]> AND Private Git Repository - hdrcouchot.git/blobdiff - oxford.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
chapitre chaos repris
[hdrcouchot.git] / oxford.tex
index 1f18e055b33054b51c4726758bd216bbe9f7715a..0be295175cbb00ec63c578a1603d1fed857d8c63 100644 (file)
@@ -1,7 +1,27 @@
-\JFC{Dire que c'est une synthèse du chapitre 22 de la thèse de Tof}
+La propriété de régularité des fonctions chaotiques est à l'origine du marquage de documents numériques: de tout média, même tronqué, on peut réextraire la 
+marque. 
+Dans ce chapitre, le processus d'embarquement d'un message dans 
+un média est formalisé en section~\ref{sec:watermarking:formulation}.
+La sécurité des approches de watermarking est étudiée selon deux approches:
+l'approche probabiliste~\ref{sec:watermarking:security:probas} 
+et l'approche chaotique~\ref{sec:watermarking:security:chaos}.
+Une proposition d'embarquement dans le domaine fréquentiel est abordée
+en section~\ref{sec:watermarking:frequentiel}.
 
 
+On remarque cependant que l'algorithme formalisé dans ces sections ne permet
+d'embarquer \textit{in fine} qu'un bit qui est vrai si l'image est marquée 
+et faux dans le cas contraire. 
+Il ne permet pas d'extraire le contenu du message initial à partir de
+l'image marquée. La section~\ref{sec:watermarking:extension}
+propose une solution à ce problème.
 
 
-\section{Processus de marquage}
+Les trois premières sections de ce chapitre sont une reformulation 
+du chapitre 22 de~\cite{guyeux10}. Elles ont été publiées à~\cite{bcg11:ij}.
+L'extension a quant à elle été publiée dans~\cite{bcfg+13:ip}.
+
+
+
+\section{Processus de marquage binaire}\label{sec:watermarking:formulation}
 
 Par la suite, le message numérique qu'on cherche à embarquer est 
 noté $y$ et le support dans lequel se fait l'insertion est noté $x$. 
 
 Par la suite, le message numérique qu'on cherche à embarquer est 
 noté $y$ et le support dans lequel se fait l'insertion est noté $x$. 
@@ -229,265 +249,393 @@ $\hat{y}$ est le second membre de  $G_{f_l}^q(S_y,\phi_{m})$.
 % est marquée, en particulier si l'image a été attaquée entre temps.
 % On s'intéressera aux mesures de similarité entre $x$ et $z$.
 
 % est marquée, en particulier si l'image a été attaquée entre temps.
 % On s'intéressera aux mesures de similarité entre $x$ et $z$.
 
-\section{Analyse de sécurité}\label{sec:security}
+\section{Analyse de sécurité (probabilistes)}\label{sec:watermarking:security:probas}
 
 
 
 
+Récemment~\cite{Cayre2005,Perez06} ont proposé des classes de sécurité pour le
+marquage d'information. Parmis celles-ci, la stego-sécurité a été au centre 
+des travaux puisqu'elle représente la classe la plus élevée dans le contexte où
+l'attaquant n'a accès qu'à l'hôte marqué $z$.
 
 
+Cette définition probabiliste est rappelée ci-après.
+Soit $\mathds{K}$ un ensemble de clefs, $p(X)$ un modèle porbabiliste 
+de $N_0$ hôtes,  et $p(Y|K)$ le modèle probabiliste de $N_0$ contenus marqués avec la 
+même clé $K$ et le même algorithme d'embarquement.
 
 
-As far as we know, Cachin~\cite{Cachin2004}
-produces the first fundamental work in information hiding security:
-in the context of steganography, the attempt of an attacker to distinguish 
-between an innocent image and a stego-content is viewed as an hypothesis 
-testing problem.
-Mittelholzer~\cite{Mittelholzer99} next proposed the first theoretical 
-framework for analyzing the security of a watermarking scheme.
-Clarification between  robustness and security 
-and classifications of watermarking attacks
-have been firstly presented by Kalker~\cite{Kalker2001}.
-This work has been deepened by Furon \emph{et al.}~\cite{Furon2002}, who have translated Kerckhoffs' principle (Alice and Bob shall only rely on some previously shared secret for privacy), from cryptography to data hiding. 
-
-More recently~\cite{Cayre2005,Perez06} classified the information hiding  
-attacks into categories, according to the type of information the attacker (Eve)
-has access to:
-\begin{itemize}
-\item in Watermarked Only Attack (WOA) she only knows embedded contents $z$;
-\item in Known Message Attack (KMA) she knows pairs $(z,y)$ of embedded
-  contents and corresponding messages;
-\item in Known Original Attack (KOA) she knows several pairs $(z,x)$ 
-  of embedded contents and their corresponding original versions;
-\item in Constant-Message Attack (CMA) she observes several embedded
-  contents $z^1$,\ldots,$z^k$ and only knows that the unknown 
-  hidden message $y$ is the same in all contents.
-\end{itemize}
-
-To the best of our knowledge, 
-KMA, KOA, and CMA have not already been studied
-due to the lack of theoretical framework.
-In the opposite, security of data hiding against WOA can be evaluated,
-by using a probabilistic approach recalled below.
-
-
-
+\begin{definition}[Stégo-Sécurité~\cite{Cayre2008}]
+\label{Def:Stego-security} 
+La fonction d'embarquement is \emph{stégo-sécure}
+si la propriété $\forall K \in \mathds{K}, p(Y|K)=p(X)$ est établie.
+\end{definition}
 
 
-\subsection{Stego-security}\label{sub:stegosecurity}
-%\input{stegosecurity}
+Il a déjà été démontré~\cite{guyeuxphd,gfb10:ip}
+que l'algorithme de marquage dont le mode est la fonction 
+négation est stégo-sécure. 
+Un des intérêts de l'algorithme présenté ici est qu'il est paramétré par un mode.
+Lorsque celui-ci a les même propriétés que celles vues pour la création de PRNG (\textit{i.e.} graphe des itérations fortement connexes et matrice de Markov doublement 
+stochastique), on a un marquage qui peut être rendu stego-secure à $\epsilon$ pret,
+ce que précise le théorème suivant:
 
 
+\begin{theorem}\label{th:stego}
+Soit  $\epsilon$ un nombre positif, 
+$l$ un nombre de LSBs, 
+$X   \sim \mathbf{U}\left(\mathbb{B}^l\right)$,
+un adapteur de stratégie uniformémement distribué indépendant de $X$
+$f_l$ un mode tel que  
+$\textsc{giu}(f_l)$ est fortement connexe et la 
+matrice de Markov associée à  $f_l$ est doublement stochastique.
+Il existe un nombre $q$ d'itérations tel que 
+$|p(Y|K)- p(X)| < \epsilon$. 
+\end{theorem}
 
 
-In the Simmons' prisoner problem~\cite{Simmons83}, Alice and Bob are in jail and
-they want to,  possibly, devise an escape plan by  exchanging hidden messages in
-innocent-looking  cover contents.  These  messages  are to  be  conveyed to  one
-another by a common warden named Eve, who eavesdrops all contents and can choose
-to interrupt the communication if they appear to be stego-contents.
 
 
-Stego-security,  defined in  this well-known  context, is  the  highest security
-class in Watermark-Only  Attack setup, which occurs when Eve  has only access to
-several marked contents~\cite{Cayre2008}.
 
 
+\section{Analyse de sécurité (chaos)}\label{sec:watermarking:security:chaos}
+On rappelle uniquement la définition de chaos-sécurité
+introduite dans~\cite{guyeuxphd}.
 
 
-Let $\mathds{K}$ be the set of embedding keys, $p(X)$ the probabilistic model of
-$N_0$ initial  host contents,  and $p(Y|K)$ the  probabilistic model  of $N_0$
-marked contents s.t. each host  content has  been marked
-with the same key $K$ and the same embedding function.
 
 
-\begin{definition}[Stego-Security~\cite{Cayre2008}]
-\label{Def:Stego-security}  The embedding  function  is \emph{stego-secure}
-if  $\forall K \in \mathds{K}, p(Y|K)=p(X)$ is established.
+\begin{definition}[Chaos-sécurité]
+\label{DefinitionChaosSecure}
+Un schéma de marquage $S$ est chaos-sécure sur un espace topologique
+$(\mathcal{X},\tau)$
+si sa version itérative 
+a un comprtement chaotique sur celui-ci.
 \end{definition}
 
 \end{definition}
 
+Tout repose ainsi sur la capacité que l'on a à produire des fonctions 
+dont le graphe des itérations unaires sera fortement connexe.
+Ceci a déjà été traité au chapitre~\ref{chap:carachaos}.
+La seule complexité est l'adaptabilité de la fonction au  nombre $l$ de LSBs.
+
+On considère par exemple le  mode
+$f_l: \Bool^l \rightarrow \Bool^l$ t.q. le $i^{\textrm{ème}}$ composant 
+est défini par 
+\begin{equation}
+{f_l}(x)_i =
+\left\{
+\begin{array}{l}
+\overline{x_i} \textrm{ si $i$ est impair} \\
+x_i \oplus x_{i-1} \textrm{ si $i$ est pair}
+\end{array}
+\right.
+\end{equation}\label{eq:fqq}
+
+on peut déduire imédiatement du théorème~\ref{th:Adrien} (chap.~\ref{chap:carachaos})
+que le graphe $\textsc{giu}(f_l)$ est fortement connexe.
+La preuve de double-stochasiticité de la matrice associée 
+à $f_l$ est donnée en annexes~\ref{anx:marquage:dblesto}.
+On dispose ainsi d'un nouvel algorithme de marquage $\epsilon$-stego-secure et 
+chaos-sécure.
+
+\section{Applications aux domaines fréquentiels}\label{sec:watermarking:frequentiel}
+Le schéma d'algorithme présenté dans ce chapitre a été appliqué au marquage d'images 
+dans les coefficients DCT et les DWT.
+
+\subsection{Fonction de signification pour l'embarquement dans les DCT} 
+On considère un hôte $x$ de taille $H \times L$ dans le domaine fréqentiel DCT.
+Dans chaque bloc de taille $8\times 8$, à chaque bit
+la fonction de signification $u$ associe
 
 
+\begin{itemize}
+\item 1 si c'est un bit appraissant dans la représentation binaire de la valeur d'un coefficient dont les coordonnées appartiennent à $\{(1,1),(2,1),(1,2)\}$,
+\item 1 si c'est un bit appraissant dans la représentation binaire de la valeur 
+  d'un coefficient dont les 
+  coordonnées appartiennent à $\{(3,1),(2,2),(1,3)\}$ et qui n'est pas un des trois 
+  bits de poids faible de cette représentation,
+\item -1 si c'est un bit appraissant dans la représentation binaire
+de la valeur d'un coefficient dont les 
+  coordonnées appartiennent à $\{(3,1),(2,2),(1,3)\}$ et qui est un des 
+ des trois bits de poids faible  de cette valeur,
+\item 0 sinon.
+\end{itemize}
+Le choix de l'importance de chaque coefficient est défini grâce aux seuils  
+$(m,M)=(-0.5,0.5)$ 
+permetant d'engendrer les MSBs, LSBs, et bits passifs.
 
 
 
 
+\subsection{Fonction de signification pour l'embarquement dans les DWT} 
 
 
-%Let $\mathds{K}$ be the set of embedding keys, $p(X)$ the probabilistic model of
-%$N_0$ initial  host contents,  and $p(Y|K)$ the  probabilistic model  of $N_0$
-%marked contents s.t. each host  content has  been marked
-%with the same key $K$ and the same embedding function.
-
-%\begin{definition}[Stego-Security]
-%\label{Def:Stego-security}  The embedding  function  is \emph{stego-secure}
-%if  $\forall K \in \mathds{K}, p(Y|K)=p(X)$ is established.
-%\end{definition}
-
- Stego-security  states that  the knowledge  of  $K$ does  not help  to make  the
- difference  between $p(X)$ and  $p(Y)$.  This  definition implies  the following
- property:
- $$p(Y|K_1)= \cdots = p(Y|K_{N_k})=p(Y)=p(X)$$ 
- This property is equivalent to  a zero Kullback-Leibler divergence, which is the
- accepted definition of the "perfect secrecy" in steganography~\cite{Cachin2004}.
+On considère un hôte dnas le domaine des DWT. La fonction de signification 
+se concentre sur les seconds niveaux de détail (\textit{i.e.}, LH2, HL2 et HH2).
+Pour chaque bit, on dit qu'il est peu significatif si c'est un des trois bits de 
+poids faible d'un coefficient de  LH2, HL2 ou de  HH2.
+Formellement  à chaque bit
+la fonction de signification $u$ associe
 
 
+\begin{itemize}
+\item 1 si c'est un bit appraissant dans la représentation binaire de la valeur d'un coefficient de type LL2, 
+\item 1 si c'est un bit appraissant dans la représentation binaire de la valeur d'un coefficient de type LH2, HL2, HH2 et qui n'est pas un des trois 
+  bits de poids faible de cette représentation,
+\item 1 si c'est un bit appraissant dans la représentation binaire de la valeur d'un coefficient de type LH2, HL2, HH2 et qui est un des trois 
+  bits de poids faible de cette représentation,
+\item 0 sinon.
+\end{itemize}
+Le choix de l'importance de chaque coefficient est encore défini grâce aux seuils  
+$(m,M)=(-0.5,0.5)$ 
+permetant d'engendrer les MSBs, LSBs, et bits passifs.
+
+
+\subsection{Etude de robustesse}
+Cette partie synthétise une étude de robustesse de la démarche présentée ci-avant.
+Dans ce qui suit, {dwt}(neg), 
+{dwt}(fl), {dct}(neg), {dct}(fl) 
+correpondent respectivement aux embarquements en fréquenciel 
+dans les domaines  DWT et  DCT 
+avec le mode de négation et celui issu de la fonction $f_l$
+détaillé à l'équation~\ref{eq:fqq}.
+
+A chaque série d'expériences, un ensemble de 50 images est choisi aléatoirement 
+de la base du concours BOSS~\cite{Boss10}. Chaque hôte est une image 
+en $512\times 512$ en niveau de gris et la marque $y$ est une suite de
+4096 bits.
+La resistance à la robustesse est évaluée en appliquant successivement
+sur l'image marquée des attaques de découpage, de compression, de 
+transformations géométriques. 
+Si les différences entre  $\hat{y}$ and $\varphi_m(z)$.
+sont en desous d'un seuil(que l'on définit), 
+l'image est dite marquée (et non marquée dans le cas contraire).
+Cette différence exprimée en pourcentage est rappellée pour chacune des ataques
+à la figure~\ref{fig:atq:dhc}.
 
 
-\subsection{The negation mode is stego-secure}
-To make this article self-contained, this section recalls theorems and proofs of stego-security for negation mode published in~\cite{gfb10:ip}.
 
 
-\begin{proposition} \emph{dhCI dissimulation}  of Definition \ref{def:dhCI} with
-negation mode and  CIIS strategy-adapter is stego-secure, whereas  it is not the
-case when using CIDS strategy-adapter.
-\end{proposition}
+\begin{figure}[ht]
+  \centering
+  \subfigure[Découpage]{
+    \includegraphics[width=0.5\textwidth]{atq-dec}\label{Fig:atq:dec:curves}
+  }
+  \subfigure[Compression JPEG]{
+    \includegraphics[width=0.45\textwidth]{atq-jpg}\label{Fig:atq:jpg:curves}
+  }
+  \subfigure[Compression JPEG 2000]{
+    \includegraphics[width=0.45\textwidth]{atq-jp2}\label{Fig:atq:jp2:curves}
+  }
+  \subfigure[Modification du contrast]{
+    % \includegraphics[width=0.45\textwidth]{atq-contrast.pdf}\label{Fig:atq:cont:curve}}
+    \includegraphics[width=0.45\textwidth]{atq-contrast}\label{Fig:atq:cont:curve}
+  }
+  \subfigure[Accentuation des bords]{
+    % \includegraphics[width=0.45\textwidth]{atq-flou.pdf}\label{Fig:atq:sh:curve}}
+    \includegraphics[width=0.45\textwidth]{atq-flou}\label{Fig:atq:sh:curve}
+  }
+  \subfigure[Rotation]{
+    % \includegraphics[width=0.45\textwidth]{atq-rot.pdf}\label{Fig:atq:rot:curve}}
+    \includegraphics[width=0.45\textwidth]{atq-rot}\label{Fig:atq:rot:curve}
+  }
+\caption{Illustration de la robustesse}\label{fig:atq:dhc}
+\end{figure}
 
 
 
 
-\begin{proof}   On   the    one   hand,   let   us   suppose    that   $X   \sim
-\mathbf{U}\left(\mathbb{B}^n\right)$  when  using  \linebreak CIIS$(K,\_,\_,l)$.
-We  prove  by  a
-mathematical   induction   that   $\forall    t   \in   \mathds{N},   X^t   \sim
-\mathbf{U}\left(\mathbb{B}^n\right)$.
+\subsection{Evaluation de l'embarquement}\label{sub:roc}
+Pour évaluer le seuil qui permet de dire avec la plus grande précision 
+si une image est marquée ou non, nous avons appliqué la démarche suivante.
+A partir d'un ensemble de 100 images du challenge BOSS, les trois 
+ensembles suivants sont construits: celui des images marquées $W$,
+celui contenant des imges marquées puis attaquée $\textit{WA}$,
+et celui des images uniquement attaquées $A$. Les attaques sont choisiés parmi 
+celles données ci dessus.
 
 
-The     base     case     is     immediate,     as     $X^0     =     X     \sim
-\mathbf{U}\left(\mathbb{B}^n\right)$. Let us now suppose that the statement $X^t
-\sim  \mathbf{U}\left(\mathbb{B}^n\right)$  holds  until for  some $t$. 
-Let  $e  \in
-\mathbb{B}^n$   and   \linebreak   $\mathbf{B}_k=(0,\cdots,0,1,0,\cdots,0)   \in
-\mathbb{B}^n$ (the digit $1$ is in position $k$).
+Pour chaque entier $t$ entre 5 et 55 
+et chaque  image $x \in \textit{WA} \cup A$,
+on calcule la différence entre  $\hat{y}$ et $\varphi_m(z)$.
+L'image est dite marquée si cette différence est en dessous du seuil $t$  considéré  
+\begin{itemize}
+\item si elle est dite marquée et si $x$ appartient  à $\textit{WA}$
+  c'est un vrai cas positif (TP);
+\item si elle est dite non marquée et si $x$ appartient cependant à $\textit{WA}$
+  c'est un faux cas négatif (FN);
+\item si elle est dite marquée et si $x$ appartient cependant à $\textit{A}$
+  c'est un faux cas positif (FP);
+\item enfin si elle est dite non marquée et si $x$ appartient à $\textit{A}$
+  c'est un vrai cas négatif (TN).
+\end{itemize}
 
 
-So    
-$P\left(X^{t+1}=e\right)=\sum_{k=1}^n
-P\left(X^t=e\oplus\mathbf{B}_k,S^t=k\right)$ where  
-$\oplus$ is again the bitwise exclusive or. 
-These  two events are  independent when
-using CIIS strategy-adapter 
-(contrary to CIDS, CIIS is not built by using $X$),
- thus:
-$$P\left(X^{t+1}=e\right)=\sum_{k=1}^n
-P\left(X^t=e\oplus\mathbf{B}_k\right) \times  P\left(S^t=k\right).$$ 
 
 
-According to the
-inductive    hypothesis:   $P\left(X^{n+1}=e\right)=\frac{1}{2^n}   \sum_{k=1}^n
-P\left(S^t=k\right)$.  The set  of events $\left \{ S^t=k \right  \}$ for $k \in
-\llbracket  1;n \rrbracket$  is  a partition  of  the universe  of possible,  so
-$\sum_{k=1}^n                  P\left(S^t=k\right)=1$.                  Finally,
-$P\left(X^{t+1}=e\right)=\frac{1}{2^n}$,   which    leads   to   $X^{t+1}   \sim
-\mathbf{U}\left(\mathbb{B}^n\right)$.   This  result  is  true  for all  $t  \in
-\mathds{N}$ and then for $t=l$.
+\begin{figure}[ht]
+\begin{center}
+\includegraphics[width=7cm]{ROC}
+\end{center}
+\caption{Courbes ROC de seuils de détection}\label{fig:roc:dwt}
+\end{figure}
 
 
-Since $P(Y|K)$ is $P(X^l)$ that is proven to be equal to $P(X)$,
-we thus  have established that, 
-$$\forall K  \in [0;1], P(Y|K)=P(X^{l})=P(X).$$ 
-So   dhCI   dissimulation   with   CIIS
-strategy-adapter is stego-secure.
+La courbe ROC construite à partir des points de coordonnées (TP,FP) issus 
+de ces seuils est 
+donnée à la figure~\ref{fig:roc:dwt}. 
+Pour la fonction $f_l$ et pour la fonction négation respectivement, 
+la détection est optimale pour le seuil de 45\% correspondant au point (0.01, 0.88)
+et pour le seuil de  46\%  correspondant au point (0.04, 0.85) 
+dans le domaine DWT.
+Pour les deux modes dans le domaine DCT, 
+la détection est optimale pour le seuil de 44\% 
+(correspondant aux points (0.05, 0.18) et (0.05, 0.28)).
+On peut alors donner des intervales de confiance pour les attaques évaluées.
+L'approche est résistante à:
+\begin{itemize}
+\item tous les découpages où le pourcentage est inférieur à 85\%;
+\item les compression dont le ratio est supérieur à 82\% dans le domaine 
+  DWT et  67\% dans celui des DCT;
+\item les modifications du contraste lorsque le renforcement est dans 
+  $[0.76,1.2]$ dans le domaine DWT et  $[0.96,1.05]$ dans le domaine DCT;
+\item toutes les rotations dont l'angle est inférieur à 20 degrés dans le domaine DCT et 
+  celles dont l'angle est inférieur à 13 degrés dans le domaine DWT.
+\end{itemize}
 
 
-On  the  other  hand,  due  to  the  definition  of  CIDS,  we  have  \linebreak
-$P(Y=(1,1,\cdots,1)|K)=0$. 
-%\JFC{Pourquoi? Justifier davantage là ou dans la def de CIDS}
-So   there  is   no  uniform  repartition   for  the stego-contents $Y|K$.
-\end{proof}
 
 
+\section{Embarquons d'avantage qu'1 bit}\label{sec:watermarking:extension}
+L'algorithme présenté dans les sections précédentes
+ne  permet de savoir, \textit{in fine}, 
+que si l'image est marquée ou pas. Cet algorithme ne permet pas
+de retrouver le contenu de la marque à partir de l'image marquée.
+C'est l'bjectif de l'algorithme présenté dans cette section et introduit 
+dans~\cite{fgb11:ip}.
+On des raisons de lisibilité, il n'est pas 
+présenté pas dans le formalisme de la première section et
+est grandement synthétisé.
+Il a cependant été prouvé comme étant chaos-sécure~\cite{fgb11:ip}.
 
 
 
 
-To sum up, Alice  and Bob can counteract Eve's attacks in  WOA setup, when using
-dhCI dissimulation with  CIIS strategy-adapter.  To our best  knowledge, this is
-the second time an information hiding scheme has been proven to be stego-secure:
-the   former  was   the  spread-spectrum   technique  in   natural  marking
-configuration with $\eta$ parameter equal to 1 \cite{Cayre2008}.
 
 
+Commençons par quelques conventions de notations: 
+\begin{itemize}
+\item $\mathbb{S}_\mathsf{k}$ est l'ensemble des stratégies unaire sur $[k]$;
+\item $m^0 \in \mathbb{B}^{\mathsf{P}}$ est un vecteur de $\mathsf{P}$ bits
+  représentant la marque;
+\item comme précédement, 
+  $x^0 \in \mathbb{B}^\mathsf{N}$ est le vecteurs des
+   $\mathsf{N}$ bits sélectionnés où la marque est embarquée.
+ \item $S_p \in \mathbb{S}_\mathsf{N}$ 
+   est la \emph{stratégie de place} et définit quel 
+   élément de $x$ est modifié à chaque itération;
+  \item $S_c \in \mathbb{S}_\mathsf{P}$ est la \textbf{stratégie de  choix}
+    qui définit quel indice du vecteur de marque est embarqué à chaque 
+    itération;
+  \item $S_m \in \mathbb{S}_\mathsf{P}$ est la \textbf{stratégie de mélange}
+    qui précise quel élément de la marque est inversé à chaque itération.
+\end{itemize}
 
 
+% In what follows, $x^0$ and $m^0$ are sometimes replaced by
+% $x$ and $m$ for the sake of brevity, 
+% when such abridge does not introduce confusion. 
+
+
+% \subsection{The $\CID$ scheme}\label{sub:ci2:scheme}
+Le processus itératif modifiant $x$ est défini comme suit.
+Pour chaque $(n,i,j) \in  
+\mathds{N}^{\ast} \times \llbracket 0;\mathsf{N}-1\rrbracket \times \llbracket
+0;\mathsf{P}-1\rrbracket$, on a:
+\begin{equation*}
+\left\{
+\begin{array}{l}
+x_i^n=\left\{
+\begin{array}{ll}
+x_i^{n-1} & \text{ if }S_p^n\neq i \\
+m_{S_c^n}^{n-1} & \text{ if }S_p^n=i.
+\end{array}
+\right.
+\\
+\\
+m_j^n=\left\{
+\begin{array}{ll}
+m_j^{n-1} & \text{ if }S_m^n\neq j \\
+ & \\
+\overline{m_j^{n-1}} & \text{ if }S_m^n=j.
+\end{array}
+\right.
+\end{array}
+\right.
+\end{equation*}
+%\end{definition}
+\noindent où $\overline{m_j^{n-1}}$ est la négation booléenne de $m_j^{n-1}$.
+On impose de plus la contrainte suivante.
+Soit $\Im(S_p) = \{S^1_p, S^2_p, \ldots,  S^l_p\}$ 
+l'ensemble de cardinalité $k \leq l$ (les doublons sont supprimés).  
+qui contient la liste des indices $i$, $1 \le i \le p$,
+tels que $x_i$ a été modifié.
+On considère $\Im(S_c)_{|D}= \{S^{d_1}_c, S^{d_2}_c, \ldots,  S^{d_k}_c\}$
+où  
+$d_i$ est la dernière date où l'élément $i \in \Im(S_p)$ a été modifié.   
+Cet ensemble doit être égal à $\llbracket 0 ;\mathsf{P} -1 \rrbracket$.
 
 
+Pour peu que l'on sache satisfaire la contrainte précédente,
+on remplace $x $ par $x^l \in \mathbb{B}^{\mathsf{N}}$ dans
+l'hôte et on obtient un contenu marqué.
 
 
 
 
-\subsection{A new class of $\varepsilon$-stego-secure schemes}
+Sans attaque, le schéma doit garantir qu'un utilisateur qui dispose des bonnes 
+clefs de création des stratégies est capable d'extraire une marque et que 
+celle-ci est la marque insérée.
+Ceci correspond respectivement aux propriétés de complétudes et de correction
+de l'approche.
+L'étude de ces propriétés est l'objectif de la section qui suit.
 
 
-Let us prove that,
-\begin{theorem}\label{th:stego}
-Let $\epsilon$ be positive,
-$l$ be any size of LSCs, 
-$X   \sim \mathbf{U}\left(\mathbb{B}^l\right)$,
-$f_l$ be an image mode s.t. 
-$\Gamma(f_l)$ is strongly connected and 
-the Markov matrix associated to $f_l$ 
-is doubly stochastic. 
-In the instantiated \emph{dhCI dissimulation} algorithm 
-with any uniformly distributed (u.d.) strategy-adapter 
-that is independent from $X$,  
-there exists some positive natural number $q$ s.t.
-$|p(X^q)- p(X)| < \epsilon$. 
-\end{theorem}
 
 
 
 
-\begin{proof}   
-Let $\textit{deci}$ be the bijection between $\Bool^{l}$ and 
-$\llbracket 0, 2^l-1 \rrbracket$ that associates the decimal value
-of any  binary number in $\Bool^{l}$.
-The probability $p(X^t) = (p(X^t= e_0),\dots,p(X^t= e_{2^l-1}))$ for $e_j \in \Bool^{l}$ is thus equal to 
-$(p(\textit{deci}(X^t)= 0,\dots,p(\textit{deci}(X^t)= 2^l-1))$ further denoted by $\pi^t$.
-Let $i \in \llbracket 0, 2^l -1 \rrbracket$, 
-the probability $p(\textit{deci}(X^{t+1})= i)$  is 
-\[
- \sum\limits^{2^l-1}_{j=0}  
-\sum\limits^{l}_{k=1} 
-p(\textit{deci}(X^{t}) = j , S^t = k , i =_k j , f_k(j) = i_k ) 
-\]
-\noindent 
-where $ i =_k j $ is true iff the binary representations of 
-$i$ and $j$ may only differ for the  $k$-th element,
-and where 
-$i_k$ abusively denotes, in this proof, the $k$-th element of the binary representation of 
-$i$.
-
-Next, due to the proposition's hypotheses on the strategy,
-$p(\textit{deci}(X^t) = j , S^t = k , i =_k j, f_k(j) = i_k )$ is equal to  
-$\frac{1}{l}.p(\textit{deci}(X^t) = j ,  i =_k j, f_k(j) = i_k)$.
-Finally, since $i =_k j$ and $f_k(j) = i_k$ are constant during the 
-iterative process  and thus does not depend on $X^t$, we have 
-\[
-\pi^{t+1}_i = \sum\limits^{2^l-1}_{j=0}
-\pi^t_j.\frac{1}{l}  
-\sum\limits^{l}_{k=1} 
-p(i =_k j, f_k(j) = i_k ).
-\]
 
 
-Since 
-$\frac{1}{l}  
-\sum\limits^{l}_{k=1} 
-p(i =_k j, f_k(j) = i_k ) 
-$ is equal to $M_{ji}$ where  $M$ is the Markov matrix associated to
- $f_l$ we thus have
-\[
-\pi^{t+1}_i = \sum\limits^{2^l-1}_{j=0}
-\pi^t_j. M_{ji} \textrm{ and thus }
-\pi^{t+1} = \pi^{t} M.
-\]
 
 
-% The calculus of $p(X^{t+1} = e)$ is thus equal to 
-% $\pi^{t+1}_i$. 
-
-First of all, 
-since the graph $\Gamma(f)$ is strongly connected,
-then for all vertices $i$ and $j$, a path can
-be  found to  reach $j$  from $i$  in at  most $2^l$  steps.  
-There  exists thus $k_{ij} \in \llbracket 1,  2^l \rrbracket$ s.t.
-${M}_{ij}^{k_{ij}}>0$.  
-As all the multiples $l \times k_{ij}$ of $k_{ij}$ are such that 
-${M}_{ij}^{l\times  k_{ij}}>0$, 
-we can  conclude that, if
-$k$ is the least common multiple of $\{k_{ij}  \big/ i,j  \in \llbracket 1,  2^l \rrbracket  \}$ thus 
-$\forall i,j  \in \llbracket  1, 2^l \rrbracket,  {M}_{ij}^{k}>0$ and thus 
-$M$ is a regular stochastic matrix.
-
-
-Let us now recall the following stochastic matrix theorem:
-\begin{theorem}[Stochastic Matrix]
-  If $M$ is a regular stochastic matrix, then $M$ 
-  has an unique stationary  probability vector $\pi$. Moreover, 
-  if $\pi^0$ is any initial probability vector and 
-  $\pi^{t+1} = \pi^t.M $ for $t = 0, 1,\dots$ then the Markov chain $\pi^t$
-  converges to $\pi$ as $t$ tends to infinity.
-\end{theorem}
 
 
-Thanks to this theorem, $M$ 
-has an unique stationary  probability vector $\pi$. 
-By hypothesis, since $M$ is doubly stochastic we have 
-$(\frac{1}{2^l},\dots,\frac{1}{2^l}) = (\frac{1}{2^l},\dots,\frac{1}{2^l})M$
-and thus $\pi =  (\frac{1}{2^l},\dots,\frac{1}{2^l})$.
-Due to the matrix theorem, there exists some 
-$q$ s.t. 
-$|\pi^q- \pi| < \epsilon$
-and the proof is established.
-Since $p(Y| K)$ is $p(X^q)$ the method is then $\epsilon$-stego-secure
-provided the strategy-adapter is uniformly distributed.
- \end{proof}
+\subsection{Correction et complétude du schéma}\label{sub:ci2:discussion}
 
 
-This section has focused on security with regards to probabilistic behaviors. 
-Next section studies it in the perspective of topological ones.
+On ne donne ici que le théorème. La preuve est placée en annexes~\ref{anx:preuve:marquage:correctioncompletue}.
 
 
+\begin{theorem}
+La condition de l'algorithme de marquage est nécressaire et suffisante
+pour permettre l'extraction du message du média marqué.
+\end{theorem}
 
 
+Sous ces hypothèes, on peut donc extraire un message.
+De plus,  le cardinal $k$ de  
+$\Im(S_p)$ est supérieur ou égal à  $\mathsf{P}$.
+Ainsi le bit  $j$ du message original $m^0$ peut être 
+embarqué plusieur fois dans $x^l$. 
+Or, en compte le nombrede fois où ce  bit a été inversé dans 
+$S_m$, la valeur de $m_j$ peut se déduire en plusieurs places. 
+Sans attaque, toutes ces valeurs sont identiques 
+et le messageest obtenus immédiatement.
+Si attaque il y a, la valeur de $m_j$ peut s'obtenir en prenant la valeur 
+moyenne de toutes les valeurs obtenues. On a donc la correction et la complétude.
+
+\subsection{Détecter si le média est marqué}\label{sub:ci2:distances}
+On considère un média $y$ marqué par un message $m$. 
+Soit $y'$ une version altérée de $y$, c.-à-d. une version  
+où certains bits on été modifiés et soit
+$m'$ le message extrait de from $y'$. 
+
+Pour mesurer la distance entre $m'$ et $m$, on 
+considère repsectivement 
+$M$ et $M$ l'ensemble des indices de $m$ et de $m'$ 
+où $m_i$ vaut 1 et ou $m'_1$ vaut 1.
+
+Beaucoup de mesures de similarité~\cite{yule1950introduction,Anderberg-Cluster-1973,Rifqi:2000:DPM:342947.342970}, dépendent des ensembles
+$a$, $b$, $c$ et $d$ définis par
+$a = |M \cap M' |$, 
+$b = |M \setminus M' |$,
+$c = |M' \setminus M|$, and
+$d = |\overline{M} \cap \overline{M'}|$
+
+Selon ~\cite{rifq/others03} la mesure de Fermi-Dirac $S_{\textit{FD}}$
+est celle dont le pouvoir de discrimination est le plus fort, 
+c.-à-d. celui qui permet la séparation la plus forte entre des vecteurs 
+corrélés et des ceux qui ne le sont pas.
+La distance entre $m$ et $m'$ est construite selon cette mesure 
+et produit un réel dans $[0;1]$. Si elle est inférieure à un certain 
+seuil (à définir), le média $y'$ est declaré 
+comme marqué et le message doit pouvoir être extrait.
+
+\subsection{Etude de robustesse}\label{sec:watermarking:robustesse} 
+La méthode d'expérimentation de robustesse appliquée à la section précédente 
+pourrait être réappliquée ici et nous pourrions obtenir, grâce aux courbes de 
+ROC une valeur seuil pour déterminer si une marque est présente ou pas.
+Dans~\cite{bcfg+13:ip}, nous n'avons cependant pas poussé
+la démarche plus loin que de l'embarquement 
+dans les bits de poids faible en spatial et l'on sait que ceci est 
+particulièrement peu robuste. 
+
+
+\section{Conclusion}
+Grace à la formalisation du processus de watermarking par itérations discrètes, nous avons pu dans ce chapitre montrer que le processus possédait les propriétés
+attendues, à savoir stego-sécurité, chaos sécurité et une robustesse relative.
+Pour étendre le champ applicatif, nous avons proposé un second algorithme
+permettant de particulariser la marque à embarquer et donc à extraire.
+Le chapitre suivant s'intéresse au marquage, mais dans un autre domaine que celui des images.
 
 
-%\subsection{Security in KMA, KOA and CMA setups}
-%\input{KMOA.tex}