1 % \section{Introduction}
4 Les réseaux de neurones chaotiques ont été étudiés à de maintes reprises
5 par le passé en raison notamment de leurs applications potentielles:
6 %les mémoires associatives~\cite{Crook2007267}
7 les composants utils à la sécurité comme les fonctions de
9 le tatouage numérique~\cite{1309431,Zhang2005759}
10 ou les schémas de chiffrement~\cite{Lian20091296}.
11 Dans tous ces cas, l'emploi de fonctions chaotiques est motivé par
12 leur comportement imprévisibile et proche de l'aléa.
15 Les réseaux de neurones chaotiques peuvent être conçus selon plusieurs
16 principes. Des neurones modifiant leur état en suivant une fonction non
17 linéaire son par exemple appelés neurones chaotiques~\cite{Crook2007267}.
18 L'architecture de réseaux de neurones de type Perceptron multi-couches
19 (MLP) n'iterent quant à eux, pas nécesssairement de fonctions chaotiques.
20 Il a cependant été démontré que ce sont des approximateurs
21 universels~\cite{Cybenko89,DBLP:journals/nn/HornikSW89}.
22 Ils permettent, dans certains cas, de simuler des comportements
23 physiques chaotiques comme le circuit de Chua~\cite{dalkiran10}.
24 Parfois~\cite{springerlink:10.1007/s00521-010-0432-2},
25 la fonction de transfert de cette famille de réseau celle
26 d'initialisation sont toutes les deux définies à l'aide de
33 Ces réseaux de neurones partagent le fait qu'ils sont qualifiés de
34 ``chaotiques'' sous prétexte qu'ils embarquent une fonction de ce type
35 et ce sans aucune preuve rigoureuse. Ce chapitre caractérise la
36 classe des réseaux de neurones MLP chaotiques. Il
37 s'intéresse ensuite à l'étude de prévisibilité de systèmes dynamiques
38 discrets chaotiques par cette famille de MLP.
42 The remainder of this research work is organized as follows. The next
43 section is devoted to the basics of Devaney's chaos. Section~\ref{S2}
44 formally describes how to build a neural network that operates
45 chaotically. Section~\ref{S3} is devoted to the dual case of checking
46 whether an existing neural network is chaotic or not. Topological
47 properties of chaotic neural networks are discussed in Sect.~\ref{S4}.
48 The Section~\ref{section:translation} shows how to translate such
49 iterations into an Artificial Neural Network (ANN), in order to
50 evaluate the capability for this latter to learn chaotic behaviors.
51 This ability is studied in Sect.~\ref{section:experiments}, where
52 various ANNs try to learn two sets of data: the first one is obtained
53 by chaotic iterations while the second one results from a non-chaotic
54 system. Prediction success rates are given and discussed for the two
55 sets. The paper ends with a conclusion section where our contribution
56 is summed up and intended future work is exposed.
59 \section{Un réseau de neurones chaotique au sens de Devaney}
62 On considère une fonction
63 $f:\Bool^n\to\Bool^n$ telle que $\textsc{giu}(f)$ est fortement connexe.
64 Ainsi $G_{f_u}$ est chaotique d'après le théorème~\ref{Th:CaracIC}.
66 On considère ici le schéma unaire défini par l'équation (\ref{eq:asyn}).
67 On construit un perceptron multi-couche associé à la fonction
69 Plus précisément, pour chaque entrée
70 $(x,s) \in \mathds{B}^n \times [n]$,
71 la couche de sortie doit générer $F_{f_u}(x,s)$.
72 On peut ainsi lier la couche de sortie avec celle d'entrée pour représenter
73 les dépendance entre deux itérations successives.
74 On obtient une réseau de neurones dont le comportement est le suivant
75 (voir Figure.~\ref{Fig:perceptron}):
78 \item Le réseau est initialisé avec le vecteur d'entrée
79 $\left(x^0,S^0\right) \mathds{B}^n \times [n]$
80 et calcule le vecteur de sortie
81 $x^1=F_{f_u}\left(x^0,S^0\right)$.
82 Ce vecteur est publié comme une sortie et est aussi retournée sur la couche d'entrée
83 à travers les liens de retours.
84 \item Lorsque le réseau est activé à la $t^{th}$ itération, l'état du
85 système $x^t \in \mathds{B}^n$ reçu depuis la couche de sortie ainsi que le
86 premier terme de la sequence $(S^t)^{t \in \Nats}$
87 (\textit{i.e.}, $S^0 \in [n]$) servent à construire le nouveau vecteur de sortie.
88 Ce nouveau vecteur, qui représente le nouvel état du système dynamique, satisfait:
90 x^{t+1}=F_{f_u}(x^t,S^0) \in \mathds{B}^n \enspace .
96 \includegraphics[scale=0.625]{images/perceptron}
97 \caption{Un perceptron équivalent aux itérations unitaires}
98 \label{Fig:perceptron}
101 Le comportement de ce réseau de neurones est tel que lorsque l'état
102 initial est composé de $x^0~\in~\mathds{B}^n$ et d'une séquence
103 $(S^t)^{t \in \Nats}$, alors la séquence contenant les vecteurs successifs
104 publiés $\left(x^t\right)^{t \in \mathds{N}^{\ast}}$ est exactement celle produite
105 par les itérations unaires décrites à la section~\ref{sec:TIPE12}.
106 Mathématiquement, cela signifie que si on utilise les mêmes vecteurs d'entrées
107 les deux approches génèrent successivement les mêmes sorties.
108 En d'autres termes ce réseau de neurones modélise le comportement de
109 $G_{f_u}$, dont les itérations sont chaotiques sur $\mathcal{X}_u$.
110 On peut donc le qualifier de chaotique au sens de Devaney.
112 \section{Vérifier si un réseau de neurones est chaotique}
114 On s'intéresse maintenant au cas où l'on dispose d'un
115 réseau de neurones de type perceptron multi-couches
116 dont on cherche à savoir s'il est chaotique (parce qu'il a par exemple été
117 déclaré comme tel) au sens de Devaney.
118 On considère de plus que sa topologie est la suivante:
119 l'entrée est constituée de $n$ bits et un entier, la sortie est constituée de $n$ bits
120 et chaque sortie est liée à une entrée par une boucle.
123 \item Le réseau est initialisé avec $n$~bits
124 $\left(x^0_1,\dots,x^0_n\right)$ et une valeur entière $S^0 \in [n]$.
125 \item A l'itération~$t$, le vecteur
126 $\left(x^t_1,\dots,x^t_n\right)$ permet de construire les $n$~bits
127 servant de sortie $\left(x^{t+1}_1,\dots,x^{t+1}_n\right)$.
130 Le comportement de ce type de réseau de neurones peut être prouvé comme
131 étant chaotique en suivant la démarche énoncée maintenant.
132 On nomme tout d'abord $F: \mathds{B}^n \times [n] \rightarrow
133 \mathds{B}^n$ la fonction qui associe
135 $\left(\left(x_1,\dots,x_n\right),s\right) \in \mathds{B}^n \times[n]$
137 $\left(y_1,\dots,y_n\right) \in \mathds{B}^n$, où
138 $\left(y_1,\dots,y_n\right)$ sont les sorties du réseau neuronal
139 àaprès l'initialisation de la couche d'entrée avec
140 $\left(s,\left(x_1,\dots, x_n\right)\right)$. Ensuite, on définie $f:
141 \mathds{B}^n \rightarrow \mathds{B}^n$ telle que
142 $f\left(x_1,x_2,\dots,x_n\right)$ est égal à
144 \left(F\left(\left(x_1,x_2,\dots,x_n\right),1\right),\dots,
145 F\left(\left(x_1,x_2,\dots,x_n\right)\right),n\right) \enspace .
147 Ainsi pour chaque $j$, $1 \le j \le n$, on a
148 $f_j\left(x_1,x_2,\dots,x_n\right) =
149 F\left(\left(x_1,x_2,\dots,x_n\right),j\right)$.
150 Si ce réseau de neurones est initialisé avec
151 $\left(x_1^0,\dots,x_n^0\right)$ et $S \in [n]^{\mathds{N}}$,
152 il produit exactement les même sorties que les itérations de $F_{f_u}$ avec une
153 condition initiale $\left((x_1^0,\dots, x_n^0),S\right) \in \mathds{B}^n \times [n]^{\mathds{N}}$.
154 Les itérations de $F_{f_u}$
155 sont donc un modèle formel de cette classe de réseau de neurones.
156 Pour vérifier si un de ces représentants est chaotique, il suffit ainsi
157 de vérifier si le graphe d'itérations
158 $\textsc{giu}(f)$ est fortement connexe.
161 \section{Un réseau de neurones peut-il approximer un
162 des itération unaires chaotiques?}
164 Cette section s'intéresse à étudier le comportement d'un réseau de neurones
165 face à des itérations unaires chaotiques, comme définies à
166 la section~\ref{sec:TIPE12}.
169 \subsection{Representing Chaotic Iterations for Neural Networks}
170 \label{section:translation}
172 The problem of deciding whether classical feedforward ANNs are
173 suitable to approximate topological chaotic iterations may then be
174 reduced to evaluate such neural networks on iterations of functions
175 with Strongly Connected Component (SCC)~graph of iterations. To
176 compare with non-chaotic iterations, the experiments detailed in the
177 following sections are carried out using both kinds of function
178 (chaotic and non-chaotic). Let us emphasize on the difference between
179 this kind of neural networks and the Chaotic Iterations based
180 multilayer peceptron.
182 We are then left to compute two disjoint function sets that contain
183 either functions with topological chaos properties or not, depending
184 on the strong connectivity of their iterations graph. This can be
185 achieved for instance by removing a set of edges from the iteration
186 graph $\Gamma(f_0)$ of the vectorial negation function~$f_0$. One can
187 deduce whether a function verifies the topological chaos property or
188 not by checking the strong connectivity of the resulting graph of
191 For instance let us consider the functions $f$ and $g$ from $\Bool^4$
192 to $\Bool^4$ respectively defined by the following lists:
193 $$[0, 0, 2, 3, 13, 13, 6, 3, 8, 9, 10, 11, 8, 13, 14,
194 15]$$ $$\mbox{and } [11, 14, 13, 14, 11, 10, 1, 8, 7, 6, 5, 4, 3, 2,
195 1, 0] \enspace.$$ In other words, the image of $0011$ by $g$ is
196 $1110$: it is obtained as the binary value of the fourth element in
197 the second list (namely~14). It is not hard to verify that
198 $\Gamma(f)$ is not SCC (\textit{e.g.}, $f(1111)$ is $1111$) whereas
199 $\Gamma(g)$ is. The remaining of this section shows how to translate
200 iterations of such functions into a model amenable to be learned by an
201 ANN. Formally, input and output vectors are pairs~$((S^t)^{t \in
202 \Nats},x)$ and $\left(\sigma((S^t)^{t \in
203 \Nats}),F_{f}(S^0,x)\right)$ as defined in~Eq.~(\ref{eq:Gf}).
205 Firstly, let us focus on how to memorize configurations. Two distinct
206 translations are proposed. In the first case, we take one input in
207 $\Bool$ per component; in the second case, configurations are
208 memorized as natural numbers. A coarse attempt to memorize
209 configuration as natural number could consist in labeling each
210 configuration with its translation into decimal numeral system.
211 However, such a representation induces too many changes between a
212 configuration labeled by a power of two and its direct previous
213 configuration: for instance, 16~(10000) and 15~(01111) are close in a
214 decimal ordering, but their Hamming distance is 5. This is why Gray
215 codes~\cite{Gray47} have been preferred.
217 Secondly, let us detail how to deal with strategies. Obviously, it is
218 not possible to translate in a finite way an infinite strategy, even
219 if both $(S^t)^{t \in \Nats}$ and $\sigma((S^t)^{t \in \Nats})$ belong
220 to $\{1,\ldots,n\}^{\Nats}$. Input strategies are then reduced to
221 have a length of size $l \in \llbracket 2,k\rrbracket$, where $k$ is a
222 parameter of the evaluation. Notice that $l$ is greater than or equal
223 to $2$ since we do not want the shift $\sigma$~function to return an
224 empty strategy. Strategies are memorized as natural numbers expressed
225 in base $n+1$. At each iteration, either none or one component is
226 modified (among the $n$ components) leading to a radix with $n+1$
227 entries. Finally, we give an other input, namely $m \in \llbracket
228 1,l-1\rrbracket$, which is the number of successive iterations that
229 are applied starting from $x$. Outputs are translated with the same
232 To address the complexity issue of the problem, let us compute the
233 size of the data set an ANN has to deal with. Each input vector of an
234 input-output pair is composed of a configuration~$x$, an excerpt $S$
235 of the strategy to iterate of size $l \in \llbracket 2, k\rrbracket$,
236 and a number $m \in \llbracket 1, l-1\rrbracket$ of iterations that
239 Firstly, there are $2^n$ configurations $x$, with $n^l$ strategies of
240 size $l$ for each of them. Secondly, for a given configuration there
241 are $\omega = 1 \times n^2 + 2 \times n^3 + \ldots+ (k-1) \times n^k$
242 ways of writing the pair $(m,S)$. Furthermore, it is not hard to
245 \displaystyle{(n-1) \times \omega = (k-1)\times n^{k+1} - \sum_{i=2}^k n^i} \nonumber
250 \dfrac{(k-1)\times n^{k+1}}{n-1} - \dfrac{n^{k+1}-n^2}{(n-1)^2} \enspace . \nonumber
252 \noindent And then, finally, the number of input-output pairs for our
255 2^n \times \left(\dfrac{(k-1)\times n^{k+1}}{n-1} - \dfrac{n^{k+1}-n^2}{(n-1)^2}\right) \enspace .
257 For instance, for $4$ binary components and a strategy of at most
258 $3$~terms we obtain 2304~input-output pairs.
260 \subsection{Experiments}
261 \label{section:experiments}
263 To study if chaotic iterations can be predicted, we choose to train
264 the multilayer perceptron. As stated before, this kind of network is
265 in particular well-known for its universal approximation property
266 \cite{Cybenko89,DBLP:journals/nn/HornikSW89}. Furthermore, MLPs have
267 been already considered for chaotic time series prediction. For
268 example, in~\cite{dalkiran10} the authors have shown that a
269 feedforward MLP with two hidden layers, and trained with Bayesian
270 Regulation back-propagation, can learn successfully the dynamics of
273 In these experiments we consider MLPs having one hidden layer of
274 sigmoidal neurons and output neurons with a linear activation
275 function. They are trained using the Limited-memory
276 Broyden-Fletcher-Goldfarb-Shanno quasi-newton algorithm in combination
277 with the Wolfe linear search. The training process is performed until
278 a maximum number of epochs is reached. To prevent overfitting and to
279 estimate the generalization performance we use holdout validation by
280 splitting the data set into learning, validation, and test subsets.
281 These subsets are obtained through random selection such that their
282 respective size represents 65\%, 10\%, and 25\% of the whole data set.
284 Several neural networks are trained for both iterations coding
285 schemes. In both cases iterations have the following layout:
286 configurations of four components and strategies with at most three
287 terms. Thus, for the first coding scheme a data set pair is composed
288 of 6~inputs and 5~outputs, while for the second one it is respectively
289 3~inputs and 2~outputs. As noticed at the end of the previous section,
290 this leads to data sets that consist of 2304~pairs. The networks
291 differ in the size of the hidden layer and the maximum number of
292 training epochs. We remember that to evaluate the ability of neural
293 networks to predict a chaotic behavior for each coding scheme, the
294 trainings of two data sets, one of them describing chaotic iterations,
297 Thereafter we give, for the different learning setups and data sets,
298 the mean prediction success rate obtained for each output. Such a rate
299 represents the percentage of input-output pairs belonging to the test
300 subset for which the corresponding output value was correctly
301 predicted. These values are computed considering 10~trainings with
302 random subsets construction, weights and biases initialization.
303 Firstly, neural networks having 10 and 25~hidden neurons are trained,
304 with a maximum number of epochs that takes its value in
305 $\{125,250,500\}$ (see Tables~\ref{tab1} and \ref{tab2}). Secondly,
306 we refine the second coding scheme by splitting the output vector such
307 that each output is learned by a specific neural network
308 (Table~\ref{tab3}). In this last case, we increase the size of the
309 hidden layer up to 40~neurons and we consider larger number of epochs.
312 \caption{Prediction success rates for configurations expressed as boolean vectors.}
315 \begin{tabular}{|c|c||c|c|c|}
317 \multicolumn{5}{|c|}{Networks topology: 6~inputs, 5~outputs, and one hidden layer} \\
320 \multicolumn{2}{|c||}{Hidden neurons} & \multicolumn{3}{c|}{10 neurons} \\
322 \multicolumn{2}{|c||}{Epochs} & 125 & 250 & 500 \\
324 \multirow{6}{*}{\rotatebox{90}{Chaotic}}&Output~(1) & 90.92\% & 91.75\% & 91.82\% \\
325 & Output~(2) & 69.32\% & 78.46\% & 82.15\% \\
326 & Output~(3) & 68.47\% & 78.49\% & 82.22\% \\
327 & Output~(4) & 91.53\% & 92.37\% & 93.4\% \\
328 & Config. & 36.10\% & 51.35\% & 56.85\% \\
329 & Strategy~(5) & 1.91\% & 3.38\% & 2.43\% \\
331 \multirow{6}{*}{\rotatebox{90}{Non-chaotic}}&Output~(1) & 97.64\% & 98.10\% & 98.20\% \\
332 & Output~(2) & 95.15\% & 95.39\% & 95.46\% \\
333 & Output~(3) & 100\% & 100\% & 100\% \\
334 & Output~(4) & 97.47\% & 97.90\% & 97.99\% \\
335 & Config. & 90.52\% & 91.59\% & 91.73\% \\
336 & Strategy~(5) & 3.41\% & 3.40\% & 3.47\% \\
339 \multicolumn{2}{|c||}{Hidden neurons} & \multicolumn{3}{c|}{25 neurons} \\ %& \multicolumn{3}{|c|}{40 neurons} \\
341 \multicolumn{2}{|c||}{Epochs} & 125 & 250 & 500 \\ %& 125 & 250 & 500 \\
343 \multirow{6}{*}{\rotatebox{90}{Chaotic}}&Output~(1) & 91.65\% & 92.69\% & 93.93\% \\ %& 91.94\% & 92.89\% & 94.00\% \\
344 & Output~(2) & 72.06\% & 88.46\% & 90.5\% \\ %& 74.97\% & 89.83\% & 91.14\% \\
345 & Output~(3) & 79.19\% & 89.83\% & 91.59\% \\ %& 76.69\% & 89.58\% & 91.84\% \\
346 & Output~(4) & 91.61\% & 92.34\% & 93.47\% \\% & 82.77\% & 92.93\% & 93.48\% \\
347 & Config. & 48.82\% & 67.80\% & 70.97\% \\%& 49.46\% & 68.94\% & 71.11\% \\
348 & Strategy~(5) & 2.62\% & 3.43\% & 3.78\% \\% & 3.10\% & 3.10\% & 3.03\% \\
350 \multirow{6}{*}{\rotatebox{90}{Non-chaotic}}&Output~(1) & 97.87\% & 97.99\% & 98.03\% \\ %& 98.16\% \\
351 & Output~(2) & 95.46\% & 95.84\% & 96.75\% \\ % & 97.4\% \\
352 & Output~(3) & 100\% & 100\% & 100\% \\%& 100\% \\
353 & Output~(4) & 97.77\% & 97.82\% & 98.06\% \\%& 98.31\% \\
354 & Config. & 91.36\% & 91.99\% & 93.03\% \\%& 93.98\% \\
355 & Strategy~(5) & 3.37\% & 3.44\% & 3.29\% \\%& 3.23\% \\
361 Table~\ref{tab1} presents the rates obtained for the first coding
362 scheme. For the chaotic data, it can be seen that as expected
363 configuration prediction becomes better when the number of hidden
364 neurons and maximum epochs increases: an improvement by a factor two
365 is observed (from 36.10\% for 10~neurons and 125~epochs to 70.97\% for
366 25~neurons and 500~epochs). We also notice that the learning of
367 outputs~(2) and~(3) is more difficult. Conversely, for the
368 non-chaotic case the simplest training setup is enough to predict
369 configurations. For all these feedforward network topologies and all
370 outputs the obtained results for the non-chaotic case outperform the
371 chaotic ones. Finally, the rates for the strategies show that the
372 different feedforward networks are unable to learn them.
374 For the second coding scheme (\textit{i.e.}, with Gray Codes)
375 Table~\ref{tab2} shows that any network learns about five times more
376 non-chaotic configurations than chaotic ones. As in the previous
377 scheme, the strategies cannot be predicted.
378 Figures~\ref{Fig:chaotic_predictions} and
379 \ref{Fig:non-chaotic_predictions} present the predictions given by two
380 feedforward multilayer perceptrons that were respectively trained to
381 learn chaotic and non-chaotic data, using the second coding scheme.
382 Each figure shows for each sample of the test subset (577~samples,
383 representing 25\% of the 2304~samples) the configuration that should
384 have been predicted and the one given by the multilayer perceptron. It
385 can be seen that for the chaotic data the predictions are far away
386 from the expected configurations. Obviously, the better predictions
387 for the non-chaotic data reflect their regularity.
389 Let us now compare the two coding schemes. Firstly, the second scheme
390 disturbs the learning process. In fact in this scheme the
391 configuration is always expressed as a natural number, whereas in the
392 first one the number of inputs follows the increase of the Boolean
393 vectors coding configurations. In this latter case, the coding gives a
394 finer information on configuration evolution.
396 \caption{Prediction success rates for configurations expressed with Gray code}
399 \begin{tabular}{|c|c||c|c|c|}
401 \multicolumn{5}{|c|}{Networks topology: 3~inputs, 2~outputs, and one hidden layer} \\
404 & Hidden neurons & \multicolumn{3}{c|}{10 neurons} \\
406 & Epochs & 125 & 250 & 500 \\ %& 1000
408 \multirow{2}{*}{Chaotic}& Config.~(1) & 13.29\% & 13.55\% & 13.08\% \\ %& 12.5\%
409 & Strategy~(2) & 0.50\% & 0.52\% & 1.32\% \\ %& 1.42\%
411 \multirow{2}{*}{Non-Chaotic}&Config.~(1) & 77.12\% & 74.00\% & 72.60\% \\ %& 75.81\%
412 & Strategy~(2) & 0.42\% & 0.80\% & 1.16\% \\ %& 1.42\%
415 & Hidden neurons & \multicolumn{3}{c|}{25 neurons} \\
417 & Epochs & 125 & 250 & 500 \\ %& 1000
419 \multirow{2}{*}{Chaotic}& Config.~(1) & 12.27\% & 13.15\% & 13.05\% \\ %& 15.44\%
420 & Strategy~(2) & 0.71\% & 0.66\% & 0.88\% \\ %& 1.73\%
422 \multirow{2}{*}{Non-Chaotic}&Config.~(1) & 73.60\% & 74.70\% & 75.89\% \\ %& 68.32\%
423 & Strategy~(2) & 0.64\% & 0.97\% & 1.23\% \\ %& 1.80\%
430 \includegraphics[scale=0.5]{images/chaotic_trace2}
431 \caption {Second coding scheme - Predictions obtained for a chaotic test subset.}
432 \label{Fig:chaotic_predictions}
437 \includegraphics[scale=0.5]{images/non-chaotic_trace2}
438 \caption{Second coding scheme - Predictions obtained for a non-chaotic test subset.}
439 \label{Fig:non-chaotic_predictions}
442 Unfortunately, in practical applications the number of components is
443 usually unknown. Hence, the first coding scheme cannot be used
444 systematically. Therefore, we provide a refinement of the second
445 scheme: each output is learned by a different ANN. Table~\ref{tab3}
446 presents the results for this approach. In any case, whatever the
447 considered feedforward network topologies, the maximum epoch number,
448 and the kind of iterations, the configuration success rate is slightly
449 improved. Moreover, the strategies predictions rates reach almost
450 12\%, whereas in Table~\ref{tab2} they never exceed 1.5\%. Despite of
451 this improvement, a long term prediction of chaotic iterations still
452 appear to be an open issue.
455 \caption{Prediction success rates for split outputs.}
458 \begin{tabular}{|c||c|c|c|}
460 \multicolumn{4}{|c|}{Networks topology: 3~inputs, 1~output, and one hidden layer} \\
463 Epochs & 125 & 250 & 500 \\
466 Chaotic & \multicolumn{3}{c|}{Output = Configuration} \\
468 10~neurons & 12.39\% & 14.06\% & 14.32\% \\
469 25~neurons & 13.00\% & 14.28\% & 14.58\% \\
470 40~neurons & 11.58\% & 13.47\% & 14.23\% \\
473 Non chaotic & \multicolumn{3}{c|}{Output = Configuration} \\
475 %Epochs & 125 & 250 & 500 \\
477 10~neurons & 76.01\% & 74.04\% & 78.16\% \\
478 25~neurons & 76.60\% & 72.13\% & 75.96\% \\
479 40~neurons & 76.34\% & 75.63\% & 77.50\% \\
482 Chaotic/non chaotic & \multicolumn{3}{c|}{Output = Strategy} \\
484 %Epochs & 125 & 250 & 500 \\
486 10~neurons & 0.76\% & 0.97\% & 1.21\% \\
487 25~neurons & 1.09\% & 0.73\% & 1.79\% \\
488 40~neurons & 0.90\% & 1.02\% & 2.15\% \\
490 \multicolumn{4}{c}{} \\
492 Epochs & 1000 & 2500 & 5000 \\
495 Chaotic & \multicolumn{3}{c|}{Output = Configuration} \\
497 10~neurons & 14.51\% & 15.22\% & 15.22\% \\
498 25~neurons & 16.95\% & 17.57\% & 18.46\% \\
499 40~neurons & 17.73\% & 20.75\% & 22.62\% \\
502 Non chaotic & \multicolumn{3}{c|}{Output = Configuration} \\
504 %Epochs & 1000 & 2500 & 5000 \\
506 10~neurons & 78.98\% & 80.02\% & 79.97\% \\
507 25~neurons & 79.19\% & 81.59\% & 81.53\% \\
508 40~neurons & 79.64\% & 81.37\% & 81.37\% \\
511 Chaotic/non chaotic & \multicolumn{3}{c|}{Output = Strategy} \\
513 %Epochs & 1000 & 2500 & 5000 \\
515 10~neurons & 3.47\% & 9.98\% & 11.66\% \\
516 25~neurons & 3.92\% & 8.63\% & 10.09\% \\
517 40~neurons & 3.29\% & 7.19\% & 7.18\% \\
524 In this paper, we have established an equivalence between chaotic
525 iterations, according to the Devaney's definition of chaos, and a
526 class of multilayer perceptron neural networks. Firstly, we have
527 described how to build a neural network that can be trained to learn a
528 given chaotic map function. Secondly, we found a condition that allow
529 to check whether the iterations induced by a function are chaotic or
530 not, and thus if a chaotic map is obtained. Thanks to this condition
531 our approach is not limited to a particular function. In the dual
532 case, we show that checking if a neural network is chaotic consists in
533 verifying a property on an associated graph, called the graph of
534 iterations. These results are valid for recurrent neural networks
535 with a particular architecture. However, we believe that a similar
536 work can be done for other neural network architectures. Finally, we
537 have discovered at least one family of problems with a reasonable
538 size, such that artificial neural networks should not be applied in
539 the presence of chaos, due to their inability to learn chaotic
540 behaviors in this context. Such a consideration is not reduced to a
541 theoretical detail: this family of discrete iterations is concretely
542 implemented in a new steganographic method \cite{guyeux10ter}. As
543 steganographic detectors embed tools like neural networks to
544 distinguish between original and stego contents, our studies tend to
545 prove that such detectors might be unable to tackle with chaos-based
546 information hiding schemes.
548 In future work we intend to enlarge the comparison between the
549 learning of truly chaotic and non-chaotic behaviors. Other
550 computational intelligence tools such as support vector machines will
551 be investigated too, to discover which tools are the most relevant
552 when facing a truly chaotic phenomenon. A comparison between learning
553 rate success and prediction quality will be realized. Concrete
554 consequences in biology, physics, and computer science security fields
559 % \begin{Def} \label{def2}
560 % A continuous function $f$ on a topological space $(\mathcal{X},\tau)$
561 % is defined to be {\emph{topologically transitive}} if for any pair of
562 % open sets $U$, $V \in \mathcal{X}$ there exists
566 % $f^k(U) \cap V \neq \emptyset$.
569 %\bibliography{chaos-paper}% Produces the bibliography via BibTeX.
573 % ****** End of file chaos-paper.tex ******