\))h FE(is)f(the)523
+2957 y(current)c(number)g(of)h(its)h(neighbours,)c(starting)j(by)g(its)
+i(neighbours)16 b(nodes)j Fu(j)25 b FE(whose)19 b(ha)n(v)o(e)f(the)523
+3057 y(lar)o(ger)h(de)n(viations)g(while)h(respecting)f(assumption)g
+(3.)623 3156 y(In)29 b(order)f(to)i(cope)e(with)i(the)g(problem)d(of)j
+(message)f(loss,)h(we)g(adopted)e(the)h(follo)n(wing)523
+3256 y(strate)o(gy:)c(instead)h(of)g(sending)f Fu(s)1516
+3268 y FB(ij)1574 3256 y Ft(\()p Fu(t)p Ft(\))i FE(from)f(node)f
+Fu(i)h FE(to)g(node)f Fu(j)5 b FE(,)26 b(it)h(is)g(the)f(sum)g
+Fu(\006)3005 3268 y FB(s)3036 3276 y Fn(ij)3094 3256
+y Ft(\()p Fu(t)p Ft(\))34 b(=)523 3293 y Fr(P)611 3380
+y Fq(0)p Fo(\024)p FB(\034)7 b Fo(\024)p FB(t)828 3356
+y Fu(s)867 3368 y FB(ij)925 3356 y Ft(\()p Fu(\034)i
+Ft(\))29 b FE(that)d(is)h(sent.)g(Symmetrically)e(the)h(recei)n(v)o
+(ers)g(maintains)f(the)i(sum)f(of)g(the)523 3455 y(recei)n(v)o(ed)i
+(data)h Fu(\006)1064 3467 y FB(r)1095 3475 y Fn(j)r(i)1152
+3455 y Ft(\()p Fu(t)p Ft(\))40 b(=)1391 3393 y Fr(P)1478
+3480 y Fq(0)p Fo(\024)p FB(\034)7 b Fo(\024)p FB(t)1696
+3455 y Fu(r)1733 3467 y FB(j)s(i)1792 3455 y Ft(\()p
+Fu(\034)i Ft(\))p FE(.)30 b(Upon)f(recei)n(ving,)e(at)j(a)g(time)f
+Fu(t)p FE(,)h(a)g(message)523 3578 y(from)17 b(node)g
+Fu(i)p FE(,)i(a)f(node)g Fu(j)23 b FE(can)18 b(no)n(w)g(reco)o(v)o(er)e
+(all)j(the)f(data)g(that)h(w)o(as)g(sent)f(before)f(time)i
+Fu(d)3067 3538 y FB(j)3067 3601 y(i)3102 3578 y Ft(\()p
+Fu(t)p Ft(\))p FE(.)g(It)523 3687 y(has)f(only)e(to)i(calculate)f(the)g
+(dif)n(ference)f(between)g(the)i(recei)n(v)o(ed)e Fu(\006)2460
+3699 y FB(s)2491 3707 y Fn(ij)2548 3687 y Ft(\()p Fu(d)2623
+3647 y FB(j)2623 3710 y(i)2659 3687 y Ft(\()p Fu(t)p
+Ft(\)\))i FE(and)f(the)h(locally)523 3787 y(stored)i
+Fu(\006)812 3799 y FB(r)843 3807 y Fn(j)r(i)900 3787
+y Ft(\()p Fu(t)p Ft(\))p FE(.)623 3887 y(T)-7 b(o)18
+b(conclude,)e(the)i(state)h(messages)f(e)o(xchanged)e(during)g(the)i(e)
+o(x)o(ecution)e(of)i(the)g(algorithm)523 3986 y(are)h(composed)e(of)i
+(tw)o(o)h(scalar)f(v)n(alues)g(:)g(the)g(current)f(state)i(of)f(the)g
+(node,)f Fu(x)2725 3998 y FB(i)2753 3986 y Ft(\()p Fu(t)p
+Ft(\))p FE(,)i(and)e(the)h(sum)523 4086 y(of)h(the)g(sent)h(data)f
+Fu(\006)1114 4098 y FB(s)1145 4106 y Fn(ij)1202 4086
+y Ft(\()p Fu(t)p Ft(\))p FE(.)p eop end
+%%Page: 12 12
+TeXDict begin 12 11 bop 523 100 a FA(12)976 b(Jacques)20
+b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
+282 y Fv(1.3.5)41 b(Illustrativ)o(e)23 b(Example)523
+515 y FE(T)-7 b(o)26 b(illustrate)g(the)g(beha)n(viour)e(of)i(our)f
+(proposed)f(approach,)f(les)k(us)f(consider)f(the)h(e)o(xample)523
+614 y(presented)20 b(in)h(Figure)g(1.2.)f(It)h(consists)h(in)f(a)h
+(netw)o(ork)e(of)h(four)f(nodes.)g(The)h(initial)h(measure-)523
+714 y(ment)e(of)g(each)g(node)f Fu(i)h FE(is)h(kno)n(wn)e(by)h
+Fu(z)1668 726 y FB(i)1716 714 y FE(and)f(the)i(initial)f(state)h
+Fu(x)2413 726 y FB(i)2441 714 y Ft(\(0\))i(=)g Fu(z)2697
+726 y FB(i)2724 714 y FE(.)881 1808 y @beginspecial 0
+@llx 0 @lly 447 @urx 198 @ury 2458 @rwi @setspecial
+%%BeginDocument: exampleFusion.eps
+%!PS-Adobe-2.0 EPSF-2.0
+%%Title: example.fig
+%%Creator: fig2dev Version 3.2 Patchlevel 5-alpha7
+%%CreationDate: Wed Apr 9 11:24:09 2008
+%%For: makhoul@soleil4 (makhoul,,,)
+%%BoundingBox: 0 0 447 198
+%Magnification: 1.0000
+%%EndComments
+/$F2psDict 200 dict def
+$F2psDict begin
+$F2psDict /mtrx matrix put
+/col-1 {0 setgray} bind def
+/col0 {0.000 0.000 0.000 srgb} bind def
+/col1 {0.000 0.000 1.000 srgb} bind def
+/col2 {0.000 1.000 0.000 srgb} bind def
+/col3 {0.000 1.000 1.000 srgb} bind def
+/col4 {1.000 0.000 0.000 srgb} bind def
+/col5 {1.000 0.000 1.000 srgb} bind def
+/col6 {1.000 1.000 0.000 srgb} bind def
+/col7 {1.000 1.000 1.000 srgb} bind def
+/col8 {0.000 0.000 0.560 srgb} bind def
+/col9 {0.000 0.000 0.690 srgb} bind def
+/col10 {0.000 0.000 0.820 srgb} bind def
+/col11 {0.530 0.810 1.000 srgb} bind def
+/col12 {0.000 0.560 0.000 srgb} bind def
+/col13 {0.000 0.690 0.000 srgb} bind def
+/col14 {0.000 0.820 0.000 srgb} bind def
+/col15 {0.000 0.560 0.560 srgb} bind def
+/col16 {0.000 0.690 0.690 srgb} bind def
+/col17 {0.000 0.820 0.820 srgb} bind def
+/col18 {0.560 0.000 0.000 srgb} bind def
+/col19 {0.690 0.000 0.000 srgb} bind def
+/col20 {0.820 0.000 0.000 srgb} bind def
+/col21 {0.560 0.000 0.560 srgb} bind def
+/col22 {0.690 0.000 0.690 srgb} bind def
+/col23 {0.820 0.000 0.820 srgb} bind def
+/col24 {0.500 0.190 0.000 srgb} bind def
+/col25 {0.630 0.250 0.000 srgb} bind def
+/col26 {0.750 0.380 0.000 srgb} bind def
+/col27 {1.000 0.500 0.500 srgb} bind def
+/col28 {1.000 0.630 0.630 srgb} bind def
+/col29 {1.000 0.750 0.750 srgb} bind def
+/col30 {1.000 0.880 0.880 srgb} bind def
+/col31 {1.000 0.840 0.000 srgb} bind def
+
+end
+save
+newpath 0 198 moveto 0 0 lineto 447 0 lineto 447 198 lineto closepath clip newpath
+-208.8 326.9 translate
+1 -1 scale
+
+/cp {closepath} bind def
+/ef {eofill} bind def
+/gr {grestore} bind def
+/gs {gsave} bind def
+/sa {save} bind def
+/rs {restore} bind def
+/l {lineto} bind def
+/m {moveto} bind def
+/rm {rmoveto} bind def
+/n {newpath} bind def
+/s {stroke} bind def
+/sh {show} bind def
+/slc {setlinecap} bind def
+/slj {setlinejoin} bind def
+/slw {setlinewidth} bind def
+/srgb {setrgbcolor} bind def
+/rot {rotate} bind def
+/sc {scale} bind def
+/sd {setdash} bind def
+/ff {findfont} bind def
+/sf {setfont} bind def
+/scf {scalefont} bind def
+/sw {stringwidth} bind def
+/tr {translate} bind def
+/tnt {dup dup currentrgbcolor
+ 4 -2 roll dup 1 exch sub 3 -1 roll mul add
+ 4 -2 roll dup 1 exch sub 3 -1 roll mul add
+ 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
+ bind def
+/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
+ 4 -2 roll mul srgb} bind def
+ /DrawEllipse {
+ /endangle exch def
+ /startangle exch def
+ /yrad exch def
+ /xrad exch def
+ /y exch def
+ /x exch def
+ /savematrix mtrx currentmatrix def
+ x y tr xrad yrad sc 0 0 1 startangle endangle arc
+ closepath
+ savematrix setmatrix
+ } def
+
+/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
+/$F2psEnd {$F2psEnteredState restore end} def
+
+$F2psBegin
+10 setmiterlimit
+0 slj 0 slc
+ 0.06299 0.06299 sc
+%
+% Fig objects follow
+%
+%
+% here starts figure with depth 50
+% Ellipse
+30.000 slw
+n 3825 2565 487 487 0 360 DrawEllipse gs col0 s gr
+
+% Ellipse
+n 7380 2565 487 487 0 360 DrawEllipse gs col0 s gr
+
+% Ellipse
+n 4320 4680 487 487 0 360 DrawEllipse gs col0 s gr
+
+% Ellipse
+n 9900 4455 487 487 0 360 DrawEllipse gs col0 s gr
+
+% Polyline
+0 slj
+0 slc
+n 3825 3060 m
+ 4185 4230 l gs col0 s gr
+% Polyline
+n 4320 2565 m
+ 6885 2565 l gs col0 s gr
+% Polyline
+n 4815 4545 m
+ 7110 2970 l gs col0 s gr
+% Polyline
+n 7740 2925 m
+ 9585 4095 l gs col0 s gr
+/Times-Bold ff 254.00 scf sf
+3420 2610 m
+gs 1 -1 sc (z) col0 sh gr
+/Times-Roman ff 190.50 scf sf
+3555 2700 m
+gs 1 -1 sc (2) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+3690 2610 m
+gs 1 -1 sc (= 0.5) col0 sh gr
+/Times-Roman ff 190.50 scf sf
+7155 2655 m
+gs 1 -1 sc (4) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+7245 2565 m
+gs 1 -1 sc (= 0.9) col0 sh gr
+/Times-Bold ff 254.00 scf sf
+7020 2565 m
+gs 1 -1 sc (z) col0 sh gr
+/Times-Bold ff 254.00 scf sf
+9495 4500 m
+gs 1 -1 sc (z) col0 sh gr
+/Times-Roman ff 190.50 scf sf
+9630 4590 m
+gs 1 -1 sc (1) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+9765 4500 m
+gs 1 -1 sc (= 0.7) col0 sh gr
+/Times-Bold ff 254.00 scf sf
+3960 4770 m
+gs 1 -1 sc (z) col0 sh gr
+/Times-Bold ff 222.25 scf sf
+4230 4770 m
+gs 1 -1 sc (= 0.2) col0 sh gr
+/Times-Roman ff 190.50 scf sf
+4095 4860 m
+gs 1 -1 sc (3) col0 sh gr
+% here ends figure;
+$F2psEnd
+rs
+showpage
+%%Trailer
+%EOF
+
+%%EndDocument
+ @endspecial 523 1933 a Fm(Fig)o(.)16 b(1.2)36 b FA(An)17
+b(e)o(xample)g(of)h(a)f(sensor)h(netw)o(ork)h(composed)f(of)g(four)g
+(nodes)g(with)e(their)h(initial)e(measurements.)623 2193
+y FE(F)o(ollo)n(wing)21 b(the)i(second)f(step)h(of)f(Algorithm)g(1,)g
+(each)h(node)e(computes)h(the)h(weights)f Fu(\013)3228
+2205 y FB(ij)523 2293 y FE(for)e(its)h(neighbours.)c(This)k(is)g(done)e
+(by)h(using)f(Algorithm)g(2.)623 2392 y(Let)36 b(us)g(focus)f(on)h(the)
+f(case)i(of)e Fu(node)1810 2404 y Fq(4)1884 2392 y FE(for)g(instance.)g
+(W)-7 b(e)37 b(notice)e(that)h(it)h(has)f(three)523 2492
+y(neighbours)19 b(and)i(the)g(high)g(de)n(viation)f Fu(\001)i
+FE(corresponds)d(to)j Fu(node)2451 2504 y Fq(3)2488 2492
+y FE(.)f(Therefore,)e(it)k(computes)523 2592 y Fu(\013)576
+2604 y Fq(43)646 2592 y Ft(\(0\))45 b(=)976 2559 y Fq(1)p
+917 2573 151 4 v 917 2620 a FB(\021)951 2628 y Fd(4)983
+2620 y Fq(+1)1122 2592 y Ft(=)1242 2559 y Fq(1)p 1242
+2573 34 4 v 1242 2620 a(4)1317 2592 y FE(\002rst,)33
+b(such)e(that)i Fu(\021)1883 2604 y Fq(4)1953 2592 y
+FE(is)f(the)g(number)f(of)g(its)i(neighbours.)c(Then,)523
+2710 y Fu(s)562 2722 y Fq(43)632 2710 y Ft(\(0\))e(=)867
+2677 y Fq(1)p 867 2691 V 867 2739 a(4)910 2710 y Ft(\()p
+Fu(x)989 2722 y Fq(4)1027 2710 y Ft(\(0\))20 b Fx(\000)g
+Fu(x)1285 2722 y Fq(3)1323 2710 y Ft(\(0\)\))27 b(=)g(0)p
+Fu(:)p Ft(175)p FE(.)20 b(F)o(or)i(the)h(tw)o(o)f(reminder)f
+(neighbours)f Fu(node)3107 2722 y Fq(1)3167 2710 y FE(and)523
+2810 y Fu(node)695 2822 y Fq(2)732 2810 y FE(,)25 b Fu(node)950
+2822 y Fq(4)1013 2810 y FE(computes)f Fu(\013)1410 2822
+y Fq(42)1480 2810 y Ft(\(0\))i FE(\002rst)f(for)f(the)h(reason)f(that)h
+Fu(\001)2476 2779 y Fq(2)2476 2830 y(4)2539 2810 y FE(is)h(higher)d
+(than)i Fu(\001)3095 2779 y Fq(1)3095 2830 y(4)3132 2810
+y FE(.)g(W)-7 b(e)523 2909 y(note)24 b(that)h(for)e Fu(node)1134
+2921 y Fq(2)1196 2909 y FE(the)i(Assumption)e(3)i(\(ping)e(pong)g
+(condition\))f(is)k(satis\002ed)f(while)f(it)h(is)523
+3009 y(not)20 b(the)g(case)h(for)e Fu(node)1225 3021
+y Fq(1)1283 3009 y FE(which)h(leads)g(to)h Fu(\013)1837
+3021 y Fq(41)1907 3009 y Ft(\(0\))i(=)g(0)p FE(.)623
+3108 y(All)j(the)g(nodes)e(compute)h(their)g(weights)g(and)g(then)h
+(dif)n(fuse)e(their)i(information)d(to)j(their)523 3208
+y(neighbours)c(to)k(update)d(their)i(states)h(follo)n(wing)d(Equation)h
+(\(1.2\).)f(F)o(or)i(the)g(abo)o(v)o(e)e(e)o(xample)523
+3308 y(after)d(the)g(\002rst)h(step)g(we)f(obtain:)623
+3474 y Fu(x)670 3486 y Fq(1)707 3474 y Ft(\(1\))k(=)e(0)p
+Fu(:)p Ft(7)623 3573 y Fu(x)670 3585 y Fq(2)707 3573
+y Ft(\(1\))i(=)e(0)p Fu(:)p Ft(5)c(+)g(0)p Fu(:)p Ft(1)f
+Fx(\000)h Ft(0)p Fu(:)p Ft(1)k(=)h(0)p Fu(:)p Ft(5)623
+3673 y Fu(x)670 3685 y Fq(3)707 3673 y Ft(\(1\))h(=)e(0)p
+Fu(:)p Ft(2)c(+)g(0)p Fu(:)p Ft(1)f(+)h(0)p Fu(:)p Ft(175)j(=)i(0)p
+Fu(:)p Ft(475)623 3773 y Fu(x)670 3785 y Fq(4)707 3773
+y Ft(\(1\))h(=)e(0)p Fu(:)p Ft(9)c Fx(\000)g Ft(0)p Fu(:)p
+Ft(1)f Fx(\000)h Ft(0)p Fu(:)p Ft(175)j(=)i(0)p Fu(:)p
+Ft(625)623 3939 y FE(This)31 b(process)f(is)i(repeated)d(for)i(se)n(v)o
+(eral)f(iterations)g(until)h(all)g(the)g(states)h(of)e(the)h(nodes)523
+4038 y(con)m(v)o(er)o(ge)26 b(to)k(the)g(a)n(v)o(erage)e(of)i(the)g
+(initial)g(measurements.)e(W)-7 b(e)30 b(note)g(that)f(our)g(scheme)g
+(is)523 4138 y(rob)n(ust)c(to)g(the)h(topology)d(changes)h(and)h(the)g
+(loss)h(of)f(messages)h(as)g(discussed)f(in)h(details)f(in)523
+4238 y(the)20 b(ne)o(xt)g(section.)p eop end
+%%Page: 13 13
+TeXDict begin 13 12 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)
+n(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)545
+b(13)523 282 y FC(1.4)41 b(Experimental)26 b(Results)523
+515 y FE(In)21 b(order)g(to)g(e)n(v)n(aluate)g(the)h(performance)c(of)k
+(our)e(approach,)g(we)i(ha)n(v)o(e)f(implemented)e(a)j(sim-)523
+614 y(ulation)j(package)f(using)i(the)g(discrete)f(e)n(v)o(ent)g
+(simulator)g(OMNET++)g([17)o(].)h(This)g(package)523
+714 y(includes)f(our)g(asynchronous)e(algorithm)h(as)j(well)f(as)g(a)h
+(synchronous)c(one.)i(As)h(con\002rmed)523 814 y(in)c(pre)n(vious)d
+(related)i(w)o(orks)g([2)o(,)h(5],)f(distrib)n(uted)f(approaches)g(out)
+h(perform)e(centralised)i(ap-)523 913 y(proaches,)h(in)i(particular)f
+(in)h(noisy)f(netw)o(orks.)g(F)o(or)h(this)g(reason,)f(we)h(ha)n(v)o(e)
+f(not)h(included)e(in)523 1013 y(our)30 b(comparison)e(centralised)i
+(approaches,)f(and)h(focuses)g(instead)g(on)g(synchronous)e(dis-)523
+1112 y(trib)n(uted)19 b(approaches)g(that)h(are)g(more)f(closed)h(to)h
+(our)e(w)o(ork.)623 1212 y(W)-7 b(e)27 b(performed)c(se)n(v)o(eral)i
+(runs)g(of)g(the)h(algorithms)f(\(an)g(a)n(v)o(erage)f(of)i(100)f
+(runs\).)f(In)i(each)523 1312 y(e)o(xperimental)h(run,)g(the)i(netw)o
+(ork)e(graph)h(is)h(randomly)e(generated,)g(where)h(the)g(nodes)g(are)
+523 1411 y(distrib)n(uted)17 b(o)o(v)o(er)f(a)i Ft([0)p
+Fu(;)c Ft(100])c Fx(\002)g Ft([0)p Fu(;)k Ft(100])g FE(\002eld.)j(The)h
+(node)e(communication)f(range)i(w)o(as)i(set)f(to)523
+1511 y(30.)23 b(The)h(initial)g(node)f(measurements)g
+Fu(z)1748 1523 y FB(i)1800 1511 y FE(were)h(also)g(randomly)e
+(generated.)g(Each)h(node)g(is)523 1611 y(a)o(w)o(are)d(of)f(its)i
+(immediate)e(neighbours)e(through)h(a)i(\224hello\224)f(message.)h
+(Once)f(the)h(neighbour)n(-)523 1710 y(hood)27 b(is)j(identi\002ed,)d
+(each)i(node)e(run)h(the)g(algorithm)f(i.e.,)i(be)o(gins)e(e)o
+(xchanging)f(data)j(until)523 1810 y(con)m(v)o(er)o(gence.)623
+1910 y(W)-7 b(e)18 b(studied)e(the)i(performance)c(of)j(our)f
+(algorithm)f(with)j(re)o(gard)d(to)i(the)g(follo)n(wing)f(param-)523
+2009 y(eters:)523 2159 y Fx(\017)58 b FE(Rob)n(ustness)20
+b(in)g(front)f(of)h(communication)d(f)o(ailures:)j(we)g(mainly)f(v)n
+(aried)g(the)h(probability)623 2258 y(of)32 b(communication)d(f)o
+(ailure,)i(noted)h Fu(p)p FE(.)g(This)g(parameter)f(allo)n(ws)i(us)f
+(to)h(highlight)d(the)623 2358 y(beha)n(viour)18 b(of)i(our)f(scheme)h
+(in)g(noisy)g(en)m(vironment)d(and)j(in)g(dynamic)f(topologies.)523
+2457 y Fx(\017)58 b FE(Scalability:)23 b(we)h(v)n(aried)e(the)h(number)
+f(of)h(sensor)g(nodes)f(deplo)o(yed)g(in)h(the)h(same)f(area)g(to)623
+2557 y(see)d(ho)n(w)g(our)g(proposed)e(approach)g(scales?)623
+2707 y(The)30 b(main)g(metrics)h(we)g(measured)e(in)i(this)g(paper)e
+(are:)i(\(a\))f(the)h(mean)f(error)f(between)523 2806
+y(the)24 b(current)g(estimate)g Fu(x)1258 2818 y FB(i)1311
+2806 y FE(and)g(the)h(a)n(v)o(erage)e(of)h(the)g(initial)h(data,)f
+(\(b\))g(the)g(mean)g(number)f(of)523 2906 y(iterations)i(necessary)g
+(to)h(reach)f(con)m(v)o(er)o(gence)c(and)k(\(c\))g(the)h(o)o(v)o(erall)
+e(time)i(before)e(reaching)523 3005 y(the)h(global)e(con)m(v)o(er)o
+(gence.)d(W)-7 b(e)26 b(note)e(here)g(that)g(in)h(asynchronous)c
+(algorithms,)i(there)h(is)i(no)523 3105 y(direct)15 b(correlation)e
+(between)i(the)g(number)f(of)h(iterations)f(and)h(the)g(total)h(time)f
+(to)h(con)m(v)o(er)o(gence,)523 3205 y(contrary)k(to)j(synchronous)c
+(approaches.)h(In)i(f)o(act,)g(as)h(there)e(are)h(no)g(delays)g
+(between)f(nodes,)523 3304 y(the)i(number)e(of)i(iterations)f(could)h
+(be)f(relati)n(v)o(ely)g(high.)g(This)h(does)g(not)g(mean)f(that)h(the)
+g(total)523 3404 y(time)17 b(to)g(con)m(v)o(er)o(gence)d(could)i(be)h
+(long)f(too.)g(F)o(or)h(this)h(reason,)e(we)h(ha)n(v)o(e)g(made)f(the)h
+(distinction)523 3504 y(between)25 b(the)g(number)f(of)h(iterations)g
+(and)g(the)g(time)h(tak)o(en)f(to)h(reach)f(con)m(v)o(er)o(gence.)c(As)
+26 b(we)523 3603 y(run)f(a)h(discrete)g(e)n(v)o(ent)f(simulation)g
+(package,)f(this)j(time)f(is)g(the)g(one)g(gi)n(v)o(en)e(by)i(the)g
+(discrete)523 3703 y(simulator)17 b(OMNET++)h([17)n(];)h(we)f(named)f
+(it)i Fy(simulated)f(time)p FE(.)g(F)o(or)g(all)g(the)g(e)o
+(xperiments,)e(the)523 3802 y(global)g(con)m(v)o(er)o(gence)e(state)k
+(is)g(said)g(to)f(be)g(reached)f(when)h Fu(")2266 3814
+y FB(i)2317 3802 y Ft(=)22 b Fx(j)p Fu(x)2474 3814 y
+FB(i)2510 3802 y Fx(\000)2583 3740 y Fr(P)2670 3761 y
+FB(n)2670 3827 y(i)p Fq(=1)2796 3802 y Fu(y)2837 3814
+y FB(i)2864 3802 y Fu(=n)p Fx(j)17 b FE(becomes)523 3902
+y(less)k(than)f(some)g(\002x)o(ed)g(constant)f Fu(")p
+FE(.)623 4002 y(Note)26 b(that,)g(in)h(the)f(\002gures)g(ne)o(xt)f
+(sections,)i(the)f(points)g(represent)f(the)h(obtained)f(results)523
+4101 y(and)20 b(the)g(curv)o(es)f(are)h(an)g(e)o(xtrapolation)e(of)i
+(these)g(points.)p eop end
+%%Page: 14 14
+TeXDict begin 14 13 bop 523 100 a FA(14)976 b(Jacques)20
+b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
+282 y Fv(1.4.1)41 b(Basic)25 b(Behaviour)523 515 y FE(First,)e(we)f
+(sho)n(w)f(simulation)g(results)i(for)e(the)h(case)g(where)f(we)i(ha)n
+(v)o(e)e(a)h(\002x)o(ed)g(topology)d(with)523 614 y(a)28
+b(\002x)o(ed)e(number)g(of)h(nodes)g(\(50)f(nodes\))g(and)h
+Fu(")36 b Ft(=)g(10)2176 584 y Fo(\000)p Fq(4)2264 614
+y FE(.)28 b(The)f(mean)g(error)f(of)h(the)g(nodes)523
+714 y Fu(")562 684 y Fo(0)626 714 y Ft(=)732 652 y Fr(P)820
+672 y FB(n)820 739 y(i)p Fq(=1)946 714 y Fu(")985 726
+y FB(i)1012 714 y Fu(=n)j FE(w)o(as)h(plotted)e(in)h(Figure)g(1.3.)f
+(As)i(e)o(xpected,)d(it)j(can)f(be)g(seen)g(that)g(the)523
+814 y(con)m(v)o(er)o(gence)24 b(in)j(the)h(synchronous)d(mode)h(is)j(f)
+o(aster)e(than)h(the)f(con)m(v)o(er)o(gence)d(in)j(the)h(asyn-)523
+913 y(chronous)18 b(one.)i(It)g(is)h(also)g(noticed)e(that)h(the)g(tw)o
+(o)h(graphs)e(ha)n(v)o(e)g(the)i(same)f(pace.)623 1013
+y(Ho)n(we)n(v)o(er)m(,)25 b(in)j(man)o(y)e(scenarios)h(an)g(e)o(xact)g
+(a)n(v)o(erage)f(is)i(not)f(required,)f(and)h(one)g(may)f(be)523
+1112 y(willing)k(to)g(trade)f(precision)g(for)g(simplicity)-5
+b(.)29 b(F)o(or)h(instance,)f(minimizing)g(the)h(number)e(of)523
+1212 y(iterations)f(to)g(reduce)g(the)g(ener)o(gy)e(consumption)g(can)i
+(be)h(pri)n(vile)o(ged)d(in)i(sensor)g(netw)o(orks)523
+1312 y(applications)19 b(where)h(e)o(xact)f(a)n(v)o(eraging)f(is)k(not)
+d(essential.)1080 2651 y @beginspecial 50 @llx 50 @lly
+410 @urx 302 @ury 1980 @rwi @setspecial
+%%BeginDocument: ErrorNbIteration.ps
+%!PS-Adobe-2.0 EPSF-2.0
+%%Title: ErrorNbIteration.ps
+%%Creator: gnuplot 4.0 patchlevel 0
+%%CreationDate: Tue Feb 5 17:27:47 2008
+%%DocumentFonts: (atend)
+%%BoundingBox: 50 50 410 302
+%%Orientation: Portrait
+%%EndComments
+/gnudict 256 dict def
+gnudict begin
+/Color false def
+/Solid false def
+/gnulinewidth 5.000 def
+/userlinewidth gnulinewidth def
+/vshift -66 def
+/dl {10.0 mul} def
+/hpt_ 31.5 def
+/vpt_ 31.5 def
+/hpt hpt_ def
+/vpt vpt_ def
+/Rounded false def
+/M {moveto} bind def
+/L {lineto} bind def
+/R {rmoveto} bind def
+/V {rlineto} bind def
+/N {newpath moveto} bind def
+/C {setrgbcolor} bind def
+/f {rlineto fill} bind def
+/vpt2 vpt 2 mul def
+/hpt2 hpt 2 mul def
+/Lshow { currentpoint stroke M
+ 0 vshift R show } def
+/Rshow { currentpoint stroke M
+ dup stringwidth pop neg vshift R show } def
+/Cshow { currentpoint stroke M
+ dup stringwidth pop -2 div vshift R show } def
+/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
+ /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
+/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
+ {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def
+/BL { stroke userlinewidth 2 mul setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/AL { stroke userlinewidth 2 div setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/UL { dup gnulinewidth mul /userlinewidth exch def
+ dup 1 lt {pop 1} if 10 mul /udl exch def } def
+/PL { stroke userlinewidth setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/LTw { PL [] 1 setgray } def
+/LTb { BL [] 0 0 0 DL } def
+/LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def
+/LT0 { PL [] 1 0 0 DL } def
+/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
+/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
+/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
+/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
+/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
+/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
+/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
+/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
+/Pnt { stroke [] 0 setdash
+ gsave 1 setlinecap M 0 0 V stroke grestore } def
+/Dia { stroke [] 0 setdash 2 copy vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath stroke
+ Pnt } def
+/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
+ currentpoint stroke M
+ hpt neg vpt neg R hpt2 0 V stroke
+ } def
+/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath stroke
+ Pnt } def
+/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
+ hpt2 vpt2 neg V currentpoint stroke M
+ hpt2 neg 0 R hpt2 vpt2 V stroke } def
+/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath stroke
+ Pnt } def
+/Star { 2 copy Pls Crs } def
+/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath fill } def
+/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath fill } def
+/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath stroke
+ Pnt } def
+/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath fill} def
+/DiaF { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath fill } def
+/Pent { stroke [] 0 setdash 2 copy gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath stroke grestore Pnt } def
+/PentF { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath fill grestore } def
+/Circle { stroke [] 0 setdash 2 copy
+ hpt 0 360 arc stroke Pnt } def
+/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
+/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def
+/C1 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C2 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C3 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C4 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 180 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C5 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc
+ 2 copy moveto
+ 2 copy vpt 180 270 arc closepath fill
+ vpt 0 360 arc } bind def
+/C6 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C7 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C8 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 270 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C9 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 270 450 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 90 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C11 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 180 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 270 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C12 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 180 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C13 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 180 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C14 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 360 arc closepath fill
+ vpt 0 360 arc } bind def
+/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
+ neg 0 rlineto closepath } bind def
+/Square { dup Rec } bind def
+/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
+/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
+/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
+/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
+/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
+/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
+/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
+ exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
+/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
+/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
+ 2 copy vpt Square fill
+ Bsquare } bind def
+/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
+/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
+/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
+ Bsquare } bind def
+/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
+ Bsquare } bind def
+/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
+/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
+ 2 copy vpt Square fill Bsquare } bind def
+/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
+ 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
+/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
+/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
+/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
+/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
+/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
+/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
+/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
+/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
+/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
+/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
+/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
+/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
+/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
+/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
+/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
+/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
+/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
+/DiaE { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath stroke } def
+/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath stroke } def
+/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath stroke } def
+/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath stroke } def
+/PentE { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath stroke grestore } def
+/CircE { stroke [] 0 setdash
+ hpt 0 360 arc stroke } def
+/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
+/DiaW { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V Opaque stroke } def
+/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V Opaque stroke } def
+/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V Opaque stroke } def
+/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V Opaque stroke } def
+/PentW { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ Opaque stroke grestore } def
+/CircW { stroke [] 0 setdash
+ hpt 0 360 arc Opaque stroke } def
+/BoxFill { gsave Rec 1 setgray fill grestore } def
+/BoxColFill {
+ gsave Rec
+ /Fillden exch def
+ currentrgbcolor
+ /ColB exch def /ColG exch def /ColR exch def
+ /ColR ColR Fillden mul Fillden sub 1 add def
+ /ColG ColG Fillden mul Fillden sub 1 add def
+ /ColB ColB Fillden mul Fillden sub 1 add def
+ ColR ColG ColB setrgbcolor
+ fill grestore } def
+%
+% PostScript Level 1 Pattern Fill routine
+% Usage: x y w h s a XX PatternFill
+% x,y = lower left corner of box to be filled
+% w,h = width and height of box
+% a = angle in degrees between lines and x-axis
+% XX = 0/1 for no/yes cross-hatch
+%
+/PatternFill { gsave /PFa [ 9 2 roll ] def
+ PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
+ PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
+ gsave 1 setgray fill grestore clip
+ currentlinewidth 0.5 mul setlinewidth
+ /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
+ 0 0 M PFa 5 get rotate PFs -2 div dup translate
+ 0 1 PFs PFa 4 get div 1 add floor cvi
+ { PFa 4 get mul 0 M 0 PFs V } for
+ 0 PFa 6 get ne {
+ 0 1 PFs PFa 4 get div 1 add floor cvi
+ { PFa 4 get mul 0 2 1 roll M PFs 0 V } for
+ } if
+ stroke grestore } def
+%
+/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
+dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
+currentdict end definefont pop
+end
+%%EndProlog
+gnudict begin
+gsave
+50 50 translate
+0.050 0.050 scale
+0 setgray
+newpath
+(Helvetica) findfont 200 scalefont setfont
+1.000 UL
+LTb
+1260 600 M
+63 0 V
+5537 0 R
+-63 0 V
+-5657 0 R
+gsave 0 setgray
+( 1e-06) Rshow
+grestore
+1.000 UL
+LTb
+1260 811 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 1089 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 1232 M
+31 0 V
+5569 0 R
+-31 0 V
+-5569 68 R
+63 0 V
+5537 0 R
+-63 0 V
+-5657 0 R
+gsave 0 setgray
+( 1e-05) Rshow
+grestore
+1.000 UL
+LTb
+1260 1511 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 1789 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 1932 M
+31 0 V
+5569 0 R
+-31 0 V
+-5569 68 R
+63 0 V
+5537 0 R
+-63 0 V
+-5657 0 R
+gsave 0 setgray
+( 1e-04) Rshow
+grestore
+1.000 UL
+LTb
+1260 2211 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 2489 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 2632 M
+31 0 V
+5569 0 R
+-31 0 V
+-5569 68 R
+63 0 V
+5537 0 R
+-63 0 V
+-5657 0 R
+gsave 0 setgray
+( 0.001) Rshow
+grestore
+1.000 UL
+LTb
+1260 2911 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 3189 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 3332 M
+31 0 V
+5569 0 R
+-31 0 V
+-5569 68 R
+63 0 V
+5537 0 R
+-63 0 V
+-5657 0 R
+gsave 0 setgray
+( 0.01) Rshow
+grestore
+1.000 UL
+LTb
+1260 3611 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 3889 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 4032 M
+31 0 V
+5569 0 R
+-31 0 V
+-5569 68 R
+63 0 V
+5537 0 R
+-63 0 V
+-5657 0 R
+gsave 0 setgray
+( 0.1) Rshow
+grestore
+1.000 UL
+LTb
+1260 4311 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 4589 M
+31 0 V
+5569 0 R
+-31 0 V
+1260 4732 M
+31 0 V
+5569 0 R
+-31 0 V
+-5569 68 R
+63 0 V
+5537 0 R
+-63 0 V
+-5657 0 R
+gsave 0 setgray
+( 1) Rshow
+grestore
+1.000 UL
+LTb
+1260 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0) Cshow
+grestore
+1.000 UL
+LTb
+2007 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 20) Cshow
+grestore
+1.000 UL
+LTb
+2753 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 40) Cshow
+grestore
+1.000 UL
+LTb
+3500 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 60) Cshow
+grestore
+1.000 UL
+LTb
+4247 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 80) Cshow
+grestore
+1.000 UL
+LTb
+4993 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 100) Cshow
+grestore
+1.000 UL
+LTb
+5740 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 120) Cshow
+grestore
+1.000 UL
+LTb
+6487 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 140) Cshow
+grestore
+1.000 UL
+LTb
+1.000 UL
+LTb
+1260 600 M
+5600 0 V
+0 4200 V
+-5600 0 V
+0 -4200 V
+LTb
+200 2700 M
+gsave 0 setgray
+currentpoint gsave translate 90 rotate 0 0 M
+(Mean Error ) Cshow
+grestore
+grestore
+LTb
+4060 100 M
+gsave 0 setgray
+(Number of Iterations) Cshow
+grestore
+1.000 UP
+1.000 UL
+LT0
+LTb
+5957 4637 M
+gsave 0 setgray
+(Synchronous Algorithm) Rshow
+grestore
+LT0
+6077 4637 M
+543 0 V
+1297 4800 M
+25 -42 V
+26 -43 V
+25 -42 V
+26 -43 V
+26 -42 V
+26 -43 V
+27 -42 V
+27 -42 V
+27 -43 V
+27 -42 V
+28 -43 V
+28 -42 V
+28 -43 V
+29 -42 V
+29 -42 V
+29 -43 V
+30 -42 V
+30 -43 V
+31 -42 V
+30 -42 V
+31 -43 V
+32 -42 V
+32 -43 V
+32 -42 V
+32 -43 V
+33 -42 V
+33 -42 V
+33 -43 V
+34 -42 V
+34 -43 V
+35 -42 V
+34 -43 V
+35 -42 V
+36 -42 V
+35 -43 V
+36 -42 V
+36 -43 V
+37 -42 V
+37 -43 V
+36 -42 V
+38 -42 V
+37 -43 V
+38 -42 V
+37 -43 V
+38 -42 V
+38 -43 V
+39 -42 V
+38 -42 V
+39 -43 V
+38 -42 V
+39 -43 V
+39 -42 V
+39 -42 V
+39 -43 V
+39 -42 V
+39 -43 V
+39 -42 V
+39 -43 V
+39 -42 V
+39 -42 V
+39 -43 V
+39 -42 V
+39 -43 V
+39 -42 V
+38 -43 V
+39 -42 V
+38 -42 V
+39 -43 V
+38 -42 V
+38 -43 V
+38 -42 V
+37 -43 V
+38 -42 V
+37 -42 V
+37 -43 V
+37 -42 V
+37 -43 V
+37 -42 V
+36 -43 V
+36 -42 V
+36 -42 V
+36 -43 V
+36 -42 V
+35 -43 V
+36 -42 V
+35 -42 V
+35 -43 V
+35 -42 V
+35 -43 V
+35 -42 V
+35 -43 V
+35 -42 V
+35 -42 V
+35 -43 V
+35 -42 V
+36 -43 V
+35 -42 V
+36 -43 V
+36 -42 V
+1.000 UL
+LT1
+LTb
+5957 4437 M
+gsave 0 setgray
+(Asynchronous Algorithm) Rshow
+grestore
+LT1
+6077 4437 M
+543 0 V
+1297 4800 M
+43 -42 V
+43 -43 V
+42 -42 V
+43 -43 V
+42 -42 V
+42 -43 V
+42 -42 V
+42 -42 V
+41 -43 V
+42 -42 V
+42 -43 V
+41 -42 V
+41 -43 V
+42 -42 V
+41 -42 V
+42 -43 V
+41 -42 V
+41 -43 V
+41 -42 V
+41 -42 V
+42 -43 V
+41 -42 V
+41 -43 V
+41 -42 V
+41 -43 V
+41 -42 V
+42 -42 V
+41 -43 V
+41 -42 V
+41 -43 V
+41 -42 V
+41 -43 V
+41 -42 V
+42 -42 V
+41 -43 V
+41 -42 V
+41 -43 V
+42 -42 V
+41 -43 V
+41 -42 V
+42 -42 V
+41 -43 V
+41 -42 V
+42 -43 V
+41 -42 V
+42 -43 V
+42 -42 V
+41 -42 V
+42 -43 V
+42 -42 V
+42 -43 V
+42 -42 V
+43 -42 V
+42 -43 V
+42 -42 V
+43 -43 V
+43 -42 V
+43 -43 V
+43 -42 V
+43 -42 V
+44 -43 V
+43 -42 V
+44 -43 V
+44 -42 V
+45 -43 V
+44 -42 V
+45 -42 V
+45 -43 V
+45 -42 V
+46 -43 V
+46 -42 V
+46 -43 V
+46 -42 V
+47 -42 V
+47 -43 V
+48 -42 V
+47 -43 V
+48 -42 V
+49 -43 V
+49 -42 V
+49 -42 V
+49 -43 V
+50 -42 V
+50 -43 V
+50 -42 V
+51 -42 V
+51 -43 V
+52 -42 V
+52 -43 V
+52 -42 V
+52 -43 V
+53 -42 V
+53 -42 V
+53 -43 V
+54 -42 V
+53 -43 V
+54 -42 V
+54 -43 V
+55 -42 V
+1.000 UL
+LTb
+1260 600 M
+5600 0 V
+0 4200 V
+-5600 0 V
+0 -4200 V
+1.000 UP
+stroke
+grestore
+end
+showpage
+%%Trailer
+%%DocumentFonts: Helvetica
+
+%%EndDocument
+ @endspecial 523 2775 a Fm(Fig)o(.)e(1.3)36 b FA(The)18
+b(Mean)g(Error)i Fl(")523 3303 y Fv(1.4.2)41 b(Dynamic)25
+b(topology)523 3535 y FE(In)g(a)h(ne)o(xt)e(step,)h(we)h(simulated)f
+(the)g(proposed)e(sensor)i(fusion)f(scheme)h(with)g(dynamically)523
+3635 y(changing)32 b(communication)f(graphs.)i(W)-7 b(e)36
+b(generated)c(the)i(sequence)f(of)h(communication)523
+3735 y(graphs)24 b(as)h(follo)n(ws:)f(at)h(each)g(time)g(step,)f(each)h
+(edge)f(in)h(the)f(graph)g(is)h(only)f(a)n(v)n(ailable)g(with)523
+3834 y(a)i(selected)f(probability)f Fu(p)p FE(,)h(independent)e(of)i
+(the)g(other)g(edges)g(and)g(all)h(pre)n(vious)d(steps.)j(T)-7
+b(o)523 3934 y(ensure)18 b(the)h(jointly)f(connected)e(condition)h(of)h
+(the)h(generated)e(graphs,)g(we)i(selected)g(a)g(period)523
+4034 y(of)h(time)g Fu(\034)31 b FE(in)20 b(which)g(an)g(edge)f(cannot)g
+(stay)i(disconnected)d(more)i(than)f Fu(\034)31 b FE(time.)623
+4133 y(W)-7 b(e)29 b(\002x)o(ed)e(the)i(number)d(of)i(sensor)g(nodes)f
+(to)h(50)g(and)f Fu(")38 b Ft(=)f(10)2543 4103 y Fo(\000)p
+Fq(4)2631 4133 y FE(.)29 b(In)f(preliminary)e(re-)523
+4233 y(sults,)i(the)g(period)e Fu(\034)38 b FE(w)o(as)29
+b(chosen)e(in)g(a)i(w)o(ay)e(that)h(is)h(equal)e(to)h(three)f(times)h
+(the)g(time)g(of)f(a)523 4333 y(communication.)16 b(W)-7
+b(e)21 b(sho)n(w)e(in)g(\002gure)f(1.4)h(and)g(\002gure)f(1.5)h(the)g
+(v)n(ariation)f(of)h(the)g(number)f(of)523 4432 y(iterations)25
+b(and)f(the)h(time)h(simulation)e(with)h(the)g(probability)e(of)i(link)
+g(f)o(ailure)f Fu(p)p FE(.)i(W)-7 b(e)26 b(notice)523
+4532 y(that)e(the)g(number)f(of)g(iterations)h(and)g(the)g(o)o(v)o
+(erall)f(time)h(increase)f(with)i(the)f(increase)g(of)f(the)523
+4631 y(probability)-5 b(,)18 b(b)n(ut)i(not)g(in)g(an)g(e)o(xponential)
+e(w)o(ay)-5 b(.)p eop end
+%%Page: 15 15
+TeXDict begin 15 14 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)
+n(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)545
+b(15)1080 1354 y @beginspecial 50 @llx 50 @lly 410 @urx
+302 @ury 1980 @rwi @setspecial
+%%BeginDocument: DynamicTopology.ps
+%!PS-Adobe-2.0 EPSF-2.0
+%%Title: DynamicTopology.ps
+%%Creator: gnuplot 4.0 patchlevel 0
+%%CreationDate: Tue Feb 5 17:23:08 2008
+%%DocumentFonts: (atend)
+%%BoundingBox: 50 50 410 302
+%%Orientation: Portrait
+%%EndComments
+/gnudict 256 dict def
+gnudict begin
+/Color false def
+/Solid false def
+/gnulinewidth 5.000 def
+/userlinewidth gnulinewidth def
+/vshift -66 def
+/dl {10.0 mul} def
+/hpt_ 31.5 def
+/vpt_ 31.5 def
+/hpt hpt_ def
+/vpt vpt_ def
+/Rounded false def
+/M {moveto} bind def
+/L {lineto} bind def
+/R {rmoveto} bind def
+/V {rlineto} bind def
+/N {newpath moveto} bind def
+/C {setrgbcolor} bind def
+/f {rlineto fill} bind def
+/vpt2 vpt 2 mul def
+/hpt2 hpt 2 mul def
+/Lshow { currentpoint stroke M
+ 0 vshift R show } def
+/Rshow { currentpoint stroke M
+ dup stringwidth pop neg vshift R show } def
+/Cshow { currentpoint stroke M
+ dup stringwidth pop -2 div vshift R show } def
+/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
+ /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
+/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
+ {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def
+/BL { stroke userlinewidth 2 mul setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/AL { stroke userlinewidth 2 div setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/UL { dup gnulinewidth mul /userlinewidth exch def
+ dup 1 lt {pop 1} if 10 mul /udl exch def } def
+/PL { stroke userlinewidth setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/LTw { PL [] 1 setgray } def
+/LTb { BL [] 0 0 0 DL } def
+/LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def
+/LT0 { PL [] 1 0 0 DL } def
+/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
+/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
+/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
+/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
+/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
+/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
+/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
+/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
+/Pnt { stroke [] 0 setdash
+ gsave 1 setlinecap M 0 0 V stroke grestore } def
+/Dia { stroke [] 0 setdash 2 copy vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath stroke
+ Pnt } def
+/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
+ currentpoint stroke M
+ hpt neg vpt neg R hpt2 0 V stroke
+ } def
+/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath stroke
+ Pnt } def
+/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
+ hpt2 vpt2 neg V currentpoint stroke M
+ hpt2 neg 0 R hpt2 vpt2 V stroke } def
+/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath stroke
+ Pnt } def
+/Star { 2 copy Pls Crs } def
+/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath fill } def
+/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath fill } def
+/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath stroke
+ Pnt } def
+/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath fill} def
+/DiaF { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath fill } def
+/Pent { stroke [] 0 setdash 2 copy gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath stroke grestore Pnt } def
+/PentF { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath fill grestore } def
+/Circle { stroke [] 0 setdash 2 copy
+ hpt 0 360 arc stroke Pnt } def
+/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
+/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def
+/C1 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C2 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C3 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C4 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 180 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C5 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc
+ 2 copy moveto
+ 2 copy vpt 180 270 arc closepath fill
+ vpt 0 360 arc } bind def
+/C6 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C7 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C8 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 270 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C9 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 270 450 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 90 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C11 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 180 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 270 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C12 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 180 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C13 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 180 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C14 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 360 arc closepath fill
+ vpt 0 360 arc } bind def
+/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
+ neg 0 rlineto closepath } bind def
+/Square { dup Rec } bind def
+/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
+/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
+/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
+/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
+/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
+/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
+/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
+ exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
+/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
+/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
+ 2 copy vpt Square fill
+ Bsquare } bind def
+/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
+/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
+/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
+ Bsquare } bind def
+/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
+ Bsquare } bind def
+/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
+/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
+ 2 copy vpt Square fill Bsquare } bind def
+/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
+ 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
+/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
+/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
+/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
+/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
+/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
+/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
+/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
+/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
+/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
+/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
+/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
+/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
+/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
+/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
+/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
+/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
+/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
+/DiaE { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath stroke } def
+/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath stroke } def
+/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath stroke } def
+/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath stroke } def
+/PentE { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath stroke grestore } def
+/CircE { stroke [] 0 setdash
+ hpt 0 360 arc stroke } def
+/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
+/DiaW { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V Opaque stroke } def
+/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V Opaque stroke } def
+/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V Opaque stroke } def
+/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V Opaque stroke } def
+/PentW { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ Opaque stroke grestore } def
+/CircW { stroke [] 0 setdash
+ hpt 0 360 arc Opaque stroke } def
+/BoxFill { gsave Rec 1 setgray fill grestore } def
+/BoxColFill {
+ gsave Rec
+ /Fillden exch def
+ currentrgbcolor
+ /ColB exch def /ColG exch def /ColR exch def
+ /ColR ColR Fillden mul Fillden sub 1 add def
+ /ColG ColG Fillden mul Fillden sub 1 add def
+ /ColB ColB Fillden mul Fillden sub 1 add def
+ ColR ColG ColB setrgbcolor
+ fill grestore } def
+%
+% PostScript Level 1 Pattern Fill routine
+% Usage: x y w h s a XX PatternFill
+% x,y = lower left corner of box to be filled
+% w,h = width and height of box
+% a = angle in degrees between lines and x-axis
+% XX = 0/1 for no/yes cross-hatch
+%
+/PatternFill { gsave /PFa [ 9 2 roll ] def
+ PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
+ PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
+ gsave 1 setgray fill grestore clip
+ currentlinewidth 0.5 mul setlinewidth
+ /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
+ 0 0 M PFa 5 get rotate PFs -2 div dup translate
+ 0 1 PFs PFa 4 get div 1 add floor cvi
+ { PFa 4 get mul 0 M 0 PFs V } for
+ 0 PFa 6 get ne {
+ 0 1 PFs PFa 4 get div 1 add floor cvi
+ { PFa 4 get mul 0 2 1 roll M PFs 0 V } for
+ } if
+ stroke grestore } def
+%
+/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
+dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
+currentdict end definefont pop
+end
+%%EndProlog
+gnudict begin
+gsave
+50 50 translate
+0.050 0.050 scale
+0 setgray
+newpath
+(Helvetica) findfont 200 scalefont setfont
+1.000 UL
+LTb
+1020 600 M
+63 0 V
+5777 0 R
+-63 0 V
+900 600 M
+gsave 0 setgray
+( 60) Rshow
+grestore
+1.000 UL
+LTb
+1020 1067 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 80) Rshow
+grestore
+1.000 UL
+LTb
+1020 1533 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 100) Rshow
+grestore
+1.000 UL
+LTb
+1020 2000 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 120) Rshow
+grestore
+1.000 UL
+LTb
+1020 2467 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 140) Rshow
+grestore
+1.000 UL
+LTb
+1020 2933 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 160) Rshow
+grestore
+1.000 UL
+LTb
+1020 3400 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 180) Rshow
+grestore
+1.000 UL
+LTb
+1020 3867 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 200) Rshow
+grestore
+1.000 UL
+LTb
+1020 4333 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 220) Rshow
+grestore
+1.000 UL
+LTb
+1020 4800 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 240) Rshow
+grestore
+1.000 UL
+LTb
+1020 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0) Cshow
+grestore
+1.000 UL
+LTb
+2188 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0.1) Cshow
+grestore
+1.000 UL
+LTb
+3356 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0.2) Cshow
+grestore
+1.000 UL
+LTb
+4524 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0.3) Cshow
+grestore
+1.000 UL
+LTb
+5692 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0.4) Cshow
+grestore
+1.000 UL
+LTb
+6860 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0.5) Cshow
+grestore
+1.000 UL
+LTb
+1.000 UL
+LTb
+1020 600 M
+5840 0 V
+0 4200 V
+-5840 0 V
+0 -4200 V
+LTb
+200 2700 M
+gsave 0 setgray
+currentpoint gsave translate 90 rotate 0 0 M
+(number of iterations) Cshow
+grestore
+grestore
+LTb
+3940 100 M
+gsave 0 setgray
+(Probability of link failure) Cshow
+grestore
+1.000 UP
+1.000 UL
+LT0
+LTb
+5957 4637 M
+gsave 0 setgray
+(Asynchronous Algorithm) Rshow
+grestore
+LT0
+6077 4637 M
+543 0 V
+1020 833 M
+104 24 V
+100 23 V
+97 23 V
+92 23 V
+90 24 V
+87 23 V
+84 23 V
+81 23 V
+79 23 V
+77 23 V
+75 23 V
+73 23 V
+71 23 V
+69 23 V
+68 23 V
+67 23 V
+65 24 V
+65 23 V
+63 23 V
+62 24 V
+62 24 V
+60 23 V
+60 24 V
+59 24 V
+59 25 V
+58 24 V
+57 25 V
+57 24 V
+57 25 V
+56 26 V
+56 25 V
+56 25 V
+55 26 V
+55 26 V
+55 26 V
+54 26 V
+55 26 V
+54 27 V
+54 26 V
+54 27 V
+54 27 V
+54 27 V
+53 27 V
+54 28 V
+54 27 V
+53 28 V
+53 28 V
+54 28 V
+53 29 V
+54 28 V
+53 29 V
+53 28 V
+53 30 V
+53 29 V
+54 29 V
+53 30 V
+53 30 V
+53 31 V
+53 30 V
+53 31 V
+53 32 V
+54 32 V
+53 32 V
+53 33 V
+53 34 V
+53 34 V
+53 35 V
+53 35 V
+53 37 V
+53 37 V
+53 38 V
+54 40 V
+53 40 V
+53 42 V
+53 42 V
+53 45 V
+53 45 V
+53 48 V
+53 49 V
+53 50 V
+53 53 V
+53 55 V
+54 57 V
+53 59 V
+53 62 V
+53 64 V
+53 67 V
+53 70 V
+53 72 V
+53 76 V
+53 79 V
+53 83 V
+53 86 V
+54 90 V
+53 93 V
+53 98 V
+53 102 V
+53 105 V
+53 111 V
+1.000 UP
+1.000 UL
+LT1
+1020 833 Pls
+2188 1090 Pls
+2772 1347 Pls
+3356 1557 Pls
+3940 1907 Pls
+4524 2210 Pls
+5108 2537 Pls
+5692 2770 Pls
+6276 3400 Pls
+6860 4637 Pls
+1.000 UL
+LTb
+1020 600 M
+5840 0 V
+0 4200 V
+-5840 0 V
+0 -4200 V
+1.000 UP
+stroke
+grestore
+end
+showpage
+%%Trailer
+%%DocumentFonts: Helvetica
+
+%%EndDocument
+ @endspecial 523 1479 a Fm(Fig)o(.)17 b(1.4)36 b FA(Number)19
+b(of)f(Iterations)1080 2748 y @beginspecial 50 @llx 50
+@lly 410 @urx 302 @ury 1980 @rwi @setspecial
+%%BeginDocument: DynamicTopologyTime.ps
+%!PS-Adobe-2.0 EPSF-2.0
+%%Title: DynamicTopologyTime.ps
+%%Creator: gnuplot 4.0 patchlevel 0
+%%CreationDate: Tue Apr 8 13:22:28 2008
+%%DocumentFonts: (atend)
+%%BoundingBox: 50 50 410 302
+%%Orientation: Portrait
+%%EndComments
+/gnudict 256 dict def
+gnudict begin
+/Color false def
+/Solid false def
+/gnulinewidth 5.000 def
+/userlinewidth gnulinewidth def
+/vshift -66 def
+/dl {10.0 mul} def
+/hpt_ 31.5 def
+/vpt_ 31.5 def
+/hpt hpt_ def
+/vpt vpt_ def
+/Rounded false def
+/M {moveto} bind def
+/L {lineto} bind def
+/R {rmoveto} bind def
+/V {rlineto} bind def
+/N {newpath moveto} bind def
+/C {setrgbcolor} bind def
+/f {rlineto fill} bind def
+/vpt2 vpt 2 mul def
+/hpt2 hpt 2 mul def
+/Lshow { currentpoint stroke M
+ 0 vshift R show } def
+/Rshow { currentpoint stroke M
+ dup stringwidth pop neg vshift R show } def
+/Cshow { currentpoint stroke M
+ dup stringwidth pop -2 div vshift R show } def
+/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
+ /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
+/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
+ {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def
+/BL { stroke userlinewidth 2 mul setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/AL { stroke userlinewidth 2 div setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/UL { dup gnulinewidth mul /userlinewidth exch def
+ dup 1 lt {pop 1} if 10 mul /udl exch def } def
+/PL { stroke userlinewidth setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/LTw { PL [] 1 setgray } def
+/LTb { BL [] 0 0 0 DL } def
+/LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def
+/LT0 { PL [] 1 0 0 DL } def
+/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
+/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
+/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
+/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
+/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
+/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
+/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
+/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
+/Pnt { stroke [] 0 setdash
+ gsave 1 setlinecap M 0 0 V stroke grestore } def
+/Dia { stroke [] 0 setdash 2 copy vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath stroke
+ Pnt } def
+/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
+ currentpoint stroke M
+ hpt neg vpt neg R hpt2 0 V stroke
+ } def
+/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath stroke
+ Pnt } def
+/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
+ hpt2 vpt2 neg V currentpoint stroke M
+ hpt2 neg 0 R hpt2 vpt2 V stroke } def
+/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath stroke
+ Pnt } def
+/Star { 2 copy Pls Crs } def
+/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath fill } def
+/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath fill } def
+/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath stroke
+ Pnt } def
+/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath fill} def
+/DiaF { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath fill } def
+/Pent { stroke [] 0 setdash 2 copy gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath stroke grestore Pnt } def
+/PentF { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath fill grestore } def
+/Circle { stroke [] 0 setdash 2 copy
+ hpt 0 360 arc stroke Pnt } def
+/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
+/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def
+/C1 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C2 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C3 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C4 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 180 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C5 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc
+ 2 copy moveto
+ 2 copy vpt 180 270 arc closepath fill
+ vpt 0 360 arc } bind def
+/C6 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C7 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C8 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 270 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C9 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 270 450 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 90 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C11 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 180 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 270 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C12 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 180 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C13 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 180 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C14 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 360 arc closepath fill
+ vpt 0 360 arc } bind def
+/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
+ neg 0 rlineto closepath } bind def
+/Square { dup Rec } bind def
+/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
+/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
+/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
+/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
+/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
+/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
+/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
+ exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
+/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
+/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
+ 2 copy vpt Square fill
+ Bsquare } bind def
+/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
+/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
+/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
+ Bsquare } bind def
+/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
+ Bsquare } bind def
+/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
+/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
+ 2 copy vpt Square fill Bsquare } bind def
+/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
+ 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
+/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
+/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
+/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
+/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
+/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
+/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
+/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
+/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
+/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
+/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
+/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
+/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
+/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
+/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
+/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
+/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
+/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
+/DiaE { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath stroke } def
+/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath stroke } def
+/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath stroke } def
+/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath stroke } def
+/PentE { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath stroke grestore } def
+/CircE { stroke [] 0 setdash
+ hpt 0 360 arc stroke } def
+/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
+/DiaW { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V Opaque stroke } def
+/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V Opaque stroke } def
+/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V Opaque stroke } def
+/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V Opaque stroke } def
+/PentW { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ Opaque stroke grestore } def
+/CircW { stroke [] 0 setdash
+ hpt 0 360 arc Opaque stroke } def
+/BoxFill { gsave Rec 1 setgray fill grestore } def
+/BoxColFill {
+ gsave Rec
+ /Fillden exch def
+ currentrgbcolor
+ /ColB exch def /ColG exch def /ColR exch def
+ /ColR ColR Fillden mul Fillden sub 1 add def
+ /ColG ColG Fillden mul Fillden sub 1 add def
+ /ColB ColB Fillden mul Fillden sub 1 add def
+ ColR ColG ColB setrgbcolor
+ fill grestore } def
+%
+% PostScript Level 1 Pattern Fill routine
+% Usage: x y w h s a XX PatternFill
+% x,y = lower left corner of box to be filled
+% w,h = width and height of box
+% a = angle in degrees between lines and x-axis
+% XX = 0/1 for no/yes cross-hatch
+%
+/PatternFill { gsave /PFa [ 9 2 roll ] def
+ PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
+ PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
+ gsave 1 setgray fill grestore clip
+ currentlinewidth 0.5 mul setlinewidth
+ /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
+ 0 0 M PFa 5 get rotate PFs -2 div dup translate
+ 0 1 PFs PFa 4 get div 1 add floor cvi
+ { PFa 4 get mul 0 M 0 PFs V } for
+ 0 PFa 6 get ne {
+ 0 1 PFs PFa 4 get div 1 add floor cvi
+ { PFa 4 get mul 0 2 1 roll M PFs 0 V } for
+ } if
+ stroke grestore } def
+%
+/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
+dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
+currentdict end definefont pop
+end
+%%EndProlog
+gnudict begin
+gsave
+50 50 translate
+0.050 0.050 scale
+0 setgray
+newpath
+(Helvetica) findfont 200 scalefont setfont
+1.000 UL
+LTb
+900 600 M
+63 0 V
+5897 0 R
+-63 0 V
+780 600 M
+gsave 0 setgray
+( 15) Rshow
+grestore
+1.000 UL
+LTb
+900 1200 M
+63 0 V
+5897 0 R
+-63 0 V
+-6017 0 R
+gsave 0 setgray
+( 20) Rshow
+grestore
+1.000 UL
+LTb
+900 1800 M
+63 0 V
+5897 0 R
+-63 0 V
+-6017 0 R
+gsave 0 setgray
+( 25) Rshow
+grestore
+1.000 UL
+LTb
+900 2400 M
+63 0 V
+5897 0 R
+-63 0 V
+-6017 0 R
+gsave 0 setgray
+( 30) Rshow
+grestore
+1.000 UL
+LTb
+900 3000 M
+63 0 V
+5897 0 R
+-63 0 V
+-6017 0 R
+gsave 0 setgray
+( 35) Rshow
+grestore
+1.000 UL
+LTb
+900 3600 M
+63 0 V
+5897 0 R
+-63 0 V
+-6017 0 R
+gsave 0 setgray
+( 40) Rshow
+grestore
+1.000 UL
+LTb
+900 4200 M
+63 0 V
+5897 0 R
+-63 0 V
+-6017 0 R
+gsave 0 setgray
+( 45) Rshow
+grestore
+1.000 UL
+LTb
+900 4800 M
+63 0 V
+5897 0 R
+-63 0 V
+-6017 0 R
+gsave 0 setgray
+( 50) Rshow
+grestore
+1.000 UL
+LTb
+900 600 M
+0 63 V
+0 4137 R
+0 -63 V
+900 400 M
+gsave 0 setgray
+( 0) Cshow
+grestore
+1.000 UL
+LTb
+2092 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0.1) Cshow
+grestore
+1.000 UL
+LTb
+3284 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0.2) Cshow
+grestore
+1.000 UL
+LTb
+4476 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0.3) Cshow
+grestore
+1.000 UL
+LTb
+5668 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0.4) Cshow
+grestore
+1.000 UL
+LTb
+6860 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 0.5) Cshow
+grestore
+1.000 UL
+LTb
+1.000 UL
+LTb
+900 600 M
+5960 0 V
+0 4200 V
+-5960 0 V
+900 600 L
+LTb
+200 2700 M
+gsave 0 setgray
+currentpoint gsave translate 90 rotate 0 0 M
+(Simulated time) Cshow
+grestore
+grestore
+LTb
+3880 100 M
+gsave 0 setgray
+(Probability of link failure) Cshow
+grestore
+1.000 UP
+1.000 UL
+LT0
+LTb
+5957 4637 M
+gsave 0 setgray
+(Asynchronous Algorithm) Rshow
+grestore
+LT0
+6077 4637 M
+543 0 V
+900 774 M
+106 19 V
+102 19 V
+99 20 V
+95 19 V
+91 20 V
+89 19 V
+85 20 V
+83 19 V
+81 20 V
+78 19 V
+77 20 V
+74 20 V
+72 19 V
+71 20 V
+70 20 V
+68 20 V
+67 20 V
+65 21 V
+65 20 V
+63 21 V
+63 21 V
+62 21 V
+61 22 V
+60 21 V
+60 22 V
+59 22 V
+59 23 V
+58 22 V
+58 24 V
+57 23 V
+57 23 V
+57 24 V
+56 25 V
+57 24 V
+56 25 V
+55 25 V
+56 25 V
+55 26 V
+56 26 V
+55 26 V
+55 26 V
+54 27 V
+55 26 V
+55 28 V
+55 27 V
+54 27 V
+55 28 V
+54 28 V
+55 29 V
+54 28 V
+54 29 V
+55 29 V
+54 29 V
+54 30 V
+55 29 V
+54 31 V
+54 30 V
+54 31 V
+55 31 V
+54 32 V
+54 32 V
+54 32 V
+54 33 V
+55 34 V
+54 34 V
+54 35 V
+54 36 V
+54 36 V
+55 38 V
+54 38 V
+54 39 V
+54 40 V
+54 42 V
+54 43 V
+55 44 V
+54 45 V
+54 47 V
+54 49 V
+54 50 V
+55 52 V
+54 54 V
+54 57 V
+54 58 V
+54 61 V
+54 63 V
+55 66 V
+54 69 V
+54 72 V
+54 74 V
+54 78 V
+55 81 V
+54 84 V
+54 88 V
+54 92 V
+54 96 V
+54 99 V
+55 104 V
+54 108 V
+54 112 V
+1.000 UP
+1.000 UL
+LT1
+900 774 Pls
+2092 984 Pls
+2688 1219 Pls
+3284 1360 Pls
+3880 1740 Pls
+4476 2048 Pls
+5072 2368 Pls
+5668 2618 Pls
+6264 3270 Pls
+6860 4529 Pls
+1.000 UL
+LTb
+900 600 M
+5960 0 V
+0 4200 V
+-5960 0 V
+900 600 L
+1.000 UP
+stroke
+grestore
+end
+showpage
+%%Trailer
+%%DocumentFonts: Helvetica
+
+%%EndDocument
+ @endspecial 523 2872 a Fm(Fig)o(.)f(1.5)36 b FA(Simulated)18
+b(T)n(ime)623 3169 y FE(Note)i(that)g(we)g(also)h(tried)e(to)i(run)e
+(the)h(synchronous)d(algorithm)i(with)h(dynamic)f(topology)523
+3269 y(changes,)k(b)n(ut)g(the)h(e)o(x)o(ecution)e(times)i(were)f(so)i
+(prohibiti)n(v)o(e,)c(that)i(we)i(abandoned)20 b(those)k(e)o(x-)523
+3368 y(periments.)18 b(These)h(results)h(con\002rm)e(that)h
+(synchronous)d(algorithms)i(are)h(infeasible)g(for)f(real)523
+3468 y(sensor)i(netw)o(orks.)523 3833 y Fv(1.4.3)41 b(Larger)24
+b(Sensor)h(Netw)o(ork)523 4066 y FE(Our)16 b(scheme)g(can)g(be)g
+(applied)f(to)h(sensor)g(netw)o(orks)f(where)h(a)h(lar)o(ge)e(number)f
+(of)i(sensor)g(nodes)523 4165 y(are)23 b(deplo)o(yed,)e(since)i(it)h
+(is)g(fully)f(distrib)n(uted)f(and)g(there)h(is)h(no)f(centralized)f
+(control.)f(In)i(our)523 4265 y(simulations)f(we)g(v)n(aried)g(the)g
+(number)e(of)j(sensor)e(nodes)h(from)f(20)h(to)h(200)e(nodes,)g(deplo)o
+(yed)523 4364 y(in)f(the)h(re)o(gion)d Ft([0)p Fu(;)c
+Ft(100])j Fx(\002)h Ft([0)p Fu(;)c Ft(100])p FE(,)k(we)j(selected)f
+(for)g(all)g(nodes)g Fu(i)p FE(,)g Fu(")j Ft(=)f(10)2748
+4334 y Fo(\000)p Fq(4)2837 4364 y FE(.)623 4464 y(Ho)n(we)n(v)o(er)m(,)
+16 b(as)j(sho)n(wn)e(in)i(the)f(tw)o(o)h(Figures)f(\(Figure)f(1.6)g
+(and)h(Figure)g(1.7\),)f(as)i(the)f(number)523 4564 y(of)24
+b(sensor)f(nodes)h(increases,)f(the)h(a)n(v)o(erage)f(of)h(the)g
+(iterations)f(number)f(as)j(well)g(as)f(the)g(time)523
+4663 y(needed)29 b(to)i(reach)e(global)h(con)m(v)o(er)o(gence)c
+(decreases)k(in)h(the)f(tw)o(o)h(cases)g(synchronous)d(and)p
+eop end
+%%Page: 16 16
+TeXDict begin 16 15 bop 523 100 a FA(16)976 b(Jacques)20
+b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
+282 y FE(asynchronous.)f(W)-7 b(e)22 b(notice)d(that)i(in)f(the)h
+(synchronous)c(mode)i(we)i(obtained)e(less)i(number)e(of)523
+382 y(iterations,)f(on)h(the)g(other)f(hand)g(it)i(tak)o(es)f(more)f
+(time)h(to)g(reach)g(the)g(global)f(con)m(v)o(er)o(gence)d(than)523
+482 y(the)20 b(asynchronous)e(one.)1080 1816 y @beginspecial
+50 @llx 50 @lly 410 @urx 302 @ury 1980 @rwi @setspecial
+%%BeginDocument: Density.ps
+%!PS-Adobe-2.0 EPSF-2.0
+%%Title: Density.ps
+%%Creator: gnuplot 4.0 patchlevel 0
+%%CreationDate: Tue Feb 5 17:29:59 2008
+%%DocumentFonts: (atend)
+%%BoundingBox: 50 50 410 302
+%%Orientation: Portrait
+%%EndComments
+/gnudict 256 dict def
+gnudict begin
+/Color false def
+/Solid false def
+/gnulinewidth 5.000 def
+/userlinewidth gnulinewidth def
+/vshift -66 def
+/dl {10.0 mul} def
+/hpt_ 31.5 def
+/vpt_ 31.5 def
+/hpt hpt_ def
+/vpt vpt_ def
+/Rounded false def
+/M {moveto} bind def
+/L {lineto} bind def
+/R {rmoveto} bind def
+/V {rlineto} bind def
+/N {newpath moveto} bind def
+/C {setrgbcolor} bind def
+/f {rlineto fill} bind def
+/vpt2 vpt 2 mul def
+/hpt2 hpt 2 mul def
+/Lshow { currentpoint stroke M
+ 0 vshift R show } def
+/Rshow { currentpoint stroke M
+ dup stringwidth pop neg vshift R show } def
+/Cshow { currentpoint stroke M
+ dup stringwidth pop -2 div vshift R show } def
+/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
+ /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
+/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
+ {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def
+/BL { stroke userlinewidth 2 mul setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/AL { stroke userlinewidth 2 div setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/UL { dup gnulinewidth mul /userlinewidth exch def
+ dup 1 lt {pop 1} if 10 mul /udl exch def } def
+/PL { stroke userlinewidth setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/LTw { PL [] 1 setgray } def
+/LTb { BL [] 0 0 0 DL } def
+/LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def
+/LT0 { PL [] 1 0 0 DL } def
+/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
+/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
+/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
+/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
+/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
+/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
+/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
+/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
+/Pnt { stroke [] 0 setdash
+ gsave 1 setlinecap M 0 0 V stroke grestore } def
+/Dia { stroke [] 0 setdash 2 copy vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath stroke
+ Pnt } def
+/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
+ currentpoint stroke M
+ hpt neg vpt neg R hpt2 0 V stroke
+ } def
+/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath stroke
+ Pnt } def
+/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
+ hpt2 vpt2 neg V currentpoint stroke M
+ hpt2 neg 0 R hpt2 vpt2 V stroke } def
+/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath stroke
+ Pnt } def
+/Star { 2 copy Pls Crs } def
+/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath fill } def
+/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath fill } def
+/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath stroke
+ Pnt } def
+/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath fill} def
+/DiaF { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath fill } def
+/Pent { stroke [] 0 setdash 2 copy gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath stroke grestore Pnt } def
+/PentF { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath fill grestore } def
+/Circle { stroke [] 0 setdash 2 copy
+ hpt 0 360 arc stroke Pnt } def
+/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
+/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def
+/C1 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C2 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C3 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C4 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 180 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C5 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc
+ 2 copy moveto
+ 2 copy vpt 180 270 arc closepath fill
+ vpt 0 360 arc } bind def
+/C6 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C7 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C8 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 270 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C9 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 270 450 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 90 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C11 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 180 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 270 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C12 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 180 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C13 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 180 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C14 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 360 arc closepath fill
+ vpt 0 360 arc } bind def
+/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
+ neg 0 rlineto closepath } bind def
+/Square { dup Rec } bind def
+/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
+/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
+/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
+/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
+/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
+/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
+/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
+ exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
+/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
+/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
+ 2 copy vpt Square fill
+ Bsquare } bind def
+/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
+/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
+/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
+ Bsquare } bind def
+/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
+ Bsquare } bind def
+/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
+/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
+ 2 copy vpt Square fill Bsquare } bind def
+/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
+ 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
+/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
+/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
+/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
+/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
+/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
+/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
+/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
+/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
+/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
+/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
+/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
+/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
+/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
+/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
+/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
+/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
+/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
+/DiaE { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath stroke } def
+/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath stroke } def
+/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath stroke } def
+/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath stroke } def
+/PentE { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath stroke grestore } def
+/CircE { stroke [] 0 setdash
+ hpt 0 360 arc stroke } def
+/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
+/DiaW { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V Opaque stroke } def
+/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V Opaque stroke } def
+/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V Opaque stroke } def
+/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V Opaque stroke } def
+/PentW { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ Opaque stroke grestore } def
+/CircW { stroke [] 0 setdash
+ hpt 0 360 arc Opaque stroke } def
+/BoxFill { gsave Rec 1 setgray fill grestore } def
+/BoxColFill {
+ gsave Rec
+ /Fillden exch def
+ currentrgbcolor
+ /ColB exch def /ColG exch def /ColR exch def
+ /ColR ColR Fillden mul Fillden sub 1 add def
+ /ColG ColG Fillden mul Fillden sub 1 add def
+ /ColB ColB Fillden mul Fillden sub 1 add def
+ ColR ColG ColB setrgbcolor
+ fill grestore } def
+%
+% PostScript Level 1 Pattern Fill routine
+% Usage: x y w h s a XX PatternFill
+% x,y = lower left corner of box to be filled
+% w,h = width and height of box
+% a = angle in degrees between lines and x-axis
+% XX = 0/1 for no/yes cross-hatch
+%
+/PatternFill { gsave /PFa [ 9 2 roll ] def
+ PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
+ PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
+ gsave 1 setgray fill grestore clip
+ currentlinewidth 0.5 mul setlinewidth
+ /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
+ 0 0 M PFa 5 get rotate PFs -2 div dup translate
+ 0 1 PFs PFa 4 get div 1 add floor cvi
+ { PFa 4 get mul 0 M 0 PFs V } for
+ 0 PFa 6 get ne {
+ 0 1 PFs PFa 4 get div 1 add floor cvi
+ { PFa 4 get mul 0 2 1 roll M PFs 0 V } for
+ } if
+ stroke grestore } def
+%
+/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
+dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
+currentdict end definefont pop
+end
+%%EndProlog
+gnudict begin
+gsave
+50 50 translate
+0.050 0.050 scale
+0 setgray
+newpath
+(Helvetica) findfont 200 scalefont setfont
+1.000 UL
+LTb
+1020 600 M
+63 0 V
+5777 0 R
+-63 0 V
+900 600 M
+gsave 0 setgray
+( 20) Rshow
+grestore
+1.000 UL
+LTb
+1020 1067 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 30) Rshow
+grestore
+1.000 UL
+LTb
+1020 1533 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 40) Rshow
+grestore
+1.000 UL
+LTb
+1020 2000 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 50) Rshow
+grestore
+1.000 UL
+LTb
+1020 2467 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 60) Rshow
+grestore
+1.000 UL
+LTb
+1020 2933 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 70) Rshow
+grestore
+1.000 UL
+LTb
+1020 3400 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 80) Rshow
+grestore
+1.000 UL
+LTb
+1020 3867 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 90) Rshow
+grestore
+1.000 UL
+LTb
+1020 4333 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 100) Rshow
+grestore
+1.000 UL
+LTb
+1020 4800 M
+63 0 V
+5777 0 R
+-63 0 V
+-5897 0 R
+gsave 0 setgray
+( 110) Rshow
+grestore
+1.000 UL
+LTb
+1521 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 40) Cshow
+grestore
+1.000 UL
+LTb
+2188 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 60) Cshow
+grestore
+1.000 UL
+LTb
+2855 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 80) Cshow
+grestore
+1.000 UL
+LTb
+3523 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 100) Cshow
+grestore
+1.000 UL
+LTb
+4190 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 120) Cshow
+grestore
+1.000 UL
+LTb
+4858 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 140) Cshow
+grestore
+1.000 UL
+LTb
+5525 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 160) Cshow
+grestore
+1.000 UL
+LTb
+6193 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 180) Cshow
+grestore
+1.000 UL
+LTb
+6860 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 200) Cshow
+grestore
+1.000 UL
+LTb
+1.000 UL
+LTb
+1020 600 M
+5840 0 V
+0 4200 V
+-5840 0 V
+0 -4200 V
+LTb
+200 2700 M
+gsave 0 setgray
+currentpoint gsave translate 90 rotate 0 0 M
+(Number of Iterations) Cshow
+grestore
+grestore
+LTb
+3940 100 M
+gsave 0 setgray
+(Nodes Density) Cshow
+grestore
+1.000 UP
+1.000 UL
+LT0
+LTb
+5957 4637 M
+gsave 0 setgray
+(Synchronous Algorithm) Rshow
+grestore
+LT0
+6077 4637 M
+543 0 V
+1020 3493 M
+42 -42 V
+42 -41 V
+42 -41 V
+43 -41 V
+42 -40 V
+42 -39 V
+42 -39 V
+42 -38 V
+42 -38 V
+43 -37 V
+42 -36 V
+42 -37 V
+43 -35 V
+42 -35 V
+43 -35 V
+43 -34 V
+43 -33 V
+43 -33 V
+43 -32 V
+43 -32 V
+43 -32 V
+44 -31 V
+44 -30 V
+44 -30 V
+44 -30 V
+44 -29 V
+45 -28 V
+45 -29 V
+45 -27 V
+46 -27 V
+46 -27 V
+46 -26 V
+47 -26 V
+47 -26 V
+47 -25 V
+48 -24 V
+48 -24 V
+49 -24 V
+49 -23 V
+50 -23 V
+50 -23 V
+50 -22 V
+52 -21 V
+51 -22 V
+53 -21 V
+52 -20 V
+54 -20 V
+54 -20 V
+55 -19 V
+55 -19 V
+56 -19 V
+56 -18 V
+58 -18 V
+58 -18 V
+58 -17 V
+60 -17 V
+60 -16 V
+61 -16 V
+61 -16 V
+62 -16 V
+63 -15 V
+64 -15 V
+64 -14 V
+66 -14 V
+66 -14 V
+66 -14 V
+68 -13 V
+68 -13 V
+69 -12 V
+70 -12 V
+70 -12 V
+72 -12 V
+72 -11 V
+72 -11 V
+74 -11 V
+74 -10 V
+75 -10 V
+75 -10 V
+76 -9 V
+77 -9 V
+78 -9 V
+78 -8 V
+78 -8 V
+80 -8 V
+80 -7 V
+80 -7 V
+81 -7 V
+81 -6 V
+82 -7 V
+82 -5 V
+83 -6 V
+83 -5 V
+83 -5 V
+84 -4 V
+83 -4 V
+84 -4 V
+85 -3 V
+84 -3 V
+84 -2 V
+1.000 UL
+LT1
+LTb
+5957 4437 M
+gsave 0 setgray
+(Asynchronous Algorithm) Rshow
+grestore
+LT1
+6077 4437 M
+543 0 V
+-5600 83 R
+42 -74 V
+42 -72 V
+42 -70 V
+43 -67 V
+42 -66 V
+42 -63 V
+42 -61 V
+42 -59 V
+42 -57 V
+43 -56 V
+42 -53 V
+42 -52 V
+43 -50 V
+42 -49 V
+43 -46 V
+43 -46 V
+43 -43 V
+43 -42 V
+43 -41 V
+43 -39 V
+43 -38 V
+44 -37 V
+44 -35 V
+44 -34 V
+44 -33 V
+44 -32 V
+45 -30 V
+45 -30 V
+45 -28 V
+46 -27 V
+46 -27 V
+46 -25 V
+47 -25 V
+47 -23 V
+47 -23 V
+48 -22 V
+48 -21 V
+49 -20 V
+49 -19 V
+50 -19 V
+50 -18 V
+50 -18 V
+52 -16 V
+51 -17 V
+53 -15 V
+52 -15 V
+54 -14 V
+54 -14 V
+55 -14 V
+55 -12 V
+56 -13 V
+56 -12 V
+58 -11 V
+58 -11 V
+58 -11 V
+60 -10 V
+60 -10 V
+61 -9 V
+61 -9 V
+62 -9 V
+63 -9 V
+64 -8 V
+64 -8 V
+66 -7 V
+66 -8 V
+66 -7 V
+68 -7 V
+68 -6 V
+69 -7 V
+70 -6 V
+70 -6 V
+72 -6 V
+72 -5 V
+72 -6 V
+74 -5 V
+74 -5 V
+75 -5 V
+75 -5 V
+76 -4 V
+77 -5 V
+78 -4 V
+78 -4 V
+78 -5 V
+80 -4 V
+80 -3 V
+80 -4 V
+81 -4 V
+81 -3 V
+82 -4 V
+82 -3 V
+83 -3 V
+83 -3 V
+83 -3 V
+84 -3 V
+83 -3 V
+84 -3 V
+85 -2 V
+84 -3 V
+84 -2 V
+1.000 UP
+1.000 UL
+LT2
+1020 3493 Pls
+1854 2653 Pls
+2689 2093 Pls
+3523 1767 Pls
+5191 1533 Pls
+6860 1487 Pls
+1.000 UP
+1.000 UL
+LT3
+1020 4520 Crs
+1854 3027 Crs
+2689 2700 Crs
+3523 2560 Crs
+5191 2467 Crs
+6860 2420 Crs
+1.000 UL
+LTb
+1020 600 M
+5840 0 V
+0 4200 V
+-5840 0 V
+0 -4200 V
+1.000 UP
+stroke
+grestore
+end
+showpage
+%%Trailer
+%%DocumentFonts: Helvetica
+
+%%EndDocument
+ @endspecial 523 1940 a Fm(Fig)o(.)f(1.6)36 b FA(Number)19
+b(of)f(iterations)1080 3433 y @beginspecial 50 @llx 50
+@lly 410 @urx 302 @ury 1980 @rwi @setspecial
+%%BeginDocument: TimeDensity.ps
+%!PS-Adobe-2.0 EPSF-2.0
+%%Title: TimeDensity.ps
+%%Creator: gnuplot 4.0 patchlevel 0
+%%CreationDate: Tue Feb 5 17:29:16 2008
+%%DocumentFonts: (atend)
+%%BoundingBox: 50 50 410 302
+%%Orientation: Portrait
+%%EndComments
+/gnudict 256 dict def
+gnudict begin
+/Color false def
+/Solid false def
+/gnulinewidth 5.000 def
+/userlinewidth gnulinewidth def
+/vshift -66 def
+/dl {10.0 mul} def
+/hpt_ 31.5 def
+/vpt_ 31.5 def
+/hpt hpt_ def
+/vpt vpt_ def
+/Rounded false def
+/M {moveto} bind def
+/L {lineto} bind def
+/R {rmoveto} bind def
+/V {rlineto} bind def
+/N {newpath moveto} bind def
+/C {setrgbcolor} bind def
+/f {rlineto fill} bind def
+/vpt2 vpt 2 mul def
+/hpt2 hpt 2 mul def
+/Lshow { currentpoint stroke M
+ 0 vshift R show } def
+/Rshow { currentpoint stroke M
+ dup stringwidth pop neg vshift R show } def
+/Cshow { currentpoint stroke M
+ dup stringwidth pop -2 div vshift R show } def
+/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
+ /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
+/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
+ {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def
+/BL { stroke userlinewidth 2 mul setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/AL { stroke userlinewidth 2 div setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/UL { dup gnulinewidth mul /userlinewidth exch def
+ dup 1 lt {pop 1} if 10 mul /udl exch def } def
+/PL { stroke userlinewidth setlinewidth
+ Rounded { 1 setlinejoin 1 setlinecap } if } def
+/LTw { PL [] 1 setgray } def
+/LTb { BL [] 0 0 0 DL } def
+/LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def
+/LT0 { PL [] 1 0 0 DL } def
+/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
+/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
+/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
+/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
+/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
+/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
+/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
+/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
+/Pnt { stroke [] 0 setdash
+ gsave 1 setlinecap M 0 0 V stroke grestore } def
+/Dia { stroke [] 0 setdash 2 copy vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath stroke
+ Pnt } def
+/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
+ currentpoint stroke M
+ hpt neg vpt neg R hpt2 0 V stroke
+ } def
+/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath stroke
+ Pnt } def
+/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
+ hpt2 vpt2 neg V currentpoint stroke M
+ hpt2 neg 0 R hpt2 vpt2 V stroke } def
+/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath stroke
+ Pnt } def
+/Star { 2 copy Pls Crs } def
+/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath fill } def
+/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath fill } def
+/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath stroke
+ Pnt } def
+/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath fill} def
+/DiaF { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath fill } def
+/Pent { stroke [] 0 setdash 2 copy gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath stroke grestore Pnt } def
+/PentF { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath fill grestore } def
+/Circle { stroke [] 0 setdash 2 copy
+ hpt 0 360 arc stroke Pnt } def
+/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
+/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def
+/C1 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C2 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C3 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C4 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 180 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C5 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc
+ 2 copy moveto
+ 2 copy vpt 180 270 arc closepath fill
+ vpt 0 360 arc } bind def
+/C6 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C7 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 270 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C8 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 270 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C9 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 270 450 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 90 180 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C11 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 180 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 270 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C12 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 180 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C13 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 0 90 arc closepath fill
+ 2 copy moveto
+ 2 copy vpt 180 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/C14 { BL [] 0 setdash 2 copy moveto
+ 2 copy vpt 90 360 arc closepath fill
+ vpt 0 360 arc } bind def
+/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
+ vpt 0 360 arc closepath } bind def
+/Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
+ neg 0 rlineto closepath } bind def
+/Square { dup Rec } bind def
+/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
+/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
+/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
+/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
+/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
+/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
+/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
+ exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
+/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
+/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
+ 2 copy vpt Square fill
+ Bsquare } bind def
+/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
+/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
+/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
+ Bsquare } bind def
+/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
+ Bsquare } bind def
+/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
+/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
+ 2 copy vpt Square fill Bsquare } bind def
+/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
+ 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
+/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
+/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
+/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
+/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
+/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
+/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
+/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
+/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
+/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
+/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
+/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
+/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
+/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
+/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
+/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
+/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
+/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
+/DiaE { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V closepath stroke } def
+/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V closepath stroke } def
+/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V closepath stroke } def
+/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V closepath stroke } def
+/PentE { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ closepath stroke grestore } def
+/CircE { stroke [] 0 setdash
+ hpt 0 360 arc stroke } def
+/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
+/DiaW { stroke [] 0 setdash vpt add M
+ hpt neg vpt neg V hpt vpt neg V
+ hpt vpt V hpt neg vpt V Opaque stroke } def
+/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
+ 0 vpt2 neg V hpt2 0 V 0 vpt2 V
+ hpt2 neg 0 V Opaque stroke } def
+/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
+ hpt neg vpt -1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt 1.62 mul V Opaque stroke } def
+/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
+ hpt neg vpt 1.62 mul V
+ hpt 2 mul 0 V
+ hpt neg vpt -1.62 mul V Opaque stroke } def
+/PentW { stroke [] 0 setdash gsave
+ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
+ Opaque stroke grestore } def
+/CircW { stroke [] 0 setdash
+ hpt 0 360 arc Opaque stroke } def
+/BoxFill { gsave Rec 1 setgray fill grestore } def
+/BoxColFill {
+ gsave Rec
+ /Fillden exch def
+ currentrgbcolor
+ /ColB exch def /ColG exch def /ColR exch def
+ /ColR ColR Fillden mul Fillden sub 1 add def
+ /ColG ColG Fillden mul Fillden sub 1 add def
+ /ColB ColB Fillden mul Fillden sub 1 add def
+ ColR ColG ColB setrgbcolor
+ fill grestore } def
+%
+% PostScript Level 1 Pattern Fill routine
+% Usage: x y w h s a XX PatternFill
+% x,y = lower left corner of box to be filled
+% w,h = width and height of box
+% a = angle in degrees between lines and x-axis
+% XX = 0/1 for no/yes cross-hatch
+%
+/PatternFill { gsave /PFa [ 9 2 roll ] def
+ PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
+ PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
+ gsave 1 setgray fill grestore clip
+ currentlinewidth 0.5 mul setlinewidth
+ /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
+ 0 0 M PFa 5 get rotate PFs -2 div dup translate
+ 0 1 PFs PFa 4 get div 1 add floor cvi
+ { PFa 4 get mul 0 M 0 PFs V } for
+ 0 PFa 6 get ne {
+ 0 1 PFs PFa 4 get div 1 add floor cvi
+ { PFa 4 get mul 0 2 1 roll M PFs 0 V } for
+ } if
+ stroke grestore } def
+%
+/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
+dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
+currentdict end definefont pop
+end
+%%EndProlog
+gnudict begin
+gsave
+50 50 translate
+0.050 0.050 scale
+0 setgray
+newpath
+(Helvetica) findfont 200 scalefont setfont
+1.000 UL
+LTb
+900 600 M
+63 0 V
+5897 0 R
+-63 0 V
+780 600 M
+gsave 0 setgray
+( 10) Rshow
+grestore
+1.000 UL
+LTb
+900 1650 M
+63 0 V
+5897 0 R
+-63 0 V
+-6017 0 R
+gsave 0 setgray
+( 15) Rshow
+grestore
+1.000 UL
+LTb
+900 2700 M
+63 0 V
+5897 0 R
+-63 0 V
+-6017 0 R
+gsave 0 setgray
+( 20) Rshow
+grestore
+1.000 UL
+LTb
+900 3750 M
+63 0 V
+5897 0 R
+-63 0 V
+-6017 0 R
+gsave 0 setgray
+( 25) Rshow
+grestore
+1.000 UL
+LTb
+900 4800 M
+63 0 V
+5897 0 R
+-63 0 V
+-6017 0 R
+gsave 0 setgray
+( 30) Rshow
+grestore
+1.000 UL
+LTb
+1411 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 40) Cshow
+grestore
+1.000 UL
+LTb
+2092 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 60) Cshow
+grestore
+1.000 UL
+LTb
+2773 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 80) Cshow
+grestore
+1.000 UL
+LTb
+3454 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 100) Cshow
+grestore
+1.000 UL
+LTb
+4135 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 120) Cshow
+grestore
+1.000 UL
+LTb
+4817 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 140) Cshow
+grestore
+1.000 UL
+LTb
+5498 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 160) Cshow
+grestore
+1.000 UL
+LTb
+6179 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 180) Cshow
+grestore
+1.000 UL
+LTb
+6860 600 M
+0 63 V
+0 4137 R
+0 -63 V
+0 -4337 R
+gsave 0 setgray
+( 200) Cshow
+grestore
+1.000 UL
+LTb
+1.000 UL
+LTb
+900 600 M
+5960 0 V
+0 4200 V
+-5960 0 V
+900 600 L
+LTb
+200 2700 M
+gsave 0 setgray
+currentpoint gsave translate 90 rotate 0 0 M
+(Simulated Time) Cshow
+grestore
+grestore
+LTb
+3880 100 M
+gsave 0 setgray
+(Nodes Density) Cshow
+grestore
+1.000 UP
+1.000 UL
+LT0
+LTb
+5957 4637 M
+gsave 0 setgray
+(Synchronous Algorithm) Rshow
+grestore
+LT0
+6077 4637 M
+543 0 V
+900 4632 M
+43 -68 V
+43 -67 V
+43 -65 V
+43 -63 V
+43 -62 V
+43 -61 V
+43 -59 V
+43 -57 V
+43 -57 V
+43 -55 V
+44 -53 V
+43 -53 V
+43 -51 V
+44 -50 V
+43 -50 V
+44 -48 V
+43 -47 V
+44 -46 V
+44 -45 V
+44 -44 V
+45 -43 V
+44 -42 V
+45 -42 V
+45 -40 V
+45 -40 V
+45 -39 V
+46 -38 V
+46 -38 V
+46 -36 V
+46 -36 V
+47 -36 V
+48 -34 V
+47 -34 V
+48 -34 V
+48 -32 V
+49 -32 V
+49 -32 V
+50 -31 V
+50 -30 V
+51 -30 V
+51 -29 V
+52 -28 V
+52 -28 V
+53 -28 V
+53 -27 V
+54 -26 V
+55 -26 V
+55 -25 V
+56 -25 V
+56 -25 V
+57 -23 V
+58 -24 V
+58 -23 V
+60 -22 V
+59 -22 V
+61 -21 V
+61 -21 V
+62 -20 V
+63 -20 V
+64 -19 V
+64 -19 V
+65 -19 V
+66 -18 V
+66 -17 V
+68 -17 V
+68 -17 V
+69 -16 V
+69 -15 V
+71 -15 V
+71 -15 V
+72 -14 V
+72 -14 V
+74 -13 V
+74 -13 V
+75 -12 V
+76 -12 V
+76 -11 V
+77 -11 V
+78 -10 V
+78 -10 V
+79 -10 V
+80 -9 V
+80 -8 V
+81 -8 V
+82 -8 V
+82 -8 V
+82 -6 V
+83 -7 V
+84 -6 V
+84 -6 V
+84 -5 V
+85 -5 V
+85 -4 V
+85 -5 V
+86 -3 V
+85 -4 V
+86 -3 V
+86 -3 V
+86 -3 V
+1.000 UL
+LT1
+LTb
+5957 4437 M
+gsave 0 setgray
+(Asynchronous Algorithm) Rshow
+grestore
+LT1
+6077 4437 M
+543 0 V
+900 3378 M
+43 -66 V
+43 -65 V
+43 -63 V
+43 -61 V
+43 -59 V
+43 -57 V
+43 -56 V
+43 -54 V
+43 -53 V
+43 -50 V
+44 -50 V
+43 -48 V
+43 -46 V
+44 -45 V
+43 -43 V
+44 -43 V
+43 -40 V
+44 -40 V
+44 -38 V
+44 -37 V
+45 -35 V
+44 -35 V
+45 -33 V
+45 -33 V
+45 -31 V
+45 -30 V
+46 -29 V
+46 -28 V
+46 -27 V
+46 -26 V
+47 -25 V
+48 -24 V
+47 -23 V
+48 -23 V
+48 -21 V
+49 -21 V
+49 -20 V
+50 -19 V
+50 -19 V
+51 -18 V
+51 -17 V
+52 -16 V
+52 -16 V
+53 -15 V
+53 -14 V
+54 -14 V
+55 -14 V
+55 -13 V
+56 -12 V
+56 -12 V
+57 -11 V
+58 -11 V
+58 -10 V
+60 -10 V
+59 -10 V
+61 -9 V
+61 -8 V
+62 -9 V
+63 -7 V
+64 -8 V
+64 -7 V
+65 -7 V
+66 -7 V
+66 -6 V
+68 -6 V
+68 -6 V
+69 -5 V
+69 -6 V
+71 -5 V
+71 -5 V
+72 -4 V
+72 -4 V
+74 -5 V
+74 -4 V
+75 -3 V
+76 -4 V
+76 -3 V
+77 -4 V
+78 -3 V
+78 -3 V
+79 -3 V
+80 -2 V
+80 -3 V
+81 -2 V
+82 -3 V
+82 -2 V
+82 -2 V
+83 -2 V
+84 -2 V
+84 -1 V
+84 -2 V
+85 -1 V
+85 -2 V
+85 -1 V
+86 -1 V
+85 -1 V
+86 -2 V
+86 0 V
+86 -1 V
+1.000 UP
+1.000 UL
+LT2
+900 4632 Pls
+1751 3263 Pls
+2603 2742 Pls
+3454 2164 Pls
+5157 1980 Pls
+6860 1931 Pls
+1.000 UP
+1.000 UL
+LT3
+900 3378 Crs
+1751 2043 Crs
+2603 1650 Crs
+3454 1560 Crs
+5157 1493 Crs
+6860 1478 Crs
+1.000 UL
+LTb
+900 600 M
+5960 0 V
+0 4200 V
+-5960 0 V
+900 600 L
+1.000 UP
+stroke
+grestore
+end
+showpage
+%%Trailer
+%%DocumentFonts: Helvetica
+
+%%EndDocument
+ @endspecial 523 3557 a Fm(Fig)o(.)f(1.7)36 b FA(Simulated)18
+b(T)n(ime)523 4080 y FC(1.5)41 b(Further)27 b(Discussions)523
+4313 y FE(In)h(this)h(section,)f(we)h(gi)n(v)o(e)e(further)g
+(consideration)f(to)j(our)e(data)i(fusion)e(scheme)h(from)f(the)523
+4412 y(vie)n(wpoints)d(of)g(rob)n(ustness)h(to)g(the)g(delays)f(and)g
+(loss)i(of)f(messages)g(and)f(ener)o(gy)f(ef)n(\002cienc)o(y)523
+4512 y(in)d(comparison)f(to)h(other)f(e)o(xisting)h(w)o(orks.)623
+4611 y(Sensor)g(nodes)h(are)g(small-scale)g(de)n(vices.)f(Such)h(small)
+h(de)n(vices)e(are)h(v)o(ery)f(limited)h(in)g(the)523
+4711 y(amount)30 b(of)h(ener)o(gy)f(the)o(y)g(can)i(store)f(or)g(harv)o
+(est)g(from)f(the)i(en)m(vironment.)c(Thus,)i(ener)o(gy)p
+eop end
+%%Page: 17 17
+TeXDict begin 17 16 bop 523 100 a FA(1)42 b(An)18 b(Asynchronous)j(Dif)
+n(fusion)e(Scheme)g(for)g(Data)f(Fusion)h(in)f(Sensor)h(Netw)o(orks)545
+b(17)523 282 y FE(ef)n(\002cienc)o(y)24 b(is)j(a)f(major)e(concern)g
+(in)i(a)g(sensor)f(netw)o(ork.)f(In)h(addition,)f(man)o(y)h(thousands)f
+(of)523 382 y(sensors)32 b(may)g(ha)n(v)o(e)f(to)h(be)g(deplo)o(yed)e
+(for)h(a)i(gi)n(v)o(en)e(task.)h(An)g(indi)n(vidual)e(sensor')-5
+b(s)32 b(small)523 482 y(ef)n(fecti)n(v)o(e)19 b(range)g(relati)n(v)o
+(e)g(to)i(a)f(lar)o(ge)g(area)g(of)f(interest)i(mak)o(es)f(this)g(a)h
+(requirement.)623 581 y(Therefore,)16 b(scalability)j(is)i(another)c
+(critical)j(f)o(actor)e(in)i(the)f(netw)o(ork)f(design.)g(Sensor)h
+(net-)523 681 y(w)o(orks)j(are)f(subject)h(to)g(frequent)e(partial)i(f)
+o(ailures)g(such)f(as)i(e)o(xhausted)d(batteries,)i(nodes)f(de-)523
+780 y(stro)o(yed)e(due)h(to)g(en)m(vironmental)d(f)o(actors,)i(or)h
+(communication)d(f)o(ailures)j(due)f(to)h(obstacles)g(in)523
+880 y(the)g(en)m(vironment.)d(Message)k(delays)f(can)g(be)g(rather)f
+(high)h(in)g(sensor)g(netw)o(orks)f(due)h(to)h(their)523
+980 y(typically)e(limited)h(communication)d(capacity)i(which)g(is)i
+(shared)e(by)g(nodes)g(within)h(commu-)523 1079 y(nication)g(range)g
+(of)h(each)f(other)-5 b(.)20 b(The)h(o)o(v)o(erall)f(operation)f(of)h
+(the)h(sensor)g(netw)o(ork)f(should)f(be)523 1179 y(rob)n(ust)h
+(despite)g(such)g(partial)f(f)o(ailures.)623 1279 y(In)h(our)f(scheme,)
+h(we)h(presented)e(a)i(scalable)f(asynchronous)d(method)i(for)h(a)n(v)o
+(eraging)f(data)523 1378 y(fusion)i(in)h(sensor)g(netw)o(orks.)f(The)h
+(simulations)f(we)i(conducted)d(sho)n(w)i(that,)g(the)g(higher)e(the)
+523 1478 y(density)30 b(of)g(the)h(deplo)o(yed)d(nodes,)i(the)h(more)e
+(the)i(precise)f(of)g(the)h(estimation)f(w)o(ould)g(be.)523
+1577 y(On)22 b(the)g(other)f(hand,)f(our)h(algorithm)g(is)i(totally)e
+(asynchronous,)e(where)i(we)h(consider)f(delay)523 1677
+y(transmission)g(and)h(loss)h(of)e(messages)i(in)f(the)g(proposed)e
+(model.)h(These)h(aspects)g(which)f(are)523 1777 y(highly)d(important)h
+(are)g(not)h(tak)o(en)f(into)g(account)g(in)h(pre)n(vious)e(sensor)h
+(fusion)g(w)o(orks)g([2)o(,)h(12)o(].)623 1876 y(Another)f(important)h
+(practical)h(issue)g(in)h(sensor)e(netw)o(ork)g(is)i(the)g(po)n(wer)e
+(ef)n(\002cienc)o(y)-5 b(.)19 b(Op-)523 1976 y(timizing)e(the)g(ener)o
+(gy)f(consumption)f(in)i(sensor)g(netw)o(orks)g(is)h(related)f(to)h
+(minimize)e(the)i(num-)523 2076 y(ber)24 b(of)h(the)g(netw)o(ork)e
+(communications)f(as)k(the)f(radio)e(is)j(the)f(main)f(ener)o(gy)f
+(consumer)g(in)i(a)523 2175 y(sensor)f(node)f([1)o(].)h(Considering)e
+(the)i(distrib)n(uted)f(iterati)n(v)o(e)h(procedure)d(for)j
+(calculating)e(a)n(v-)523 2275 y(erages,)h(the)h(only)f(w)o(ay)g(to)h
+(minimize)f(the)h(ener)o(gy)d(consumption)h(is)i(to)g(reduce)e(the)i
+(number)523 2374 y(of)31 b(iterations)g(before)f(attending)h(the)g(con)
+m(v)o(er)o(gence.)c(T)-7 b(o)32 b(sho)n(w)f(ho)n(w)g(well)h(our)f
+(algorithm)523 2474 y(sa)n(v)o(es)23 b(ener)o(gy)-5 b(,)19
+b(we)k(compared)d(our)i(obtained)f(results)h(to)h(those)f(reported)e
+(by)i(another)f(dif)n(fu-)523 2574 y(si)n(v)o(e)d(scheme)f(for)g(a)n(v)
+o(erage)f(computation)f(in)j(sensor)f(netw)o(orks)g([2)o(].)h(F)o(or)f
+(instance,)g(in)h(a)g(static)523 2673 y(topology)13 b(our)i(algorithm)f
+(con)m(v)o(er)o(ges)f(after)i Ft(69)g FE(iterations)g(with)h(a)g(mean)e
+(error)h(of)g Ft(10)2998 2643 y Fo(\000)p Fq(4)3102 2673
+y FE(while)523 2773 y(the)h(best)h(results)f(in)h(the)f(second)f
+(approach)f(reached)h Ft(85)h FE(iterations)g(for)f(the)h(same)h(mean)e
+(error)-5 b(.)523 2873 y(F)o(or)23 b(the)h(dynamic)e(topology)g(mode,)g
+(we)j(obtained)d Ft(105)h FE(iterations,)g(mean)g(error)f
+Ft(10)3054 2842 y Fo(\000)p Fq(4)3167 2873 y FE(and)523
+2972 y(probability)f(of)i(link)f(f)o(ailure)g Ft(0)p
+Fu(:)p Ft(25)p FE(,)g(while)h(the)g(number)e(of)i(iterations)f(is)i(v)o
+(ery)e(high)g(\()p Fx(\031)27 b Ft(300)523 3072 y FE(iterations\))19
+b(in)i([2)o(].)523 3437 y FC(1.6)41 b(Conclusion)25 b(and)h(Futur)n(e)g
+(W)-7 b(ork)523 3670 y FE(In)32 b(this)h(paper)m(,)d(we)j(introduced)c
+(a)k(f)o(ault)f(tolerant)f(dif)n(fusion)g(scheme)g(for)h(data)g(fusion)
+f(in)523 3769 y(sensor)g(netw)o(orks.)g(This)g(algorithm)f(is)j(based)e
+(on)g(data)g(dif)n(fusion;)f(the)h(nodes)g(cooperate)523
+3869 y(and)23 b(e)o(xchange)e(their)i(information)e(only)i(with)h
+(their)f(direct)g(instantaneous)f(neighbours.)f(In)523
+3968 y(contrast)26 b(to)g(e)o(xisting)g(w)o(orks,)g(our)g(algorithm)e
+(does)j(not)f(rely)g(on)g(synchronization)d(nor)j(on)523
+4068 y(the)16 b(kno)n(wledge)e(of)i(the)h(global)e(topology)-5
+b(.)14 b(W)-7 b(e)17 b(pro)o(v)o(e)e(that)h(under)f(suitable)h
+(assumptions,)f(our)523 4168 y(algorithm)24 b(achie)n(v)o(es)h(the)g
+(global)g(con)m(v)o(er)o(gence)d(in)j(the)h(sense)g(that,)f(after)h
+(some)f(iterations,)523 4267 y(each)i(node)e(has)i(an)g(estimation)f
+(of)h(the)g(a)n(v)o(erage)e(consensus)h(o)o(v)o(erall)g(the)h(whole)f
+(netw)o(ork.)523 4367 y(T)-7 b(o)21 b(sho)n(w)f(the)h(ef)n(fecti)n(v)o
+(eness)e(of)h(our)g(algorithm,)e(we)j(conducted)e(series)i(of)f
+(simulations)g(and)523 4467 y(studied)g(our)f(algorithm)g(under)f(v)n
+(arious)i(metrics.)623 4566 y(In)j(our)h(scenario,)f(we)h(ha)n(v)o(e)f
+(focused)g(on)h(de)n(v)o(eloping)d(a)j(reliable)g(and)f(rob)n(ust)h
+(algorithm)523 4666 y(from)16 b(the)i(vie)n(w)f(points)g(of)h
+(asynchronism)d(and)i(f)o(ault)g(tolerance)f(in)i(a)g(dynamically)d
+(changing)p eop end
+%%Page: 18 18
+TeXDict begin 18 17 bop 523 100 a FA(18)976 b(Jacques)20
+b(M.)d(Bahi,)g(Abdallah)i(Makhoul)f(and)h(Ahmed)f(Mostef)o(aoui)523
+282 y FE(topology)-5 b(.)18 b(W)-7 b(e)23 b(ha)n(v)o(e)e(tak)o(en)f
+(into)h(account)f(tw)o(o)i(points)f(which)g(don')o(t)e(ha)n(v)o(e)i
+(been)f(pre)n(viously)523 382 y(addressed)i(by)h(other)f(authors,)g
+(namely)g(the)h(delays)g(between)g(nodes)f(and)h(the)g(loss)h(of)e
+(mes-)523 482 y(sages.)f(Kno)n(wing)e(that)i(in)h(real)e(sensor)h(netw)
+o(orks)f(the)h(nodes)f(are)h(prone)e(to)j(f)o(ailures.)e(One)h(of)523
+581 y(the)e(near)f(future)g(goals)h(is)h(to)f(allo)n(w)g(nodes)f(to)h
+(be)g(dynamically)e(added)h(and)h(remo)o(v)o(ed)d(during)523
+681 y(the)25 b(e)o(x)o(ecution)e(of)h(the)h(data)g(fusion)f(algorithm.)
+f(W)-7 b(e)26 b(also)f(plan)g(to)g(test)g(our)g(algorithm)e(in)i(a)523
+780 y(real-w)o(orld)19 b(sensor)h(netw)o(ork.)523 1146
+y FC(Refer)n(ences)558 1362 y FA(1.)42 b(I.)25 b(Ak)o(yildiz,)g(W)-6
+b(.)24 b(Su,)i(Y)-9 b(.)25 b(Sankarasubramniam,)k(and)d(E.)f(Cayirci.)
+51 b(A)25 b(surv)o(e)o(y)j(on)e(sensor)h(netw)o(orks.)653
+1445 y Fa(IEEE)18 b(Communications)h(Ma)o(gazine)p FA(,)g(pages)g
+(102\226114,)h(2002.)558 1528 y(2.)42 b(L.)22 b(Xiao,)g(S.)g(Bo)o(yd,)h
+(and)h(S.)e(lall.)39 b(A)23 b(scheme)h(for)f(rob)o(ust)h(distrib)o
+(uted)e(sensor)j(fusion)f(based)g(on)f(a)o(v)o(er)o(-)653
+1611 y(age)i(consensus.)49 b Fa(Pr)m(oc.)24 b(of)g(the)h(International)
+g(Confer)m(ence)i(on)e(Information)g(pr)m(ocessing)i(in)d(Sensor)653
+1694 y(Networks)19 b(\(IPSN\))p FA(,)g(pages)h(63\22670,)e(2005.)558
+1777 y(3.)42 b(R.)14 b(Olf)o(ati-Saber)i(and)f(J.)f(S.)g(Shamma.)k
+(Consensus)f(\002lters)e(for)g(sensor)i(netw)o(orks)f(and)f(distrib)o
+(uted)g(sensor)653 1860 y(fusion.)26 b Fa(Pr)m(oceedings)20
+b(of)e(44th)g(IEEE)h(Confer)m(ence)h(on)e(Decision)h(and)f(Contr)m(ol)g
+(CDC-ECC)p FA(,)g(2005.)558 1943 y(4.)42 b(R.)15 b(Olf)o(ati-Saber)l(.)
+21 b(Distrib)o(uted)16 b(kalman)f(\002lter)h(with)e(embeded)j
+(consensus)h(\002lters.)j Fa(Pr)m(oceedings)c(of)e(44th)653
+2026 y(IEEE)j(Confer)m(ence)j(on)d(Decision)g(and)h(Contr)m(ol)p
+FA(,)f(2005.)558 2109 y(5.)42 b(R.)17 b(Olf)o(ati-Saber)i(and)g(R.)e
+(M.)f(Murray)-5 b(.)27 b(Consensus)20 b(problems)f(in)e(netw)o(orks)j
+(of)e(agents)h(with)d(switching)653 2192 y(topology)i(and)h
+(time-delays.)26 b Fa(IEEE)19 b(T)l(r)o(ansaction)h(on)e(A)o(utomatic)f
+(Contr)m(ol)p FA(,)h(49\(9\):1520\2261533.)558 2275 y(6.)42
+b(Jacques)28 b(Bahi,)d(Arnaud)i(Giersch,)g(and)g(Abdallah)f(Makhoul.)51
+b(A)26 b(scalable)g(f)o(ault)h(tolerant)f(dif)n(fusion)653
+2358 y(scheme)j(for)g(data)g(fusion)g(in)f(sensor)i(netw)o(orks.)60
+b Fa(The)28 b(Thir)m(d)h(International)h(ICST)f(Confer)m(ence)h(on)653
+2441 y(Scalable)18 b(Information)h(Systems,)g(Infoscale)g(2008,)g(A)n
+(CM)p FA(,)e(june)h(2008.)558 2524 y(7.)42 b(A.)24 b(Speranzon,)j(C.)d
+(Fischione,)i(and)f(K.H.)f(Johansson.)50 b(Distrib)o(uted)25
+b(and)h(collaborati)n(v)o(e)g(estimation)653 2607 y(o)o(v)o(er)21
+b(wireless)g(sensor)h(netw)o(orks.)34 b Fa(Pr)m(oceedings)22
+b(of)e(45th)g(IEEE)h(Confer)m(ence)h(on)e(Decision)h(and)g(Con-)653
+2690 y(tr)m(ol)p FA(,)c(2006.)558 2773 y(8.)42 b(L.)21
+b(Xiao,)g(S.)g(Bo)o(yd,)h(and)g(S.)f(Lall.)36 b(A)21
+b(space-time)h(dif)n(fusion)i(scheme)e(for)h(peer)o(-to-peer)h
+(least-squares)653 2856 y(estimation.)30 b Fa(Pr)m(oc.)20
+b(of)f(F)m(ifth)g(International)h(Conf)o(.)g(on)f(Information)i(Pr)m
+(ocessing)h(in)d(Sensor)i(Networks)653 2939 y(\(IPSN)e(2006\))p
+FA(,)g(pages)g(168\226176,)g(2006.)558 3022 y(9.)42 b(Mohammad)15
+b(S.)g(T)-6 b(alebi,)15 b(Mahdi)f(K)n(ef)o(ayati,)i(Babak)g(H.)e
+(Khalaj,)g(and)i(Hamid)e(R.)h(Rabiee.)k(Adapti)n(v)o(e)c(con-)653
+3105 y(sensus)i(a)o(v)o(eraging)g(for)f(information)h(fusion)f(o)o(v)o
+(er)h(sensor)g(netw)o(orks.)22 b Fa(In)15 b(the)h(pr)m(oceedings)i(of)d
+(The)h(Thir)m(d)653 3188 y(IEEE)i(International)h(Confer)m(ence)i(on)d
+(Mobile)f(Ad-hoc)j(and)e(Sensor)i(Systems)f(\(MASS'06\))p
+FA(,)h(2006.)523 3271 y(10.)42 b(D.)19 b(Spanos,)j(R.)d(Olf)o
+(ati-Saber)m(,)j(and)f(R.M.)d(Murray)-5 b(.)34 b(Distrib)o(uted)20
+b(sensor)j(fusion)e(using)g(dynamic)f(con-)653 3354 y(sensus.)27
+b Fa(pr)m(oceedings)20 b(of)e(IF)-8 b(A)n(C)p FA(,)18
+b(2005.)523 3437 y(11.)42 b(D.S.)18 b(Scherber)k(and)d(H.C.)g(P)o
+(apadopoulos.)31 b(Distrib)o(uted)19 b(computation)h(of)g(a)o(v)o
+(erages)h(o)o(v)o(er)f(ad)f(hoc)h(net-)653 3520 y(w)o(orks.)27
+b Fa(IEEE)18 b(journal)h(on)f(Selected)h(Ar)m(eas)g(in)f
+(Communications)p FA(,)g(23\(4\):776\226787,)j(April)d(2005.)523
+3603 y(12.)42 b(Mohammad)15 b(S.)g(T)-6 b(alebi,)15 b(Mahdi)f(K)n(ef)o
+(ayati,)i(Babak)g(H.)e(Khalaj,)g(and)i(Hamid)e(R.)h(Rabiee.)k(Adapti)n
+(v)o(e)c(con-)653 3686 y(sensus)i(a)o(v)o(eraging)g(for)f(information)g
+(fusion)h(o)o(v)o(er)f(sensor)h(netw)o(orks.)22 b Fa(IEEE)16
+b(International)g(Confer)m(ence)653 3769 y(on)i(Mobile)g(Adhoc)g(and)h
+(Sensor)h(Systems)f(\(MASS\))p FA(,)g(pages)g(562\226565,)g(2006.)523
+3852 y(13.)42 b(J)24 b(A.)g(Le)o(gg.)47 b(T)n(racking)25
+b(and)g(sensor)h(fusion)g(issues)f(in)f(the)h(tactical)f(land)g(en)m
+(vironement.)48 b Fa(T)-6 b(ec)o(hnical)653 3935 y(Report)18
+b(TN.0605)p FA(,)h(2005.)523 4018 y(14.)42 b(R.)18 b(Olf)o(ati-Saber)m
+(,)j(J.A.)e(F)o(ax,)g(and)h(R.M.)e(Murray)-5 b(.)31 b(Consensus)22
+b(and)e(cooperation)h(in)e(netw)o(ork)o(ed)i(multi-)653
+4101 y(agent)d(systems.)27 b Fa(Pr)m(oc.)18 b(of)g(IEEE)p
+FA(,)g(pages)h(215\226233,)g(2007.)523 4184 y(15.)42
+b(Dimitri)15 b(P)-8 b(.)16 b(Bertsekas)i(and)f(John)g(N.)f(Tsitsiklis.)
+21 b Fa(P)-6 b(ar)o(allel)17 b(and)g(Distrib)o(uted)f(Computation:)h
+(Numerical)653 4267 y(Methods)p FA(.)26 b(Athena)18 b(Scienti\002c,)g
+(1997.)523 4350 y(16.)42 b(Jacques)17 b(Bahi,)d(Raphael)i(Couturier)m
+(,)g(and)f(Fla)o(vien)g(V)-8 b(ernier)l(.)20 b(Synchronous)e(distrib)o
+(uted)c(load)h(balancing)653 4433 y(on)25 b(dynamic)h(netw)o(orks.)50
+b Fa(J)n(ournal)27 b(of)e(P)-6 b(ar)o(allel)25 b(and)h(Distrib)o(uted)f
+(Computing)p FA(,)g(65\(11\):1397\2261405,)653 4516 y(2005.)523
+4599 y(17.)42 b(OMNeT++.)24 b(http://www)-5 b(.omnetpp.or)o(g/.)p
+eop end
+%%Trailer
+
+userdict /end-hook known{end-hook}if
+%%EOF