1 \JFC{Dire que c'est une synthèse du chapitre 22 de la thèse de Tof}
3 Par la suite, le message numérique qu'on cherche à embarquer est
4 noté $y$ et le support dans lequel se fait l'insertion est noté $x$.
6 Le processus de marquage est fondé sur les itérations unaires d'une fonction
7 selon une stratégie donnée. Cette fonction et cette stratégie
8 sont paramétrées par un entier naturel permettant à la méthode d'être
9 appliquable à un média de n'importe quelle taille.
10 On parle alors respectivement de \emph{mode} et d'\emph{adapteur de stratégies}
12 \begin{definition}[Mode]
14 Soit $\mathsf{N}$ un entier naturel.
15 Un mode est une application de $\mathds{B}^{\mathsf{N}}$
21 \begin{definition}[Adapteur de Stratégie]
22 \label{def:strategy-adapter}
24 Un \emph{adapteur de stratégie} est une fonction $\mathcal{S}$
25 de $\Nats$ dans l'ensemble des séquences d'entiers
26 qui associe à chaque entier naturel
28 $S \in \llbracket 1, n\rrbracket^{\mathds{N}}$.
32 On définit par exemple l'adapteur CIIS (\emph{Chaotic Iterations with Independent Strategy})
33 paramétré par $(K,y,\alpha,l) \in [0,1]\times [0,1] \times ]0, 0.5[ \times \mathds{N}$
34 qui associe à chque entier $n \in \Nats$ la suite
35 $(S^t)^{t \in \mathds{N}}$ définie par:
37 \item $K^0 = \textit{bin}(y) \oplus \textit{bin}(K)$: $K^0$ est le nombre binaire (sur 32 bits)
38 égal au ou exclusif (xor)
39 entre les décompositions binaires sur 32 bits des réels $y$ et $K$
40 (il est aussi compris entre 0 et 1),
41 \item $\forall t \leqslant l, K^{t+1} = F(K^t,\alpha)$,
42 \item $\forall t \leqslant l, S^t = \left \lfloor n \times K^t \right \rfloor + 1$,
43 \item $\forall t > l, S^t = 0$,
45 où est la fonction chaotique linéaire par morceau~\cite{Shujun1}.
46 Les paramètres $K$ et $\alpha$ de cet adapteur de stratégie peuvent être vus
49 % Les paramère Parameters of CIIS strategy-adapter will be instantiate as follows:
50 % $K$ is the secret embedding key, $y$ is the secret message,
51 % $\alpha$ is the threshold of the piecewise linear chaotic map,
52 % which can be set as $K$ or can act as a second secret key.
53 % Lastly, $l$ is for the iteration number bound:
54 % enlarging its value improve the chaotic behavior of the scheme,
55 % but the time required to achieve the embedding grows too.
57 % Another strategy-adapter is the
58 % \emph{Chaotic Iterations with Dependent Strategy} (CIDS)
59 % with parameters $(l,X) \in \mathds{N}\times \mathds{B}^\mathds{N}$,
60 % which is the function that maps any $ n \in \mathds{N}$ to
61 % the sequence $\left(S^t\right)^{t \in \mathds{N}}$ defined by:
63 % \item $\forall t \leqslant l$, if $t \leqslant l$ and $X^t = 1$,
64 % then $S^t=t$, else $S^t=1$.
65 % \item $\forall t > l, S^t = 0$.
71 % Let us notice that the terms of $x$ that may be replaced by terms issued
72 % from $y$ are less important than other: they could be changed
73 % without be perceived as such. More generally, a
74 % \emph{signification function}
75 % attaches a weight to each term defining a digital media,
76 % w.r.t. its position $t$:
78 % \begin{definition}[Signification function]
79 % A \emph{signification function}
80 % $(u^k)^{k \in \Nats}$. % with a limit equal to 0.
88 On peut attribuer à chaque bit du média hôte $x$ sa valeur d'importance
89 sous la forme d'un réel.
90 Ceci se fait à l'aide d'une fonction de signification.
92 %We first notice that terms of $x$ that may be replaced by terms issued
93 %from $y$ are less important than other: they could be changed
94 %without being perceived as such. More generally, a
95 %\emph{signification function}
96 %attaches a weight to each terms defining a digital media,
97 %depending on its position $t$, as follows.
99 \begin{definition}[Fonction de signification ]
100 Une \emph{fonction de signification }
101 est une fonction $u$ qui a toute
102 séquence finie de bit $x$ associe la séquence
103 $(u^k(x))$ de taille $\mid x \mid$ à valeur dans les réels.
104 Cette fonction peut dépendre du message $y$ à embarquer, ou non.
107 Pour alléger le discours, par la suite, on nottera $(u^k(x))$ pour $(u^k)$
108 lorsque cela n'est pas ambigüe.
109 Il reste à partionner les bits de $x$ selon qu'ils sont
110 peu, moyennement ou très significatifs.
112 \begin{definition}[Signification des bits]\label{def:msc,lsc}
113 Soit $u$ une fonction de signification,
114 $m$ et $M$ deux réels t.q. $m < M$. Alors:
115 $u_M$, $u_m$ et $u_p$ sont les vecteurs finis respectivements des
116 \emph{bits les plus significatifs (MSBs)} de $x$,
117 \emph{bits les moins significatifs (LSBs)} de $x$
118 \emph{bits passifs} of $x$ définis par:
120 u_M &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ et } u^k
121 \geqslant M \textrm{ et } k \le \mid x \mid \right) \\
122 u_m &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ et } u^k
123 \le m \textrm{ et } k \le \mid x \mid \right) \\
124 u_p &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ et }
125 u^k \in ]m;M[ \textrm{ et } k \le \mid x \mid \right)
129 On peut alors définir une fonction de décompostion
130 puis de recomposition pour un hôte $x$:
133 \begin{definition}[Fonction de décomposition ]
134 Soit $u$ une fonction de signification,
135 $m$ et $M$ deux réels t.q $m < M$.
136 Tout hôte $x$ peut se décomposer en
137 $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$
140 \item $u_M$, $u_m$, et $u_p$ construits comme à la définition~\label{def:msc,lsc},
141 \item $\phi_{M} = \left( x^{u^1_M}, x^{u^2_M}, \ldots,x^{u^{|u_M|}_M}\right)$,
142 \item $\phi_{m} = \left( x^{u^1_m}, x^{u^2_m}, \ldots,x^{u^{|u_m|}_m} \right)$,
143 \item $\phi_{p} =\left( x^{u^1_p}, x^{u^2_p}, \ldots,x^{u^{|u_p|}_p}\right) $.
145 La fonction qui associe $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$
146 pour chaque hôte $x$ est la \emph{fonction de décomposition}, plus tard notée
147 $\textit{dec}(u,m,M)$ puisuq'elle est paramétrée par
152 \begin{definition}[Recomposition]
154 $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p}) \in
163 \item les ensembles $u_M$, $u_m$ et $u_p$ forment une partition de $[n]$;
164 \item $|u_M| = |\varphi_M|$, $|u_m| = |\varphi_m|$ et $|u_p| = |\varphi_p|$.
166 Soit la base canonique sur l'espace vectoriel $\mathds{R}^{\mid x \mid}$ composée des vecteurs
167 $e_1, \ldots, e_{\mid x \mid}$.
168 On peut construire le vecteur
171 \sum_{i=1}^{|u_M|} \varphi^i_M . e_{{u^i_M}} +
172 \sum_{i=1}^{|u_m|} \varphi^i_m .e_{{u^i_m}} +
173 \sum_{i=1}^{|u_p|} \varphi^i_p. e_{{u^i_p}}
175 La fonction qui associe $x$ à chaque sextuplet
176 $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ défini comme ci-dessus est appelée
177 \emph{fonction de recomposition}.
180 Un embarquement consiste à modifier les valeurs de
181 $\phi_{m}$ (de $x$) en tenant compte de $y$.
182 Cela se formalise comme suit:
184 \begin{definition}[Embedding media]
185 Soit une fonction de décomposition $\textit{dec}(u,m,M)$ be a decomposition function,
186 $x$ be a host content,
187 $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ be its image by $\textit{dec}(u,m,M)$,
188 and $y$ be a digital media of size $|u_m|$.
189 The digital media $z$ resulting on the embedding of $y$ into $x$ is
191 % result of the \emph{embedding} of $y$ in $x$ if
193 % \forall n \in \llbracket1, |x|\rrbracket , z^n = \left\{
195 % x^n & \textrm{if } \phi^n_m > m,\\
196 % y^n & \textrm{else.}
201 % In other words, $z$ is
202 the image of $(u_M,u_m,u_p,\phi_{M},y,\phi_{p})$
203 by the recomposition function $\textit{rec}$.
206 Let us then define the dhCI information hiding scheme
207 presented in~\cite{gfb10:ip}:
209 \begin{definition}[Data hiding dhCI]
211 Let $\textit{dec}(u,m,M)$ be a decomposition function,
213 $\mathcal{S}$ be a strategy adapter,
214 $x$ be an host content,\linebreak
215 $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$
216 be its image by $\textit{dec}(u,m,M)$,
217 $q$ be a positive natural number,
218 and $y$ be a digital media of size $l=|u_m|$.
221 The dhCI dissimulation maps any
222 $(x,y)$ to the digital media $z$ resulting on the embedding of
223 $\hat{y}$ into $x$, s.t.
226 \item We instantiate the mode $f$ with parameter $l=|u_m|$, leading to
227 the function $f_{l}:\Bool^{l} \rightarrow \Bool^{l}$.
228 \item We instantiate the strategy adapter $\mathcal{S}$
229 with parameter $y$ (and some other ones eventually).
230 This instantiation leads to the strategy $S_y \in \llbracket 1;l\rrbracket ^{\Nats}$.
232 \item We iterate $G_{f_l}$ with initial configuration $(S_y,\phi_{m})$.
233 \item $\hat{y}$ is finally the $q$-th term of these iterations.
238 To summarize, iterations are realized on the LSCs of the
240 (the mode gives the iterate function,
241 the strategy-adapter gives its strategy),
242 and the last computed configuration is re-injected into the host content,
243 in place of the former LSCs.
247 %\begin{definition}[Significance of coefficients]\label{def:msc,lsc}
248 %Let $(u^k)^{k \in \Nats}$ be a signification function,
249 %$m$ and $M$ be two reals s.t. $m < M$. Then
250 %the \emph{most significant coefficients (MSCs)} of $x$ is the finite
252 %the \emph{least significant coefficients (LSCs)} of $x$ is the
253 %finite vector $u_m$, and
254 %the \emph{passive coefficients} of $x$ is the finite vector $u_p$ such that:
256 % u_M &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ and } u^k
257 % \geqslant M \textrm{ and } k \le \mid x \mid \right) \\
258 % u_m &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ and } u^k
259 % \le m \textrm{ and } k \le \mid x \mid \right) \\
260 % u_p &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ and }
261 %u^k \in ]m;M[ \textrm{ and } k \le \mid x \mid \right)
265 %For a given host content $x$,
266 %MSCs are then ranks of $x$ that describe the relevant part
267 %of the image, whereas LSCs translate its less significant parts.
268 %We are then ready to decompose an host $x$ into its coefficients and
269 %then to recompose it. Next definitions formalize these two steps.
271 %\begin{definition}[Decomposition function]
272 %Let $(u^k)^{k \in \Nats}$ be a signification function,
273 %$\mathfrak{B}$ the set of finite binary sequences,
274 %$\mathfrak{N}$ the set of finite integer sequences,
275 %$m$ and $M$ be two reals s.t. $m < M$.
276 %Any host $x$ may be decomposed into
278 %(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})
289 %\item $u_M$, $u_m$, and $u_p$ are coefficients defined in Definition
291 %\item $\phi_{M} = \left( x^{u^1_M}, x^{u^2_M}, \ldots,x^{u^{|u_M|}_M}\right)$;
292 % \item $\phi_{m} = \left( x^{u^1_m}, x^{u^2_m}, \ldots,x^{u^{|u_m|}_m} \right)$;
293 % \item $\phi_{p} =\left( x^{u^1_p}, x^{u^2_p}, \ldots,x^{u^{|u_p|}_p}\right) $.
295 %The function that associates the decomposed host to any digital host is
296 %the \emph{decomposition function}. It is
297 %further referred as $\textit{dec}(u,m,M)$ since it is parametrized by
298 %$u$, $m$, and $M$. Notice that $u$ is a shortcut for $(u^k)^{k \in \Nats}$.
302 %\begin{definition}[Recomposition]
304 %$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p}) \in
313 %\item the sets of elements in $u_M$, elements in $u_m$, and
314 %elements in $u_p$ are a partition of $\llbracket 1, n\rrbracket$;
315 %\item $|u_M| = |\varphi_M|$, $|u_m| = |\varphi_m|$, and $|u_p| = |\varphi_p|$.
317 %One may associate the vector
319 %\sum_{i=1}^{|u_M|} \varphi^i_M . e_{{u^i_M}} +
320 %\sum_{i=1}^{|u_m|} \varphi^i_m .e_{{u^i_m}} +
321 %\sum_{i=1}^{|u_p|} \varphi^i_p. e_{{u^i_p}}
323 %\noindent where $e_i$ is the sequence whose $j-$th term is equal to $\overline{\Delta(i,j)}$, \emph{i.e.}, $(e_i)_{i \in \mathds{N}}$ is the usual basis of the $\mathds{R}-$vectorial space $\left(\mathds{R}^\mathds{N}, +, .\right)$.
324 %The function that associates $x$ to any
325 %$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ following the above constraints
326 %is called the \emph{recomposition function}.
329 %The embedding consists to the replacement of the values of
330 %$\phi_{m}$ of $x$'s LSCs by $y$.
331 %It then composes the two decomposition and
332 %recomposition functions seen previously. More formally:
335 %\begin{definition}[Embedding digital media]
336 %Let $\textit{dec}(u,m,M)$ be a decomposition function,
337 %$x$ be a host content,
338 %$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ be its image by $\textit{dec}(u,m,M)$,
339 %and $y$ be a digital media of size $|u_m|$.
340 %The digital media $z$ resulting on the embedding of $y$ into $x$ is
342 %% result of the \emph{embedding} of $y$ in $x$ if
344 %% \forall n \in \llbracket1, |x|\rrbracket , z^n = \left\{
346 %% x^n & \textrm{if } \phi^n_m > m,\\
347 %% y^n & \textrm{else.}
352 %% In other words, $z$ is
353 %the image of $(u_M,u_m,u_p,\phi_{M},y,\phi_{p})$
354 %by the recomposition function $\textit{rec}$.
357 %We can now define the information hiding scheme called \emph{dhCI}:
359 %\begin{definition}[Data hiding dhCI]
361 %Let $\textit{dec}(u,m,M)$ be a decomposition function,
363 %$\mathcal{S}$ be a strategy adapter,
364 %$x$ be an host content,\linebreak
365 %$(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ be its image by $\textit{dec}(u,m,M)$,
366 %and $y$ be a digital media of size $l=|u_m|$.
369 %The \emph{dhCI dissimulation} is the application that maps any
370 %$(x,y)$ to the digital media $z$ resulting on the embedding of
371 %$\hat{y}$ into $x$, s.t.
374 %\item We instantiate the mode $f$ with parameter $l=|u_m|$, leading to
375 % the function $f_{l}:\Bool^{l} \rightarrow \Bool^{l}$.
376 %\item We instantiate the strategy adapter $\mathcal{S}$
377 %with parameter $y$ (and some other ones eventually).
378 %This instantiation leads to the strategy $S_y \in \llbracket 1;l\rrbracket ^{\Nats}$.
380 %\item We iterate $G_{f_l}$ with initial configuration $(S_y,\phi_{m})$.
381 %\item $\hat{y}$ is finally the $l$-th term of these iterations.
386 %To summarize, some iterations are realized on the LSCs of the
388 %(the mode gives the iterate function,
389 %the strategy-adapter gives its strategy),
390 %and the last computed state is re-injected into the host content,
391 %in place of the former LSCs.
398 Notice that in order to preserve the unpredictable behavior of the system,
399 the size of the digital medias is not fixed.
400 This approach is thus self adapted to any media, and more particularly to
402 However this flexibility enlarges the complexity of the presentation:
403 we had to give Definitions~\ref{def:mode} and~\ref{def:strategy-adapter}
404 respectively of mode and strategy adapter.
408 %\includegraphics[width=8.5cm]{organigramme2.pdf}
409 \includegraphics[width=8.5cm]{organigramme2.eps}
410 \caption{The dhCI dissimulation scheme}
411 \label{fig:organigramme}
415 Next section shows how to check whether a media contains a mark.