]> AND Private Git Repository - hdrcouchot.git/blob - annexePreuveDistribution.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
8de466ce821291688220a83a7e5ab240ae0ccfca
[hdrcouchot.git] / annexePreuveDistribution.tex
1  
2 Considérons le lemme technique suivant:
3 \begin{lemma}\label{lem:stoc}
4 Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son graphe d'itérations, $\check{M}$ la matrice d'adjacence de $\textsc{giu}(f)$, et  $M$  la matrice 
5 $2^n\times 2^n$  définie par
6 $M = \frac{1}{n}\check{M}$.
7 Alors $M$ est une matrice stochastique régulière si et seulement si
8 $\textsc{giu}(f)$ est fortement connexe.
9 \end{lemma}
10
11 \begin{Proof}  
12 On remarque tout d'abord que $M$ 
13 est une matrice stochastique par construction.
14 Supposons $M$ régulière. 
15 Il existe donc  $k$ tel que $M_{ij}^k>0$ pour chaque $i,j\in \llbracket
16 1;  2^n  \rrbracket$. L'inégalité  $\check{M}_{ij}^k>0$  est alors établie.
17 Puisque $\check{M}_{ij}^k$ est le nombre de chemins de  $i$ à $j$ de longueur $k$
18 dans $\textsc{giu}(f)$ et puisque ce nombre est positif, alors 
19 $\textsc{giu}(f)$ est fortement connexe.
20
21 Réciproquement si $\textsc{giu}(f)$ 
22 est fortement connexe, alors pour tous les sommets $i$ et $j$, un chemin peut être construit pour atteindre  $j$  depuis $i$ en au plus $2^n$ étapes.
23 Il existe donc 
24 $k_{ij} \in \llbracket 1,  2^n \rrbracket$ tels que $\check{M}_{ij}^{k_{ij}}>0$.  
25 Comme tous les  multiples $l \times k_{ij}$ de $k_{ij}$ sont tels que 
26 $\check{M}_{ij}^{l\times  k_{ij}}>0$, 
27 on peut conclure que, si 
28 $k$ est le plus petit multiple commun de $\{k_{ij}  \big/ i,j  \in \llbracket 1,  2^n \rrbracket  \}$ alors
29 $\forall i,j  \in \llbracket  1, 2^n \rrbracket,  \check{M}_{ij}^{k}>0$. 
30 Ainsi, $\check{M}$ et donc $M$ sont régulières.
31 \end{Proof}
32
33 Ces résultats permettent formuler et de prouver le théorème suivant:
34
35 \begin{theorem}
36   Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son 
37   graphe d'itérations , $\check{M}$ sa matrice d'adjacence
38   et $M$ une matrice  $2^n\times 2^n$  définie comme dans le lemme précédent.
39   Si $\textsc{giu}(f)$ est fortement connexe, alors 
40   la sortie du générateur de nombres pseudo aléatoires détaillé par 
41   l'algorithme~\ref{CI Algorithm} suit une loi qui 
42   tend vers la distribution uniforme si 
43   et seulement si  $M$ est une matrice doublement stochastique.
44 \end{theorem}
45
46 \begin{Proof}
47   $M$ est une matrice stochastique régulière (Lemme~\ref{lem:stoc}) 
48   qui a un unique vecteur de probabilités stationnaire
49   (Théorème \ref{th}).
50   Soit $\pi$  défini par 
51   $\pi = \left(\frac{1}{2^n}, \hdots, \frac{1}{2^n} \right)$.
52   On a  $\pi M = \pi$ si et seulement si
53   la somme des valeurs de chaque colonne de $M$  est 1, 
54   \textit{i.e.} si et seulement si 
55   $M$ est  doublement  stochastique.
56 \end{Proof}
57
58
59
60 Montrons que
61 \begin{lemma}
62 $d$ est une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
63 \end{lemma}
64
65
66 \begin{proof}
67  $d_{\mathds{B}^\mathsf{N}}$ est la distance de Hamming.
68  Prouvons que  
69  $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ est aussi une distance;
70 $d$ sera ainsi une distance comme somme de deux distances.
71  \begin{itemize}
72 \item De manière évidente, $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})\geqslant 0$, et si $s=\check{s}$, alors
73 $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$. 
74 Réciproquement si $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=0$, alors
75 $\forall k \in \mathds{N}, v^k=\check{v}^k$ d'après la définition de $d$.
76 Or les éléments entre les positions $p+1$ et  $p+n$ 
77 sont nules et correspondent à $|u^0-\check{u}^0|$, 
78 on peut conclure que $u^0=\check{u}^0$.
79 On peut étendre ce résultat aux $n \times \max{(\mathcal{P})}$ premiers 
80 bloc engendrant $u^i=\check{u}^i$, $\forall i \leqslant v^0=\check{v}^0$, 
81 et en vérifiant tous les  $n \times \max{(\mathcal{P})}$ blocs, $u=\check{u}$.
82  \item $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ est évidemment  symétrique 
83 ($d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(\check{s},s)$). 
84 \item l'inégalité triangulaire est établie puisque la valeur absolue la vérifie
85 aussi.
86  \end{itemize}
87 \end{proof}