]> AND Private Git Repository - hdrcouchot.git/blob - 15RairoGen.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ajout de fichiers + 15Rairo
[hdrcouchot.git] / 15RairoGen.tex
1 Au bout d'un nombre $b$ d'itérations,
2 si la fonction, notée $G_{f_u}$ (ou bien $G_{f_g}$) 
3 présentée au chapitre~\ref{chap:carachaos}, 
4 a de \og bonnes\fg{} propriétés chaotiques, 
5 le mot $x^b$ devrait  \og sembler ne plus dépendre\fg{} de $x^0$.
6 On peut penser à exploiter une de ces fonctions $G_f$ 
7 comme un générateur aléatoire. 
8 Enfin, un bon générateur aléatoire se doit de 
9 fournir  des nombres selon une distribution uniforme 
10 La suite de ce document donnera
11 une condition nécessaire est suffisante pour que
12 cette propriété soit satisfaite.
13
14
15 Cette section présente une application directe de la théorie développée ci-avant
16 à la génération de nombres pseudo aléatoires. 
17 On présente tout d'abord le générateur
18 basé sur des fonctions chaotiques (section~\ref{sub:prng:algo}), 
19 puis comment intégrer la contrainte de distributionuniforme
20 de la sortie 
21 dans le choix de la fonction à itérer (section~\ref{sub:prng:unif}). 
22 L'approche est évaluée dans la dernière section.
23 \JFC{plan à revoir}
24  
25
26 \section{ Nombres pseudo aléatoires construits par itérations unaires}\label{sub:prng:algo}
27
28
29
30
31
32
33 \begin{algorithm}[h]
34 %\begin{scriptsize}
35 \KwIn{une fonction $f$, un nombre d'itérations $b$, 
36 une configuration initiale $x^0$ ($n$ bits)}
37 \KwOut{une configuration $x$ ($n$ bits)}
38 $x\leftarrow x^0$\;
39 $k\leftarrow b $\;
40 %$k\leftarrow b + \textit{XORshift}(b+1)$\;
41 \For{$i=1,\dots,k$}
42 {
43 $s\leftarrow{\textit{Random}(n)}$\;
44 %$s\leftarrow{\textit{XORshift}(n)}$\;
45 $x\leftarrow{F_{f_u}(s,x)}$\;
46 }
47 return $x$\;
48 %\end{scriptsize}
49 \caption{Algorithme de génération de nombres pseudo aléatoires 
50 à l'aide de la fonction chaotique $G_f$}
51 \label{CI Algorithm}
52 \end{algorithm}
53
54 \subsection{Algorithme d'un générateur}
55 On peut penser à construire un générateur de nombres pseudo 
56 aléatoires comme dans l'algorithme~\ref{CI Algorithm} donné ci-dessous.
57
58
59 Celui-ci prend en entrée: une fonction $f$;
60 un entier $b$, qui assure que le nombre d'itérations
61 est compris entre $b+1 $ et  $2b+1$ (et donc supérieur à $b$) 
62 et une configuration initiale $x^0$.
63 Il retourne une nouvelle configuration $x$ en appliquant 
64 la fonction $F_{f_u}$ vue au chapitre~\ref{chap:carachaos} et correspondant 
65 à des itérations unaires.
66 En interne, il exploite un algorithme de génération
67 de nombres pseudo aléatoires
68 \textit{Random}$(l)$. 
69 Cet algorithme est utilisée dans notre générateur pour construire la longueur 
70 de la stratégie ainsi que les éléments qui la composent.
71 Pratiquement, il retourne des entiers dans $\llbracket 1 ; l \rrbracket$ 
72 selon une distributionuniforme et utilise 
73 \textit{XORshift} qui est une classe de générateurs de
74 nombres pseudo aléatoires conçus par George Marsaglia. 
75
76
77 L'algorithme \textit{XORshift} 
78 exploite itérativement l'opérateur $\oplus$  
79 sur des nombres obtenus grâce à des decalages de bits.
80 Cet opérateur, défini dans $\Bool^{n}$, 
81 applique la fonction \og  xor \fg{} 
82 aux bits de même rang de ses deux opérandes (\og opération bit à bit \fg{}).
83 Une instance de cette classe est donnée dans l'algorithme~\ref{XORshift} donné 
84 ci-dessous.
85
86 \begin{algorithm}[h]
87 %\SetLine
88 \KwIn{la configuration interne $z$ (un mot de 32-bit)}
89 \KwOut{$y$ (un mot de 32-bits)}
90 $z\leftarrow{z\oplus{(z\ll13)}}$\;
91 $z\leftarrow{z\oplus{(z\gg17)}}$\;
92 $z\leftarrow{z\oplus{(z\ll5)}}$\;
93 $y\leftarrow{z}$\;
94 return $y$\;
95 \medskip
96 \caption{Une boucle de l'algorithme de \textit{XORshift}}
97 \label{XORshift}
98 \end{algorithm}
99
100
101 Nous avons vu au chapitre~\ref{chap:carachaos} que 
102 $G_{f_u}$ est chaotique dans l'espace $\mathcal{X}_u$ 
103 si et seulement le graphe d'itérations $\textsc{giu}(f)$ 
104 doit être fortement connexe.
105 Pour $b=1$, l'algorithme itère la fonction $F_{f_u}$.
106 Regardons comment l'uniformité de la distribution a
107 contraint la fonction.
108
109 \subsection{Un générateur à sortie uniformément distribuée}\label{sub:prng:unif}
110
111 Une matrice stochastique est une matrice carrée
112 dont tous les éléments sont positifs ou nuls et dont
113 la somme de chaque ligne
114 vaut 1. 
115 Une matrice stochastique l'est doublement si la somme de chaque colonne est 1.
116 Enfin, une matrice stochastique de taille $n \times n$ est régulière 
117 si  la propriété suivante est établie:
118 $$\exists k \in \mathds{N}^\ast, \forall i,j \in \llbracket 1; n \rrbracket, M_{ij}^k>0.$$
119
120 On énonce enfin le théorème suivant liant les 
121 vecteur de probabilite 
122 et les chaines de Markov.
123
124
125  
126
127 \begin{theorem}\label{th}
128   Si $M$ est une matrice stochastique régulière, alors $M$ 
129   possède un unique vecteur stationnaire de probabilités  $\pi$
130   ($\pi.M = \pi$).
131   De plus, si $\pi^0$ est un {vecteurDeProbabilite} 
132  et si on définit 
133   la suite $(\pi^{k})^{k \in  \Nats}$ par 
134   $\pi^{k+1} = \pi^k.M $ pour $k = 0, 1,\dots$ 
135   alors la {chaineDeMarkov} $\pi^k$
136   converge vers $\pi$ lorsque $k$ tend vers l'infini.
137 \end{theorem}
138
139
140 Montrons sur un exemple jouet à deux éléments 
141 que ce théorème permet de vérifier si la sortie d'un générateur de 
142 nombres pseudo aléatoires est uniformément distribuée ou non.
143 Soit alors $g$ et $h$ deux fonctions  de $\Bool^2$
144 définies par $g(x_1,x_2)=(\overline{x_1},x_1.\overline{x_2}) $
145 et $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$.
146 Leurs graphes d'interactions donnés en figure \ref{fig:g:inter} et \ref{fig:h:inter}
147 vérifient les hypothèses du théorème~\ref{th:Adrien}. 
148 Leurs graphes d'itérations
149 sont donc fortement connexes, ce que l'on peut vérifier aux figures
150 \ref{fig:g:iter} et \ref{fig:h:iter}.
151 \textit{A priori}, ces deux fonctions pourraient être intégrées
152 dans un générateur de nombres pseudo aléatoires. Montrons que ce n'est pas le cas pour $g$ et 
153 que cela l'est pour $h$.
154
155
156
157
158
159
160
161
162
163 \begin{figure}%[t]
164   \begin{center}
165     \subfigure[$g(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}) $]{
166       \begin{minipage}{0.40\textwidth}
167         \begin{center}
168           \includegraphics[height=4cm]{images/g.pdf}
169         \end{center}
170       \end{minipage}
171       \label{fig:g:iter}
172     }
173     \subfigure[$h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$]{
174       \begin{minipage}{0.40\textwidth}
175         \begin{center}
176           \includegraphics[height=4cm]{images/h.pdf}
177         \end{center}
178       \end{minipage}
179       \label{fig:h:iter}
180     }    \end{center}
181     \caption{Graphes d'itérations de fonctions booléennes dans $\Bool^2$}
182     \label{fig:xplgraphIter}
183   \end{figure}
184
185
186
187
188
189
190
191
192
193 \begin{figure}%[t]
194   \begin{center}
195     \subfigure[$g(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}) $]{
196       \begin{minipage}{0.40\textwidth}
197         \begin{center}
198           \includegraphics[height=3cm]{images/gp.pdf}
199         \end{center}
200       \end{minipage}
201       \label{fig:g:inter}
202     }
203     \subfigure[$h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$]{
204       \begin{minipage}{0.40\textwidth}
205         \begin{center}
206           \includegraphics[height=3cm]{images/hp.pdf}
207         \end{center}
208       \end{minipage}
209       \label{fig:h:inter}
210     }    \end{center}
211     \caption{Graphes d'interactions de fonctions booléennes dans $\Bool^2$}
212     \label{fig:xplgraphInter}
213   \end{figure}
214
215
216
217
218
219
220 Comme le générateur \textit{Random} possède une sortie uniformément 
221 distribuée,  la  stratégie est uniforme sur $\llbracket 1, 2 \rrbracket$,
222 et donc, 
223 pour tout sommet de $\textsc{giu}(g)$ et de  $\textsc{giu}(h)$,
224 chaque arc sortant de ce sommet a, parmi l'ensemble des arcs sortant 
225 de ce sommet, une probabilité $1/2$ d’être celui qui sera traversé.
226 En d'autres mots, $\textsc{giu}(g)$ est le graphe orienté d'une chaîne de Markov.
227 Il est facile de vérifier que la matrice de transitions
228 d'un tel processus 
229 est $M_g   = \frac{1}{2} \check{M}_g$, 
230 où $\check{M}_g$ est la matrice d' adjacence  donnée en 
231 figure~\ref{fig:g:incidence} (voir ci-après), et similairement pour $M_h$. 
232
233 \begin{figure}[h]
234   \begin{center}
235     \subfigure[$\check{M}_g $.]{
236       \begin{minipage}{0.25\textwidth}
237         \begin{center}
238           % \vspace{-3cm}
239           $\left( 
240             \begin{array}{cccc} 
241               1 & 0 & 1 & 0 \\ 
242               1 & 0 & 0 & 1 \\ 
243               1 & 0 & 0 & 1 \\ 
244               0 & 1 & 1 & 0 
245             \end{array}
246           \right)
247           $
248         \end{center}
249       \end{minipage}
250       \label{fig:g:incidence}
251     }
252     \subfigure[$\check{M}_h $.]{
253         \begin{minipage}{0.25\textwidth}
254           \begin{center}
255             $\left( 
256               \begin{array}{cccc} 
257                 1 & 0 & 1 & 0 \\ 
258                 0 & 1 & 0 & 1 \\ 
259                 1 & 0 & 0 & 1 \\ 
260                 0 & 1 & 1 & 0 
261               \end{array}
262             \right)
263             $
264           \end{center}
265         \end{minipage}
266         \label{fig:h:incidence}
267       }
268     \end{center}
269     \caption{Graphe des fonctions candidates avec $n=2$}
270     \label{fig:xplgraph}
271   \end{figure}
272
273 Les deux matrices $M_g$ et $M_h$ sont  stochastiques. Pour
274 montrer qu'elles sont régulières il suffit de constater qu'aucun élément de 
275 $M^5_g$ ni de  $M^3_h$ n'est nul.
276 De plus, les vecteurs de probabilités 
277 $\pi_g=(\frac{4}{10}, \frac{1}{10},\frac{3}{10},\frac{2}{10})$ et
278 $\pi_h=(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4})$ 
279 vérifient $\pi_g M_g = \pi_g$ et 
280 $\pi_h M_h = \pi_h$. 
281 Alors d'après le théorème~\ref{th}, 
282 pour n'importe quel vecteur initial de probabilités $\pi^0$, on a 
283 $\lim_{k \to \infty} \pi^0 M^k_g = \pi_g$ et 
284 $\lim_{k \to \infty} \pi^0 M^k_h = \pi_h$. 
285 Ainsi la chaîne de Markov associé à $h$ tend vers une 
286 distribution uniforme, contrairement à celle associée à $g$.
287 On en déduit que $g$ ne devrait pas être itérée dans 
288 un générateur de nombres pseudo aléatoires.
289 Au contraire, 
290 $h$ devrait pouvoir être embarquée dans l'algorithme~\ref{CI Algorithm}, 
291 pour peu que le nombre $b$ d'itérations entre deux mesures successives 
292 de valeurs  soit suffisamment grand de sorte que
293 le vecteur d’état de la chaîne de Markov
294 ait une distribution suffisamment proche de la distribution uniforme.
295
296 On énnonce directement le théorème suivant dont la preuve est donnée en annexes~\ref{anx:generateur}.
297
298 \begin{theorem}
299   Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son 
300   graphe d'itérations , $\check{M}$ sa matrice d'adjacence
301   et $M$ une matrice  $2^n\times 2^n$  définie comme dans le lemme précédent.
302   Si $\textsc{giu}(f)$ est fortement connexe, alors 
303   la sortie du générateur de nombres pseudo aléatoires détaillé par 
304   l'algorithme~\ref{CI Algorithm} suit une loi qui 
305   tend vers la distribution uniforme si 
306   et seulement si  $M$ est une matrice doublement stochastique.
307 \end{theorem}
308
309
310 \subsection{Quelques exemples}
311
312 On reprend le graphe d'interactions $\Gamma(f)$ donné en figure~\ref{fig:G} à la section~\ref{sec:11FCT}.
313 On a vu qu'il y avait  520 fonctions $f$ non isomorphes de graphe d'interactions  $\Gamma(f)$, 
314 dont seulement 16 d'entre elles possédent une matrice doublement stochastique.
315
316 La figure~\ref{fig:listfonction} explicite ces 16 fonctions en 
317 définissant les images des éléments de la liste
318 0, 1, 2,\ldots, 14, 15 en respectant  l'ordre.
319 Expliquons enfin comment a été calculé le nombre de la troisième 
320 colonne utilisé comme le paramètre $b$ 
321 dans l'algorithme~\ref{CI Algorithm}.
322
323 Soit $e_i$ le $i^{\textrm{ème}}$ vecteur la base canonique de $\R^{2^{n}}$. 
324 Chacun des éléments $v_j$, $1 \le j \le 2^n$, 
325 du vecteur $e_i M_f^t$ représente la probabilité 
326 d'être dans la configuration $j$ après $t$ étapes du processus de Markov 
327 associé à $\textsc{giu}(f)$ en partant de la configuration $i$.   
328 Le nombre $\min \{
329  t \mid t \in \Nats, \vectornorm{e_i M_f^t - \pi} < 10^{-4}
330 \}$ représente le plus petit nombre d'itérations où la distance de 
331 ce vecteur au vecteur $\pi=(\frac{1}{2^n},\ldots,\frac{1}{2^n})$
332 -- autrement dit, où la déviation par rapport à la distribution uniforme --
333  est inférieure 
334 à $10^{-4}$. En prenant le max pour tous les $e_i$, on obtient une valeur pour
335  $b$. Ainsi, on a 
336 $$
337 b = \max\limits_{i \in \llbracket 1, 2^n \rrbracket} 
338 \{
339 \min \{
340  t \mid t \in \Nats, \vectornorm{e_i M_f^t - \pi} < 10^{-4}
341 \}
342 \}. 
343 $$
344
345 \begin{figure}%[h]
346   \begin{center}
347   \subfigure[Graphe d'interactions]{
348     \begin{minipage}{0.20\textwidth}
349       \begin{center}
350         \includegraphics[width=3.5cm]{images/Gi.pdf}
351       \end{center}
352     \end{minipage}
353     \label{fig:G}
354   }\hfill
355   \subfigure[Fonctions doublement stochastiques]{
356     \begin{minipage}{0.75\textwidth}
357       \begin{scriptsize}
358         \begin{center}
359           \begin{tabular}{|c|c|c|}
360 \hline
361 {Nom}& {Définition}&{$b$} \\
362 \hline 
363 $\mathcal{F}_1$ & 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 1, 0  & 206\\
364 \hline
365 $\mathcal{F}_2$ &14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 5, 4, 3, 2, 0, 1  
366  & 94 \\
367 \hline
368 $\mathcal{F}_3$ &14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 5, 4, 3, 2, 1, 0
369  & 69 \\
370 \hline
371 $\mathcal{F}_4$ &14, 15, 12, 13, 10, 11, 9, 8, 6, 7, 5, 4, 3, 2, 0, 1
372  & 56 \\
373 \hline
374 $\mathcal{F}_5$ &14, 15, 12, 13, 10, 11, 9, 8, 6, 7, 5, 4, 3, 2, 1, 0
375  & 48 \\
376 \hline
377 $\mathcal{F}_6$ &14, 15, 12, 13, 10, 11, 9, 8, 7, 6, 4, 5, 2, 3, 0, 1
378  & 86 \\
379 \hline
380 $\mathcal{F}_7$ &14, 15, 12, 13, 10, 11, 9, 8, 7, 6, 4, 5, 2, 3, 1, 0
381  & 58 \\
382 \hline
383 $\mathcal{F}_8$ &14, 15, 12, 13, 10, 11, 9, 8, 7, 6, 4, 5, 3, 2, 1, 0
384  & 46 \\
385 \hline
386 $\mathcal{F}_9$ &14, 15, 12, 13, 10, 11, 9, 8, 7, 6, 5, 4, 3, 2, 0, 1
387  & 42 \\
388 \hline
389 $\mathcal{F}_{10}$ &14, 15, 12, 13, 10, 11, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
390  & 69 \\
391 \hline
392 $\mathcal{F}_{11}$ &14, 15, 12, 13, 11, 10, 9, 8, 7, 6, 5, 4, 2, 3, 1, 0
393  & 58 \\
394 \hline
395 $\mathcal{F}_{12}$ &14, 15, 13, 12, 11, 10, 8, 9, 7, 6, 4, 5, 2, 3, 1, 0
396  & 35 \\
397 \hline
398 $\mathcal{F}_{13}$ &14, 15, 13, 12, 11, 10, 8, 9, 7, 6, 4, 5, 3, 2, 1, 0
399  & 56 \\
400 \hline
401 $\mathcal{F}_{14}$ &14, 15, 13, 12, 11, 10, 8, 9, 7, 6, 5, 4, 3, 2, 1, 0
402  & 94 \\
403 \hline
404 $\mathcal{F}_{15}$ &14, 15, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 0, 1
405  & 86 \\ 
406 \hline
407 $\mathcal{F}_{16}$ &14, 15, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
408   & 206 \\
409  \hline
410 \end{tabular}
411 \end{center}
412 \end{scriptsize}
413 \end{minipage}
414 \label{fig:listfonction}
415 }
416 \end{center}
417 \caption{Candidates pour le générateur  avec $n=4$}
418  \end{figure}
419
420
421 La qualité des séquences aléatoires a été évaluée à travers la suite 
422 de tests statistiques développée pour les générateurs de nombres 
423 pseudo aléatoires par le 
424 \emph{National Institute of Standards and Technology} (NIST).
425 L'expérience a montré notamment que toutes ces fonctions
426 passent avec succès cette batterie de tests.
427
428 Pour conclure cette section, on remarque que le générateur de nombres pseudo-aléatoires 
429 a été prouvé chaotique pour $b=1$, \textit{i.e.}, lorqu'il y a une sortie pour chaque itération.
430 Ceci est difficilement compatible avec la volonté d'avoir une sortie uniformémement distribuée: 
431 se rapprocher de cette distribution nécessite en effet un nombre plus élevé
432 d'itérations $b$ entre chaque sortie. Par exemple, dans l'exemple précédent, il est nécessaire 
433 d'itérer au moins 42 fois entre chaque sortie pour suivre une loi uniforme à $10^{-4}$ près.
434 Montrer les sous-séquences de suites chaotiques ainsi générées  demeurent chaotiques
435 est l'objectif de la section suivante.
436
437
438 \section{Un PRNG basé sur des itérations unaires qui est chaotique }
439
440 Cette section présente un espace métrique adapté au générateur de nombres pseudo-aléatoires 
441 pésenté à l'algorithme~\ref{CI Algorithm} et prouve ensuite que la fonction qu'il représente 
442 est chaotique sur cet espace.
443
444 \subsection{Un espace  $\mathcal{X}_{\mathsf{N},\mathcal{P}}$    pour le PRNG de l'algorithme~\ref{CI Algorithm}}
445
446
447
448 Introduisons tout d'abord $\mathcal{P} \subset \mathds{N}$ un ensemble fini non vide de cardinalité 
449 $\mathsf{p} \in \mathds{N}^\ast$.
450 Intuitivement, c'est le nombre d'itérations qu'il est autorisé de faire.
451 On ordonne les $\mathsf{p}$ éléments de $\mathcal{P}$ comme suit: 
452 $\mathcal{P} = \{ p_1, p_2, \hdots, p_\mathsf{p}\}$
453 et $p_1< p_2< \hdots < p_\mathsf{p}$.
454 Dans l'algorithme~\ref{CI Algorithm}, 
455 $\mathsf{p}$ vaut 1 et  $p_1=b$. 
456
457
458 Cet  algorithme peut être vu comme $b$ compostions de la function $F_{f_u}$.
459 Ceci peut cependant se généraliser à $p_i$, $p_i \in \mathcal{P}$,
460 compositions fonctionnelles de $F_{f_u}$.
461 Ainsi, pour chaque $p_i \in \mathcal{P}$, on construit la fonction
462 $F_{{f_u},p_i} :  \mathds{B}^\mathsf{N} \times \llbracket 1, \mathsf{N} \rrbracket^{p_i}
463 \rightarrow \mathds{B}^\mathsf{N}$ définie par
464
465 $$
466 F_{f_u,p_i} (x,(u^0, u^1, \hdots, u^{p_i-1}))  \mapsto 
467 F_{f_u}(\hdots (F_{f_u}(F_{f_u}(x,u^0), u^1), \hdots), u^{p_i-1}).
468 $$
469
470
471 on construit l'espace 
472  $\mathcal{X}_{\mathsf{N},\mathcal{P}}=  \mathds{B}^\mathsf{N} \times \mathds{S}_{\mathsf{N},\mathcal{P}}$, où
473 $\mathds{S}_{\mathsf{N},\mathcal{P}}=
474 \llbracket 1, \mathsf{N} \rrbracket^{\Nats}\times 
475 \mathcal{P}^{\Nats}$. 
476 Chaque élément de l'espace est une paire où le premier élément est 
477 un $\mathsf{N}$-uplet de  $\Bool^{\mathsf{N}}$ (comme dans $\mathcal{X}_u$).
478 Le second élément est aussi une paire $((u^k)_{k \in \Nats},(v^k)_{k \in \Nats})$ de suites infinies.
479 La suite $(v^k)_{k \in \Nats}$ définit combien d'itérations sont exécutées au temps $k$ entre deux sorties.
480 La séquence $(u^k)_{k \in \Nats}$ définit quel élément est modifié (toujours au temps $k$).
481
482 Définissons la fonction de décallage  $\Sigma$ pour chaque  élément de $\mathds{S}_{\mathsf{N},\mathcal{P}}$.
483 $$\begin{array}{cccc}
484 \Sigma:&\mathds{S}_{\mathsf{N},\mathcal{P}} &\longrightarrow
485 &\mathds{S}_{\mathsf{N},\mathcal{P}} \\
486 & \left((u^k)_{k \in \mathds{N}},(v^k)_{k \in \mathds{N}}\right) & \longmapsto & \left(\sigma^{v^0}\left((u^k)_{k \in \mathds{N}}\right),\sigma\left((v^k)_{k \in \mathds{N}}\right)\right). 
487 \end{array}
488 $$
489 En d'autres termes, $\Sigma$ reçoit deux suites $u$ et $v$ et 
490 effectue $v^0$ décallage vers la droite sur la première et un décallage vers la droite 
491 sur la seconde.
492
493
494 Ainsi, les  sorties  $(y^0, y^1, \hdots )$ produites par le générateur détaillé dans 
495 l'algorithme~\ref{CI Algorithm}
496 sont les premiers  composants des itérations $X^0 = (x^0, (u,v))$ et $\forall n \in \mathds{N}, 
497 X^{n+1} = G_{f_u,\mathcal{P}}(X^n)$ dans $\mathcal{X}_{\mathsf{N},\mathcal{P}}$ où
498 $G_{f_u,\mathcal{P}}$  est définie par:
499
500
501
502
503 \begin{equation}
504 \begin{array}{cccc}
505 G_{f_u,\mathcal{P}} :&  \mathcal{X}_{\mathsf{N},\mathcal{P}} & \longrightarrow & \mathcal{X}_{\mathsf{N},\mathcal{P}}\\
506    & (e,(u,v)) & \longmapsto & \left( F_{f,v^0}\left( e, (u^0, \hdots, u^{v^0-1}\right), \Sigma (u,v) \right) .
507 \end{array}
508 \end{equation}
509
510
511
512 \subsection{Une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$}
513
514 On définit la fonction  $d$ sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$ comme suit:
515 Soit  $x=(e,s)$ et $\check{x}=(\check{e},\check{s})$ dans 
516 $\mathcal{X}_{\mathsf{N},\mathcal{P}} = \mathds{B}^\mathsf{N} \times \mathds{S}_{\mathsf{N},\mathcal{P}} $,
517 où $s=(u,v)$ et $\check{s}=(\check{u},\check{v})$ sont dans $ \mathds{S}_{\mathsf{N},\mathcal{P}} = 
518 \mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket} \times \mathcal{S}_\mathcal{P}$. 
519 \begin{itemize}
520 \item $e$ et $\check{e}$ sont des entiers appartenant à $\llbracket 0, 2^{\mathsf{N}-1} \rrbracket$. The Hamming distance
521 on their binary decomposition, that is, the number of dissimilar binary digits, constitutes the integral
522 part of $d(X,\check{X})$.
523 \item The fractional part is constituted by the differences between $v^0$ and $\check{v}^0$, followed by the differences
524 between finite sequences $u^0, u^1, \hdots, u^{v^0-1}$ and  $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$, followed by 
525  differences between $v^1$ and $\check{v}^1$, followed by the differences
526 between $u^{v^0}, u^{v^0+1}, \hdots, u^{v^1-1}$ and  $\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v}^1-1}$, etc.
527 More precisely, let $p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ and $n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
528 \begin{itemize}
529 \item The $p$ first digits of $d(x,\check{x})$ is $|v^0-\check{v}^0|$ written in decimal numeration (and with $p$ digits).
530 \item The next $n\times \max{(\mathcal{P})}$ digits aim at measuring how much $u^0, u^1, \hdots, u^{v^0-1}$ differs from $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$. The $n$ first
531 digits are $|u^0-\check{u}^0|$. They are followed by 
532 $|u^1-\check{u}^1|$ written with $n$ digits, etc.
533 \begin{itemize}
534 \item If
535 $v^0=\check{v}^0$, then the process is continued until $|u^{v^0-1}-\check{u}^{\check{v}^0-1}|$ and the fractional
536 part of $d(X,\check{X})$ is completed by 0's until reaching
537 $p+n\times \max{(\mathcal{P})}$ digits.
538 \item If $v^0<\check{v}^0$, then the $ \max{(\mathcal{P})}$  blocs of $n$
539 digits are $|u^0-\check{u}^0|$, ..., $|u^{v^0-1}-\check{u}^{v^0-1}|$,
540 $\check{u}^{v^0}$ (on $n$ digits), ..., $\check{u}^{\check{v}^0-1}$ (on $n$ digits), followed by 0's if required.
541 \item The case $v^0>\check{v}^0$ is dealt similarly.
542 \end{itemize}
543 \item The next $p$ digits are $|v^1-\check{v}^1|$, etc.
544 \end{itemize}
545 \end{itemize}
546
547
548
549
550 \begin{xpl}
551 Consider for instance that $\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ (so $\mathsf{p}=3$), and that
552 $s=\left\{
553 \begin{array}{l}
554 u=\underline{6,} ~ \underline{11,5}, ...\\
555 v=1,2,...
556 \end{array}
557 \right.$
558 while
559 $\check{s}=\left\{
560 \begin{array}{l}
561 \check{u}=\underline{6,4} ~ \underline{1}, ...\\
562 \check{v}=2,1,...
563 \end{array}
564 \right.$.
565
566 So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.010004000000000000000000011005 ...$
567 Indeed, the $p=2$ first digits are 01, as $|v^0-\check{v}^0|=1$, 
568 and we use $p$ digits to code this difference ($\mathcal{P}$ being $\{1,2,11\}$, this difference can be equal to 10). We then take the $v^0=1$ first terms of $u$, each term being coded in $n=2$ digits, that is, 06. As we can iterate
569 at most $\max{(\mathcal{P})}$ times, we must complete this
570 value by some 0's in such a way that the obtained result
571 has $n\times \max{(\mathcal{P})}=22$ digits, that is: 
572 0600000000000000000000. Similarly, the $\check{v}^0=2$ first
573 terms in $\check{u}$ are represented by 0604000000000000000000, and the absolute value of their
574 difference is equal to 0004000000000000000000. These digits are concatenated to 01, and
575 we start again with the remainder of the sequences.
576 \end{xpl}
577
578
579 \begin{xpl}
580 Consider now that $\mathsf{N}=9$, and $\mathcal{P}=\{2,7\}$, and that
581
582 $s=\left\{
583 \begin{array}{l}
584 u=\underline{6,7,} ~ \underline{4,2,} ...\\
585 v=2,2,...
586 \end{array}
587 \right.$
588 while
589 $\check{s}=\left\{
590 \begin{array}{l}
591 \check{u}=\underline{4, 9, 6, 3, 6, 6, 7,} ~ \underline{9, 8}, ...\\
592 \check{v}=7,2,...
593 \end{array}
594 \right.$
595
596 So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.5173633305600000...$, as $|v^0-\check{v}^0|=5$, $|4963667-6700000| = 1736333$, $|v^1-\check{v}^1|=0$,
597 and $|9800000-4200000| = 5600000$.
598 \end{xpl}
599
600
601
602 $d$ can be more rigorously written as follows:
603 $$d(x,\check{x})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})+d_{\mathds{B}^\mathsf{N}}(e,\check{e}),$$
604 where: % $p=\max \mathcal{P}$ and:
605 \begin{itemize}
606 \item $d_{\mathds{B}^\mathsf{N}}$ is the Hamming distance,
607 \item $\forall s=(u,v), \check{s}=(\check{u},\check{v}) \in \mathcal{S}_{\mathsf{N},\mathcal{P}}$,\newline 
608 $$\begin{array}{rcl}
609  d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) &= &
610    \sum_{k=0}^\infty \dfrac{1}{10^{(k+1)p+kn\max{(\mathcal{P})}}} 
611    \bigg(|v^k - \check{v}^k|  \\
612    & & + \left| \sum_{l=0}^{v^k-1} 
613        \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{(l+1)n}} -
614        \sum_{l=0}^{\check{v}^k-1} 
615        \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{(l+1)n}} \right| \bigg)
616 \end{array}
617 $$ %\left| \sum_{l=0}^{v^k-1} \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{l}} - \sum_{l=0}^{\check{v}^k-1} \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{l}}\right|\right)}.$$
618 \end{itemize}
619
620
621 Let us show that,
622 \begin{prpstn}
623 $d$ is a distance on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
624 \end{prpstn}
625
626
627 \subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant  $\textsc{giu}(f)$}
628
629 \subsection{le PRNG de l'algorithme~\ref{CI Algorithm} est chaotique sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$}
630