1 \section{Quantifier l'écart par rapport à la distribution uniforme}
8 Let thus be given such kind of map.
9 This article focuses on studying its iterations according to
10 the equation~(\ref{eq:asyn}) with a given strategy.
11 First of all, this can be interpreted as walking into its iteration graph
12 where the choice of the edge to follow is decided by the strategy.
13 Notice that the iteration graph is always a subgraph of
14 ${\mathsf{N}}$-cube augmented with all the self-loop, \textit{i.e.}, all the
15 edges $(v,v)$ for any $v \in \Bool^{\mathsf{N}}$.
16 Next, if we add probabilities on the transition graph, iterations can be
17 interpreted as Markov chains.
20 Let us consider for instance
21 the graph $\Gamma(f)$ defined
22 in \textsc{Figure~\ref{fig:iteration:f*}.} and
23 the probability function $p$ defined on the set of edges as follows:
27 = \frac{2}{3} \textrm{ if $e=(v,v)$ with $v \in \Bool^3$,}\\
28 = \frac{1}{6} \textrm{ otherwise.}
32 The matrix $P$ of the Markov chain associated to the function $f^*$ and to its probability function $p$ is
35 \begin{array}{llllllll}
50 % % Let us first recall the \emph{Total Variation} distance $\tv{\pi-\mu}$,
51 % % which is defined for two distributions $\pi$ and $\mu$ on the same set
53 % % $$\tv{\pi-\mu}=\max_{A\subset \Bool^n} |\pi(A)-\mu(A)|.$$
55 % % $$\tv{\pi-\mu}=\frac{1}{2}\sum_{x\in\Bool^n}|\pi(x)-\mu(x)|.$$
57 % % Let then $M(x,\cdot)$ be the
58 % % distribution induced by the $x$-th row of $M$. If the Markov chain
60 % % $M$ has a stationary distribution $\pi$, then we define
61 % % $$d(t)=\max_{x\in\Bool^n}\tv{M^t(x,\cdot)-\pi}.$$
62 % Intuitively $d(t)$ is the largest deviation between
63 % the distribution $\pi$ and $M^t(x,\cdot)$, which
64 % is the result of iterating $t$ times the function.
65 % Finally, let $\varepsilon$ be a positive number, the \emph{mixing time}
66 % with respect to $\varepsilon$ is given by
67 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
68 % It defines the smallest iteration number
69 % that is sufficient to obtain a deviation lesser than $\varepsilon$.
70 % Notice that the upper and lower bounds of mixing times cannot
71 % directly be computed with eigenvalues formulae as expressed
72 % in~\cite[Chap. 12]{LevinPeresWilmer2006}. The authors of this latter work
73 % only consider reversible Markov matrices whereas we do no restrict our
74 % matrices to such a form.
82 This section considers functions $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}} $
83 issued from an hypercube where an Hamiltonian path has been removed.
84 A specific random walk in this modified hypercube is first
85 introduced. We further detail
86 a theoretical study on the length of the path
87 which is sufficient to follow to get a uniform distribution.
88 Notice that for a general references on Markov chains
89 see~\cite{LevinPeresWilmer2006}
90 , and particularly Chapter~5 on stopping times.
95 First of all, let $\pi$, $\mu$ be two distributions on $\Bool^{\mathsf{N}}$. The total
96 variation distance between $\pi$ and $\mu$ is denoted $\tv{\pi-\mu}$ and is
98 $$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$ It is known that
99 $$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$ Moreover, if
100 $\nu$ is a distribution on $\Bool^{\mathsf{N}}$, one has
101 $$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}$$
103 Let $P$ be the matrix of a Markov chain on $\Bool^{\mathsf{N}}$. $P(X,\cdot)$ is the
104 distribution induced by the $X$-th row of $P$. If the Markov chain induced by
105 $P$ has a stationary distribution $\pi$, then we define
106 $$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$
110 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
113 $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
118 % It is known that $d(t+1)\leq d(t)$. \JFC{references ? Cela a-t-il
119 % un intérêt dans la preuve ensuite.}
124 % $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
125 % One can prove that \JFc{Ou cela a-t-il été fait?}
126 % $$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
130 Let $(X_t)_{t\in \mathbb{N}}$ be a sequence of $\Bool^{\mathsf{N}}$ valued random
131 variables. A $\mathbb{N}$-valued random variable $\tau$ is a {\it stopping
132 time} for the sequence $(X_i)$ if for each $t$ there exists $B_t\subseteq
133 (\Bool^{\mathsf{N}})^{t+1}$ such that $\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$.
134 In other words, the event $\{\tau = t \}$ only depends on the values of
135 $(X_0,X_1,\ldots,X_t)$, not on $X_k$ with $k > t$.
138 Let $(X_t)_{t\in \mathbb{N}}$ be a Markov chain and $f(X_{t-1},Z_t)$ a
139 random mapping representation of the Markov chain. A {\it randomized
140 stopping time} for the Markov chain is a stopping time for
141 $(Z_t)_{t\in\mathbb{N}}$. If the Markov chain is irreducible and has $\pi$
142 as stationary distribution, then a {\it stationary time} $\tau$ is a
143 randomized stopping time (possibly depending on the starting position $X$),
144 such that the distribution of $X_\tau$ is $\pi$:
145 $$\P_X(X_\tau=Y)=\pi(Y).$$
147 A stopping time $\tau$ is a {\emph strong stationary time} if $X_{\tau}$ is
148 independent of $\tau$.
152 If $\tau$ is a strong stationary time, then $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}}
157 %Let $\Bool^n$ be the set of words of length $n$.
159 X\in \Bool^{\mathsf{N}}, Y\in \Bool^{\mathsf{N}},\ X=Y \text{ or } X\oplus Y \in 0^*10^*\}$.
160 In other words, $E$ is the set of all the edges in the classical
162 Let $h$ be a function from $\Bool^{\mathsf{N}}$ into $\llbracket 1, {\mathsf{N}} \rrbracket$.
163 Intuitively speaking $h$ aims at memorizing for each node
164 $X \in \Bool^{\mathsf{N}}$ which edge is removed in the Hamiltonian cycle,
165 \textit{i.e.} which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$
170 We denote by $E_h$ the set $E\setminus\{(X,Y)\mid X\oplus Y =
171 0^{{\mathsf{N}}-h(X)}10^{h(X)-1}\}$. This is the set of the modified hypercube,
172 \textit{i.e.}, the ${\mathsf{N}}$-cube where the Hamiltonian cycle $h$
175 We define the Markov matrix $P_h$ for each line $X$ and
176 each column $Y$ as follows:
180 P_h(X,X)=\frac{1}{2}+\frac{1}{2{\mathsf{N}}} & \\
181 P_h(X,Y)=0 & \textrm{if $(X,Y)\notin E_h$}\\
182 P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$}
185 \label{eq:Markov:rairo}
188 We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function
189 such that for any $X \in \Bool^{\mathsf{N}} $,
190 $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$.
191 The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$,
192 $\ov{h}(\ov{h}(X))\neq X$.
194 \begin{lemma}\label{lm:h}
195 If $\ov{h}$ is bijective and square-free, then $h(\ov{h}^{-1}(X))\neq h(X)$.
199 Let $\ov{h}$ be bijective.
200 Let $k\in \llbracket 1, {\mathsf{N}} \rrbracket$ s.t. $h(\ov{h}^{-1}(X))=k$.
201 Then $(\ov{h}^{-1}(X),X)$ belongs to $E$ and
202 $\ov{h}^{-1}(X)\oplus X = 0^{{\mathsf{N}}-k}10^{k-1}$.
203 Let us suppose $h(X) = h(\ov{h}^{-1}(X))$. In such a case, $h(X) =k$.
204 By definition of $\ov{h}$, $(X, \ov{h}(X)) \in E $ and
205 $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1} = 0^{{\mathsf{N}}-k}10^{k-1}$.
206 Thus $\ov{h}(X)= \ov{h}^{-1}(X)$, which leads to $\ov{h}(\ov{h}(X))= X$.
207 This contradicts the square-freeness of $\ov{h}$.
210 Let $Z$ be a random variable that is uniformly distributed over
211 $\llbracket 1, {\mathsf{N}} \rrbracket \times \Bool$.
212 For $X\in \Bool^{\mathsf{N}}$, we
213 define, with $Z=(i,b)$,
217 f(X,Z)=X\oplus (0^{{\mathsf{N}}-i}10^{i-1}) & \text{if } b=1 \text{ and } i\neq h(X),\\
218 f(X,Z)=X& \text{otherwise.}
222 The Markov chain is thus defined as
229 %%%%%%%%%%%%%%%%%%%%%%%%%%%ù
230 %\section{Stopping time}
232 An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair}
234 exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$.
235 In other words, there exist a date $j$ before $t$ where
236 the first element of the random variable $Z$ is exactly $l$
237 (\textit{i.e.}, $l$ is the strategy at date $j$)
238 and where the configuration $X_j$ allows to traverse the edge $l$.
240 Let $\ts$ be the first time all the elements of $\llbracket 1, {\mathsf{N}} \rrbracket$
241 are fair. The integer $\ts$ is a randomized stopping time for
242 the Markov chain $(X_t)$.
246 The integer $\ts$ is a strong stationary time.
250 Let $\tau_\ell$ be the first time that $\ell$ is fair. The random variable
251 $Z_{\tau_\ell}$ is of the form $(\ell,b)$ %with $\delta\in\{0,1\}$ and
253 $b=1$ with probability $\frac{1}{2}$ and $b=0$ with probability
254 $\frac{1}{2}$. Since $h(X_{\tau_\ell-1})\neq\ell$ the value of the $\ell$-th
255 bit of $X_{\tau_\ell}$
256 is $0$ or $1$ with the same probability ($\frac{1}{2}$).
258 Moving next in the chain, at each step,
259 the $l$-th bit is switched from $0$ to $1$ or from $1$ to $0$ each time with
260 the same probability. Therefore, for $t\geq \tau_\ell$, the
261 $\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
266 For each $X\in \Bool^{\mathsf{N}}$ and $\ell\in\llbracket 1,{\mathsf{N}}\rrbracket$,
267 let $S_{X,\ell}$ be the
268 random variable that counts the number of steps
269 from $X$ until we reach a configuration where
270 $\ell$ is fair. More formally
271 $$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$
274 % $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$
277 \begin{lemma}\label{prop:lambda}
278 Let $\ov{h}$ is a square-free bijective function. Then
282 $E[S_{X,\ell}]\leq 8{\mathsf{N}}^2$ is established.
286 For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq
287 \frac{1}{4{\mathsf{N}}^2}$.
291 \item if $h(X)\neq \ell$, then
292 $\P(S_{X,\ell}=1)=\frac{1}{2{\mathsf{N}}}\geq \frac{1}{4{\mathsf{N}}^2}$.
293 \item otherwise, $h(X)=\ell$, then
294 $\P(S_{X,\ell}=1)=0$.
295 But in this case, intuitively, it is possible to move
296 from $X$ to $\ov{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in
297 $\ov{h}^{-1}(X)$ the $l$-th bit can be switched.
299 since $\ov{h}$ is square-free,
300 $\ov{h}(X)=\ov{h}(\ov{h}(\ov{h}^{-1}(X)))\neq \ov{h}^{-1}(X)$. It follows
301 that $(X,\ov{h}^{-1}(X))\in E_h$. We thus have
302 $P(X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$. Now, by Lemma~\ref{lm:h},
303 $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore $\P(S_{x,\ell}=2\mid
304 X_1=\ov{h}^{-1}(X))=\frac{1}{2{\mathsf{N}}}$, proving that $\P(S_{x,\ell}\leq 2)\geq
305 \frac{1}{4{\mathsf{N}}^2}$.
311 Therefore, $\P(S_{X,\ell}\geq 3)\leq 1-\frac{1}{4{\mathsf{N}}^2}$. By induction, one
312 has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq
313 \left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i$.
315 since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that
316 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$
317 Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has
318 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq
319 \P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$
321 $$E[S_{X,\ell}]\leq 1+1+2
322 \sum_{i=1}^{+\infty}\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i=2+2(4{\mathsf{N}}^2-1)=8{\mathsf{N}}^2,$$
323 which concludes the proof.
326 Let $\ts^\prime$ be the time used to get all the bits but one fair.
328 \begin{lemma}\label{lm:stopprime}
329 One has $E[\ts^\prime]\leq 4{\mathsf{N}} \ln ({\mathsf{N}}+1).$
333 This is a classical Coupon Collector's like problem. Let $W_i$ be the
334 random variable counting the number of moves done in the Markov chain while
335 we had exactly $i-1$ fair bits. One has $\ts^\prime=\sum_{i=1}^{{\mathsf{N}}-1}W_i$.
336 But when we are at position $X$ with $i-1$ fair bits, the probability of
337 obtaining a new fair bit is either $1-\frac{i-1}{{\mathsf{N}}}$ if $h(X)$ is fair,
338 or $1-\frac{i-2}{{\mathsf{N}}}$ if $h(X)$ is not fair.
341 $\P (W_i=k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}}.$
342 Consequently, we have $\P(W_i\geq k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}-i+1}.$
343 It follows that $E[W_i]=\sum_{k=1}^{+\infty} \P (W_i\geq k)\leq {\mathsf{N}} \frac{{\mathsf{N}}-i+2}{({\mathsf{N}}-i+1)^2}\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$.
348 $E[W_i]\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$. Therefore
349 $$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}-1}E[W_i]\leq
350 4{\mathsf{N}}\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{{\mathsf{N}}-i+2}=
351 4{\mathsf{N}}\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}.$$
353 But $\sum_{i=1}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1)$. It follows that
354 $1+\frac{1}{2}+\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1).$
357 4{\mathsf{N}} (-\frac{1}{2}+\ln({\mathsf{N}}+1))\leq
358 4{\mathsf{N}}\ln({\mathsf{N}}+1)$.
361 One can now prove Theorem~\ref{prop:stop}.
364 Since $\ts^\prime$ is the time used to obtain $\mathsf{N}-1$ fair bits.
365 Assume that the last unfair bit is $\ell$. One has
366 $\ts=\ts^\prime+S_{X_\tau,\ell}$, and therefore
367 $E[\ts] = E[\ts^\prime]+E[S_{X_\tau,\ell}]$. Therefore,
368 Theorem~\ref{prop:stop} is a direct application of
369 lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
372 Notice that the calculus of the stationary time upper bound is obtained
373 under the following constraint: for each vertex in the $\mathsf{N}$-cube
374 there are one ongoing arc and one outgoing arc that are removed.
375 The calculus does not consider (balanced) Hamiltonian cycles, which
376 are more regular and more binding than this constraint.
377 In this later context, we claim that the upper bound for the stopping time